
Managing Trust in a Peer-2-Peer Information System

Karl Aberer, Zoran Despotovic

Department of Communication Systems
Swiss Federal Institute of Technology (EPFL)

1015 Lausanne, Switzerland
fkarl.aberer, zoran.despotovicg@ep
.ch

Abstract

Managing trust is a problem of particular importance in peer-to-peer environments
as one encounters frequently unknown agents. Existing methods for trust management
based on reputation do however not scale as they rely on some form of central database
or global knowledge to be maintained at each agent. In this paper we illustrate that
the problem needs to be addressed at both the data management and the semantic,
i.e. trust management, level and we devise a method of how trust assessments can be
performed by using at both levels scalable peer-to-peer mechanisms. We expect that
such methods are an important factor if fully decentralized peer-to-peer systems should
become the platform for more serious applications than simple �le exchange.

Keywords. trust management, reputation, peer-to-peer information systems, de-
centralized databases.

BRIDGE paper.

1 Introduction

Over the last years, mainly due to the arrival of new possibilities for doing business elec-
tronically, people started to recognize the importance of trust management in electronic
communities. Visitors at 'amazon.com' usually look for customer reviews before deciding to
buy new books. Participants at eBay's auctions can rate each other after each transaction.
But both examples use completely centralized mechanisms for storing and exploring reputa-
tion data. In this paper we want to explore possibilities for trust management in completely
decentralized environments, Peer-To-Peer networks in particular, where no central database
(or data warehouse) is available.

Peer-To-Peer (P2P) systems are driving a major paradigm shift in the era of genuinely
distributed computing. Major industrial players believe \P2P re
ects society better than

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

other types of computer architectures [4]. It is similar to when in the 1980's the PC gave us
a better re
ection of the user" (www.infoworld.com).

In a P2P infrastructure, the traditional distinction between clients and back-end (or
middle tier application) servers is simply disappearing. Every node of the system plays
the role of a client and a server. The node pays its participation in the global exchange
community by providing access to its computing resources. Gnutella (www.gnutella.com) is
a good example of a P2P success story: a rather simple software enables Internet users to
freely exchange �les, such as MP3 music �les.

The importance of trust management in P2P systems cannot be overemphasized, as
illustrated by investigation on Gnutella [3]. The examples justifying this statement range
from the simplest possible case where, while downloading (music) �les with a Gnutella client,
we want to choose only reliable peers to the situation of the entire P2P community playing
a role of a marketplace where trusting other peers can in
uence the whole business.

The basic problem related to trust management in P2P networks is that information
about transactions performed between peers (agents) is dispersed throughout the network
so that every peer can only build an approximation of 'the global situation in the network'.
Of course this is further complicated by the fact that agents participating in storage cannot
be considered as unconditionally trustworthy and their eventual malicious behavior must be
taken into account, too.

User

P2P Trust
Management

P2P Data
Management

P2P Network
Management

QoS

Qos

exploits

QoS

exploits

uses

Figure 1: Di�erent system levels of P2P computing

The approach to trust management that we present here can be seen as a simple method
of data mining (rather statistical data analysis). We exploit that in a society of agents were
cheating is comparably limited, what we assume also in daily life normally, it will become
diÆcult to hide malicious behavior. The method allows to judge trust for agents even when
one meets them for the �rst time by referring to the experiences other agents made. The
method relies exclusively on peer-to-peer interactions and requires no centralized services
whatsoever, both for trust assessment and data management. It is based on some very
recent developments that have been made in the �eld of data management in decentralized
(or peer-2-peer) information systems (P-Grid [2]). In a nutshell we present an architecture

2

for trust management which relies on all system layers, namely network, storage and trust
management on peer-2-peer mechanisms. This is illustrated in Figure 1. It is important
to observe that in such an architecture a mechanism implemented at a higher level in a
peer-2-peer manner has always to take into account the properties, in particular the quality
of service, of the mechanisms of the underlying layers. For example, the storage layer has
to take into account the unreliability of network connections and thus would replicate data
to make it accessible with suÆcient reliability. The trust layer similarly has to take into
account that not all data is equally well accessible when assessing trust based on statistical
evidence derived from behavioral data.

In that sense this paper not only contributes to the question of how to manage trust, but
shows also a prototypical case of how a full-
edged peer-2-peer architecture for information
systems can be build.

In Section 2 we review existing work on formal trust models and their implementation.
In Section 3 we identify the problems that need to be addressed when managing trust in
a decentralized information system. On Section 4 we give an overview of the method we
propose and that illustrates that the problem is tractable. In Section 5 we present the
detailed algorithms and in Section 6 we give the simulation results showing that the method
works e�ectively. We conclude the paper with some �nal remarks in Section 7.

2 Related Work

One of the �rst works that tried to give a formal treatment of trust that could be used in
computer science was that of Marsh [6]. The model is based on social properties of trust and
presents an attempt to integrate all the aspects of trust taken from sociology and psychology.
But having such strong sociological foundations the model is rather complex and cannot be
easily implemented in today's electronic communities. Moreover the model puts the emphasis
on agents' own experiences only so that the agents cannot collectively build a network of
trust.

An important practical example of reputation management is eBay (www.ebay.com),
most likely the largest online auction site. After each transaction buyers and sellers can
rate each other and the overall reputation of a participant is computed as the sum of these
ratings over the last six months. Of course a main characteristics with this approach is that
everything is completely centralized at the data management level.

Rahman and Hailes [1] proposed a method that can be implemented in P2P networks.
This work is based on Marsh's model. Actually it is a kind of adaptation of Marsh's work
to today's online environments. Some concepts were simpli�ed (for example, trust can have
only four possible values) and some were kept (such as situations or contexts). But the
main problem with this approach is that every agent must keep rather complex and very
large data structures that represent a kind of global knowledge about the whole network. In
real word situations maintaining and updating these data structures can be a labourous and
time-consuming task. Also it is not clear how the agents obtain the recommendations and
how well the model will scale when the number of agents grows.

3

Another work is that of Yu and Singh [7]. This model builds a social network among
agents that supports participants' reputation both for expertise (providing service) and help-
fulness (providing referrals). Every agent keeps a list of its neighbors, that can be changed
over time, and computes the trustworthiness of other agents by updating the current values
by testimonies obtained from reliable referral chains. After a bad experience with another
agent every agent decreases the rating of the 'bad' agent and propagates this bad experience
throughout the network so that other agents can update their ratings accordingly. In many
ways this approach is similar to the previously mentioned work and the same remarks can
be applied.

Also we would like to emphasize that none of these works discusses the data management
and retrieval problems that certainly exist in distributed environments. We think that the
question of choosing the right model to assess trust and the question of obtaining the data
needed to compute trust according to the model cannot be investigated in separation.

3 Managing Trust in a Decentralized System

A common feature of the models of trust investigated in the literature is that they exploit
information on the behavior of other agents in order to assess trust. From a global perspective
it should be possible to assess trust based on all the behavioral data that is available on an
agent.

The notion of context is of great importance when considering trust. The sentence 'I
trust my doctor for giving me advice on medical issues but not on �nancial ones' is only one
example that shows how important contexts can be. However, only for the sake of simplicity,
trust is in the following considered for one static context, meaning that we do not distinguish
the evaluation of trust in di�erent contexts. But the context considerations could be easily
integrated into the model.

Let P denote the set of all agents. The behavioral data B are observations t(q; p) an
agent q 2 P makes when he interacts with an agent p 2 P . Based on these observations one
can assess the behavior of p based on the set

B(p) = ft(p; q) or t(q; p) j q 2 Pg � B

This means we take into account all reports about transactions that are made about
p, but as well all reports about transactions that are made by p. In addition the global,
aggregate behavior B of the system is used in order to scale results obtained about a speci�c
agent.

Analysis of large amounts of behavioral data is in fact an important application of data
mining. Transaction data in business applications is analyzed in order to assess certain
characteristics of customers, in particular also their trustworthiness. All these methods have
in common that they rely on potentially large amounts of behavioral data in order to assess
trust.

4

When studying methods to assess trust in a decentralized environment we have to face
now two questions:

� The semantic question: which is the trust model that allows to assess trust of p based
on the data B(p) and B ?

� The data management question: how can the necessary data B(p) and B be obtained
to compute trust according to the trust model with reasonable e�ort ?

Looking at these two questions more closely one sees that they cannot be investigated in
separation. A powerful trust model is worthless if it cannot be implemented in a scalable
manner, because it requires, for example, some centralized database.

However, with trust another factor comes into play that complicates the situation addi-
tionally. The problem of how to eÆciently manage the behavioral data in trust management
is not just an ordinary distributed data management problem. Each agent providing trust
related data about others needs in turn also to be assessed with respect to its own trust-
worthiness. Thus, we cannot obtain data for determining trust without knowing about the
trust we can put into the data sources.

More concretely, if an agent q has to judge on an agent p, the problem is that it has no
access to the global data B(p) and B. Rather it has to rely on that part of the information
that it has obtained from direct interactions and that it can obtain indirectly through a
limited number of referrals r 2 Wq � P . Thus q has as information

Bq(p) = ft(q; p) j t(q; p) 2 Bg
and

Wq(p) = ft(r; p) j r 2 Wq; t(r; p) 2 Bg
The problem is of course that t(r; p) is not necessarily correct as also a witness r can be

malicious. Thus there exists the additional and principal problem that the necessary data
to assess trust cannot be obtained in a reliable manner.

Finally, even if the referring agent is honest it may not be reachable reliably over the
network. This might distort the quality of the data it receives about the behavior of other
agents.

Thus to formulate the problem of managing trust in a decentralized information system
we can partition it now, more precisely, into three subproblems that need to be studied:

1. The global model of trust: What is the model that describes whether an agent behaves
trustworthy or not ? This model could be based on simple statistical measures, on
experiences gained in economic and sociological sciences or on game-theoretic founda-
tions.

2. The local algorithm to determine trust: What is the computational procedure that
an agent can apply in order to determine trust under the limitations discussed above,

5

namely the unreliability of the agnents providing trust data both with respect to their
trustworthiness themselves as well as their reachibility over the network. To what
extent does this local algorithm provide a good approximation of the global model?

3. The data and communication management: Can the local algorithm be implemented
eÆciently in a given data management infrastructure? In order to obtain scalable
implementations the resources required by each agent must scale gracefully in the
agent population size n, ideally as O(logn).

It is important to observe that these questions are to be answered independently of
which speci�c model of trust is used. They are generic to the problem of managing trust in
a distributed amd decentralized environment.

In the following we demontstrate that a solution is feasible. We propose a simple yet
e�ective method, that implements a fairly straightforward trust model but encompasses all
the relevant aspects. This model may be considered as an interesting result in itself as well
as a starting point for developing further more sophisticated re�nements of the method.

4 Overview of the Trust Management Method

4.1 Global Trust Model

The global trust model we consider can be seen as a simpli�cation of the model discussed
in [7], with exception of the mechanisms used for witnessing. The model is based on binary
trust, i.e. an agent is either trustworthy or not. Agents perform transactions and each
transaction t(p; q) can be either performed correctly or not. If an agent p cheats within a
transaction it becomes from the global perspective untrustworthy.

In order to disseminate information about transactions agents can forward it to other
agents. Since we assume that usually trust exists and malicious behavior is the exception
we just consider information on dishonest interactions as relevant. Thus an agent p can in
case of malicious behavior of q �le a complaint c(p; q). Complaints are the only behavioral
data B used in the model.

Let us �rst look at a simple situation where p and q interact and r later wants to determine
the trustworthiness of p and q. We assume that p is cheating and q is honest. After their
interaction (assuming p and q are acting rational in a game theoretic sense) q will �le a
complaint about p, which is perfectly fair. On the other hand also p will �le a complaint
about q in order to hide its misbehavior. The outside observer r can as a result not distinguish
whether p or q is dishonest. This is an important point. A social mechanisms to detect
dishonest behavior will not work for private interactions.

The trouble for p starts when it continues to cheat. Assume it cheats in another interac-
tion with s. Then r will observe that p complains about both q and s, whereas both q and
s complain about p. It will conclude that it is very probable that p is the cheater.

Generalizing this idea we de�ne a (dis-)trust measure as the product

6

T (p) = jfc(p; q) j q 2 Pgj � jfc(q; p) j q 2 Pgj
The problem is that we have given a global de�nition for trust based on the global

knowledge on complaints. Whereas it is straightforward for an agent to collect all information
about its own interactions with other agents, it is very diÆcult for it to obtain all the
complaints about any other speci�c agent. From a data management perspective the data
is aggregated along the wrong dimension, namely the �rst argument of c(p; q) rather than
along the second. Here is where data management technology can come in, in particular
recent developments that have been made for managing data in decentralized (or peer-2-
peer) information systems.

4.2 Decentralized Data Management

We will use a method that we have proposed, namely P-Grid [2], in order to store data
in a peer-2-peer network in a decentralized and scalable fashion. Without going into the
details of how it works we describe here the main properties of the access method that are
important for the following discussion. Other, similar methods are currently proposed, like
[5], and could be considered as well.

We show in Figure 2 a simple example of the access structure we use. 6 agents support
there together a binary search tree of depth 2. Each level corresponds to a level in the
search tree and at each level we see the intervals corresponding to the paths of the binary
tree, i.e. 0 and 1 at level 1, 00, 01, 10, and 11 at level 2. At level 0 all 6 agents are
contained in the root interval, meaning that any search request can be directed to any agent.
When a search requests arrives at a level the agent checks whether it is responsible for it
at the next level (indicated by its presence in the interval in the Figure) or whether it has
to route it to another agent (indicated by a connector from the agent to another agent in
the complimentary interval at the next lower level). The resulting routing of two example
queries (001 and 100) is shown in the Figure.

At the leaf level the agents store complaints about the agents whose identi�er corresponds
to the search key, using the encoding 1 = 001; 2 = 010; : : : ; 6 = 110. One can see that
multiple agents can be responsible for the complaints on a speci�c agent. Thus we have
replicas of this data. They make the access structure robust against failures in the network.

As the example shows, collisions of interest may occur where agents are responsible for
storing complaints about themselves. We do not exclude this, as for large agent populations
these cases will be very rare and multiple replicas will be available to doublecheck.

One can see that the access method is organized in a peer-2-peer manner, i.e. there exists
no central database. It allows requests of the form:

� insert(a; k; v) where a is an arbitrary agent in the network, k is the key value to be
searched for, and v is a data value associated with the key.

� query(a; k) : v which returns the data values v for a corresponding query k.

7

Routing requests
at level 2

1 2 3 4 5 6

1 2 3 4 56

1 2 6 43

Routing requests
at level 0

Routing requests
at level 1 5

0 1

00 01 10 11

001 100Queries

store
complaints
about and

by 1

stores
complaints
about and

by 2, 3

store
complaints
about and

by 4, 5

stores
complaints
about and

by 6

Figure 2: Example P-Grid

In [2] we have shown that this access structure satis�es the following properties.

� There exists an eÆcient decentralized bootstrap algorithm, based on bilateral commu-
nication of agents, which creates the access structure without central control. This
algorithm is randomized and requires minimal global knowledge of the agents, namely
an agreement on the key space. The mutual communications basically lead to a subse-
quent partitioning of the search space among agents that interact. Depending on the
number of agents and the maximal number of possible keys, multiple agents will store
data belonging to the same key, i.e. replicas are generated in the bootstrap.

� The search algorithm consists of forwarding the requests from one agent to the other,
according to routing tables that have been constructed in the bootstrap algorithm.
The search algorithm is randomized as requests are forwarded to a randomly selected
reference, in case multiple references for routing a request exist, as it is normally the
case. The access probability to di�erent replicas is not uniformly distributed, which is
of importance for the algorithms discussed later.

� All algorithms scale gracefully. In particular search is done in O(logn) time when n

is the number of agents, and the storage space required at each agent scales also as
O(logn).

8

4.3 Local Computation of Trust

We propose now a mechanism for computing trust using a P-Grid as storage structure for
complaints. Every agent p can �le a complaint about q at any time and store it by sending a
message insert(a; key(p); c(p; q)) and insert(a; key(q); c(p; q)) to an arbitrary agent a. (We
can assume that if p is not willing to send insert(a; key(q); c(p; q)) in order to hide the
fact that it is complaining some other agent involved in processing insert(a; key(p); c(p; q))
will do that habitually). The insertion algorithm forwards the complaints to one or more
agents storing complaints about p respectively q. In this way the desired reaggregation of
the complaint data is achieved.

When an agent wants to evaluate the trustworthiness of another agent it starts to search
for complaints on it. Based on the data obtained it uses the trust function T to decide upon
trustworthiness.

When it has found the agents that store the complaints it faces a problem. The agent
providing the data could itself be malicious. This can be dealt with by checking in a next
step the trustworthiness of the agent that stores the complaints and so on. Eventually this
would lead to the exploration of the whole network which is clearly not what we desire.
Therefore we proceed as follows.

We assume that the agents are only malicious with a certain probability � � �max < 1.
Then we con�gure the storage infrastructure in a way that the number r of replicas is on
average such that �r

max < �, where � is an acceptable fault-tolerance.
Thus, if we receive the same data about a speci�c agent from a suÆcient number of

replicas we need no further checks. If the data is insuÆcient or contradictory we continue
to check. Practically, we will also limit the depth of the exploration of trustworthiness of
agents, and might end up in situations where no clear decision can be made. These cases
should be rare.

An interesting observation relates to the agents that route the search requests. In fact, if
we assume a network with unrestricted connectivity (like the Internet) their trustworthiness
does not play a role with respect to obtaining incorrect results. Either they route a request
and help to �nd an agent storing speci�c complaints, and then we contact that agent directly,
or they don't. Only in networks where the complete communication needs to be routed
through malicious agents (like in a mobile ad-hoc network) this would be an additional
factor to take into account.

5 Algorithms

In the following we describe a speci�c implementation of the method described before and
its evaluation.

9

5.1 Procedure for Checking Complaints

When an agent p evaluates the trustworthiness of an agent q it retrieves from the decentral-
ized storage complaint data by submitting messages query(a; key(q)) to arbitrary agents a.
In order to obtain multiple referrals it will do this repeatedly, say s times. As a result it
obtains a set

W = f(cri(q); cfi(q); fi) j i = 1; : : : ; wg
where w is the number of di�erent witnesses found, fi is the frequency with which each of

those witnesses is found and
Pw

i=1 fi = s. cri(q) and cfi(q) are the number of complaints, that
q has received respectively �led, and that witness i reports. Di�erent frequencies fi indicate
that not all witnesses are found with same probability due to the non-uniformity of the P-
Grid structure. In practice this variations can be rather large. This non-uniformity impacts
not only query messages but also storage messages. Thus witnesses found less frequently
will probably also not receive as many storage messages when complaints are �led. Thus
the number of complaints they report will tend to be too low. Therefore we normalize the
values by using the frequencies observed during querying with the following function that
compensates for the variable probability of an agent to be found,

crnormi (q) = cri(q)(1� s� fi

s
)s; i = 1; : : : ; w

and analoguously for cfnorm
i (q). We eliminate the witnesses that are found only once as

any conclusion about the probability of their occurrence would be too unreliable.
Once multiple of these values are given a decision criterion is needed to decide when

to consider an agent trustworthy. This has to be based on the trust measure T and on
the experiences an agent p has made. Thus p keeps a statistics of the average number of
complaints received and complaints �led, cravgp and cfavg

p , aggregating all observations it
makes over its lifetime.

Based on these values we use then the following function to decide whether an agent is
trustworthy, where 1 represents trust and 0 mistrust.

decidep(cr
norm
i (q); cfnorm

i (q)) =

if crnormi (q)cfnorm
i (q) � (1

2
+ 4p

cr
avg

p cf
avg

p

)2cravgp cfavg
p then 1 else 0

This criterion is a heuristics based on the argument that, if an observed value for com-
plaints exceeds the general average of the trust measure too far, the agent must be dishonest.
The problem is the determination of the factor by which it may exceed the average value
at most. The one we have chosen for this function is motivated by a probabilistic analysis
of the underlying Poisson process of �ling complaints, which is too complex to be presented
within the framework of this paper.

10

5.2 Procedure for exploring trust

By obtaining the number of complaints in the way described an agent can now start to
assess trust. The simplest strategy is to take a majority decision and in case of a tie return
"undecided".

/* p is the agent assessing trust

q is the agent to be assessed

l is the limit on the recursion depth of exploration

The result of the algorithm can be

1 = trustworthy, 0 = no assessment possible, -1 = not trustworthy */

ExploreTrustSimple(p, q, l)

IF l>0

W = GetComplaints(q);

/* using the procedure described before, returns a number of witnesses and

the numbers of complaints they report and normalizes them */

update statistics with W;

s = SUM(i = 1..|W|, decide(cr_i, cf_i));

IF s > 0 RETURN 1

ELSE IF s < 0 RETURN -1 ELSE RETURN 0

This does not include the checking of the witnesses themselves. Therefore we consider
also a more sophisticated procedure for checking which is the following.

ExploreTrustComplex(p, q, l)

IF l>0

W = GetComplaints(q);

update statistics with W;

IF |W|=0 RETURN 0;

IF |W| = 1

t = ExploreTrustComplex(p, r, l-1)

IF t = 1 RETURN decide(cr_1, cf_1)

ELSE RETURN 0;

IF |W| > 1

s = SUM(i = 1..|W|, decide(cr_i, cf_i));

IF s > 1 RETURN 1

ELSE IF s < 1 RETURN -1

ELSE

FOR i = 1..|W|

IF ExploreTrustComplex(p, i, l-1) < 1

W := W \ {entry i of W};

/* eliminate the non-trusted witnesses */

s = SUM(i = 1.. |W|, decide(cr_i, cf_i));

IF s > 0 RETURN 1

ELSE IF s < 0 RETURN -1 ELSE RETURN 0

11

The assumption underlying this algorithm is that the probability � that an agent is not
trustworthy is higher than the tolerance for a wrong assessment, i.e. � � �, but that two
witnesses giving the same assessment are acceptable, i.e. �2 < �. Therefore in case of a
single witness it always needs to be checked. Similarly, if the absolute di�erence between
negative and positive assessments is smaller or equal 1, the witnesses need to be checked. If
after the check a majority decision can be made, it is accepted.

6 Evaluation

In the simulations we evaluate the reliability of the trust assessments made. We take into
account three important factors. The size and nature of the agent population, the amount of
resources used for trust assessment and the experience of agents from interacting with other
agents. Our basic assumption was that relatively few agents cheat, but we would like to
better understand what "few" means. In addition we will compare the simple and complex
algorithm for trust assessment.

6.1 Simulation Setting

We have implemented the algorithm in the computer algebra package Mathematica. We
chose an agent community of 128 agents. For storage we use binary keys of length 5 and 4
to address agents, i.e. on average thus 4 respectively 2 replicas of the occuring complaints
on and by agents are kept. We use for all experiments the same P-Grid in order to exclude
e�ects emerging from variations within the P-Grid structure.

We compare agent populations including k = 4; 8 : : : ; 32 cheaters. We consider two kinds
of cheater populations. In the �rst population all cheaters cheat uniformly with probability 1

4
.

In the second population, which is more realistic, the cheaters cheat with variable probability
of 1

i
, for i = 1; : : : k for cheater i. This population includes many agents which cheat very

rarely and should thus be hard to identify as cheaters.
The experiment proceeds as follows

1. A P-Grid for the choosen key length 4 or 5 is built.

2. We perform 6400 and 12800 random interactions among agents in which they can
cheat, i.e. each agent has on average 100 respectively 200 interactions. During that
phase complaints are stored in the P-Grid whenever two agents meet of which at least
one is dishonest and is cheating in that meeting according to its individual cheating
probability.

3. The trust assessment is performed. 4 honest agents evaluate the trust of 100 randomly
chosen agents among the remaining 124 agents. The random selection is done in order
to exclude any e�ects resulting from a speci�c order in which the agents are assessed
and statistical information is built from that. For example, checking only honest
agents in the beginning would make the assessment more sensitive for subsequent

12

malicious agents, whereas if only malicious agents occur at the beginning, they could
be overtrusted. The agents performing the assessment query the network 15 times in
order to obtain data from witnesses. In the trust assessment malicious agents serving
as witnesses cheat again according to their individual cheating probability by returning
random numbers when being asked as a witness.

The simulations result in the number of correct, undecided and incorrect assessments
made, distinguishing among honest and cheating agents.

6.2 Results

First, we evaluate the quality of the trust assessment for each parameter setting by aggre-
gating all 100 assessments of all the 4 assessing agents for all 8 cheater population sizes
(8; : : : ; 32). The aggregation function is

(uhonest + 2 � wcheaters)

total

where uhonest is the number of assessments made where the assessed agent was honest
but no decision was made and wcheaters is the number of assessments made where the agent
was malicious, but was assessed as being honest.

The rationale for this function is that undecided cases are treated as cheaters. This
corresponds to a model of a cautious assessment strategy, assuming that trusting a cheater
is potentially more harmful than missing an opportunity for interacting with an honest agent.
Thus also the weight for wcheaters is set to 2.

This allows us to make a �rst rough judgement on the quality of each parameter setting.
The results are as follows for the cheater population with constant cheating probability of 1

4
.

replicas # interactions decision algorithm quality

2 100 simple 0.0537
2 200 simple 0.0587
4 100 simple 0.0515
4 200 simple 0.0478
2 100 complex 0.0578
2 200 complex 0.0587
4 100 complex 0.0190

4 200 complex 0.0228

The results show that only the combination of using a larger number of replicas and
the complex decision criterion substantially increases the quality of the assessments. The
di�erences among the other assessments are not substantial, though their general quality is
rather good, i.e. only a very low fraction of the total number of assessments lead to wrong
decisions (we can think of the quality measure as a probability of making an error weighted
by the expected cost of doing so).

13

For the cheater population with variable cheating probability the results where obvi-
ously not as reliable as the increasing number of cheaters with very low cheating probability
becomes diÆcult to distinguish from the honest agents.

replicas # interactions decision algorithm quality

2 100 simple 0.1478
2 200 simple 0.0637
4 100 simple 0.1300
4 200 simple 0.0700
2 100 complex 0.1618
2 200 complex 0.0684
4 100 complex 0.2047
4 200 complex 0.0556

In contrast to the pevious result, for the cheater population with variable cheating prob-
ability the number of interactions, corresponding to the experience of the agents, becomes
essential. Among those assessments again the ones made using the combination of the larger
number of replicas and the complex decision criterion are the best, though the di�erence
there is not as substantial.

Next we give the detailed results for the optimal parameter settings for the di�erent sizes
of the malicious agent population. We denote ccheater as the number of cheaters correctly
identi�ed, ucheater as the number of cheaters for which no decision is made, wcheater as the
number of cheaters which are wrongly assessed, and analogously chonest, uhonest and whonest

for the honest agents. For the case of a constant cheating probability we get the following.

cheaters ccheater ucheater wcheater chonest uhonest whonest

4 24 0 0 376 0 0
8 20 0 0 379 1 0
12 39 1 0 357 2 1
16 52 0 0 343 5 0
20 100 0 0 289 6 5
24 125 3 0 252 18 2
28 110 2 0 272 10 6
32 137 3 0 243 9 8

For the case of variable cheating probability we get.
cheaters ccheater ucheater wcheater chonest uhonest whonest

4 4 0 0 396 0 0
8 8 0 0 391 1 0
12 35 1 0 361 3 0
16 60 0 0 338 2 0
20 109 2 5 284 0 0
24 48 2 26 319 3 2
28 93 5 18 283 1 0
32 55 3 30 304 8 0

14

One can see that the method works almost perfectly in the case of constant cheating
probability up to a quite large cheater population. In fact with 32 agents cheating already 1

4

of the whole population cheats. When comparing with the detailed results using the simple
assessment algorithm (which we omit for space reasons) one can see that the main advantage
of using the complex assessment algorithm is, that it can resolve many more of the undecided
cases. In the case of variable cheating probability the method is quite robust up to 20 agents,
but from then more and more agents, that cheat rarely, will be considered as honest.

One might observe that in the experiments the number of experiences made by each
agent is of the same order of magnitude as the agent population itself, such that a form of
global knowledge is aquired. In fact, we made the simulations with a relatively low number
of agents in order to keep the computational cost of the simulation within limits. Running
the same experimental setting with 1024 agents where 32; 64; : : : ; 256 of them are cheating
with constant probabilty 1

4
and where each agent has 200 encounters, shows that the results

are of the same quality with a quality factor of 0.02825. This indicates that there exists no
(substantial) dependency of the method between the total population size and the amount
of experience a single agent collects. This is not unexpected as long as the agent population
is built up in a uniform manner.

Summarizing, the experimental evaluations con�rm by large what we expected from the
method, and they show that a detection of cheating agents is in fact possible in a pure
peer-to-peer environment based on a fully decentralized reputation management.

7 Conclusions

We have identi�ed the questions to be addressed when trying to �nd a solution to the problem
of trust assessment based on reputation management in a decentralized environment. We
have introduced and analyzed a simple, yet robust method that shows that a solution to this
problem is feasible. As this is a �rst contribution to this problem, a number of issues for future
research remain open. First, we see a need for more extensive evaluations of the method over
a wider parameter range and using more detailed evaluation criteria. Second, probabilistic
analysis are to be made which analyse the underlying probabilistic processes and eventually
lead to more precise methods. We made already �rst steps into that direction which lead
in particular to a formal justi�cation of the decision criterion used in the algorithm. Third,
we plan to incorporate these mechanisms into actually existing P2P applications, like �le
sharing systems, and thus to improve their quality for the users and to obtain feedback on
practicability.

References

[1] A.Abdul-Rahman and S. Hailes: Supporting Trust in Virtual Communities Proceedings of the
33rd Hawaii International Conference on System Sciences, 2000.

15

[2] K. Aberer: P-Grid:A self-organizing access structure for P2P information systems EPFL Tech-
nical Report, DSC/2001/016, (to appear at COOPIS 2001, Trento, Italy), 2001.

[3] E. Adar and B. A. Huberman: Free riding on Gnutella Technical report, Xerox PARC, 10 Aug.
2000.

[4] D. Clark. Face-to-Face with Peer-to-Peer Networking. IEEE Computer, January 2001.

[5] Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger, Robert Morris, Ion Stoica,
Hari Balakrishnan: Building Peer-to-Peer Systems With Chord, a Distributed Lookup Service

Proceedings of the 8th Workshop on Hot Topics in Operating Systems (HotOS-VIII), 2001.

[6] S.Marsh: Formalising Trust as a Computational Concept Ph.D. Thesis, University of Stirling,
1994.

[7] Bin Yu and Munindar P. Singh: A Social Mechanism of Reputation Management in Electronic

Communities Proc. of the 4th International Workshop on Cooperative Information Agents,
Matthias Klusch, Larry Kerschberg (Eds.), Lecture Notes in Computer Science, Vol. 1860,
Springer, 2000.

16

