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Abstract

The ridgelet transform (Cand�es and Donoho, 1999) was introduced as a new multiscale representation

for functions on continuous spaces that are smooth away from discontinuities along lines. In this paper, we

present several discrete versions of the ridgelet transform that lead to algorithmic implementations. The

resulting transforms are invertible, non-redundant and computed via fast algorithms. Furthermore, this

construction leads to a family of directional orthonormal bases for digital images. Numerical results show

that the new transforms are more e�ective than the wavelet transform in approximating and denoising

images with straight edges.
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I. Introduction

Many image processing tasks take advantage of sparse representations of image data where

most information is packed into a small number of samples. Typically, these representations are

achieved via invertible and non-redundant transforms. Currently, the most popular choices for

this purpose are the wavelet transform [1], [2] and the discrete cosine transform [3].

The success of wavelets are mainly due to their good performance for piecewise smooth func-

tions in one dimension. Unfortunately, such is not the case in two dimensions. In essence,

wavelets are good at catching zero-dimensional or point singularities, but two-dimensional piece-

wise smooth signals resembling images have one-dimensional singularities. That is, smooth re-

gions are separated by edges, and while edges are discontinuous across, they are typically smooth.

Intuitively, wavelets in two dimensions obtained by a tensor-product of one dimensional wavelets

will be good at isolating the discontinuity across the edge, but will not see the smoothness along

the edge.

This fact has a direct impact on the performance of many applications that use wavelets. As an

example, for the image denoising problem, state-of-the-art techniques are based on thresholding

of wavelet coe�cients [4], [5]. Despite their simplicity, these methods work very e�ectively,

mainly due to the property of the wavelet transform that most image information is contained in

a small number of signi�cant coe�cients { around the locations of singularities or image edges.

However, since wavelets fail to represent e�ciently singularities along lines or curves, wavelet-

based techniques fail to explore the geometrical structure that is typical smooth edges in images.

Therefore, new denoising schemes which are based on \true" two-dimensional (2-D) transforms

are expected to improve the performance over the current wavelet-based methods.

To overcome the weakness of wavelets in higher dimensions, Cand�es and Donoho [6], [7] recently

pioneered a new system of representations named ridgelets which they showed to deal e�ectively

with line singularities in 2-D. The idea is to map a line singularity into a point singularity using

the Radon transform [8]. Then, the wavelet transform can be used to handle the point singularity.

Their initial proposal was intended for functions de�ned in the continuous R2 space.

For practical applications, the development of discrete versions of the ridgelet transform that

lead to algorithmic implementations is a challenging problem. Due to the radial nature of

ridgelets, straightforward implementations based on discretization of continuous formulae would

require interpolation in the polar coordinate or in the rotation operator, and thus the resulting

transforms would be either redundant or can not be perfectly reconstructed. The approaches

described in [9], [10], which are based on interpolations over the \concentric-squares" grid in the

Fourier plane, lead to discrete ridgelet transforms with exact reconstruction, but they have a
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factor two overcompleteness.

In this paper, we propose several versions of the discrete ridgelet transform that achieve both

the invertible and non-redundancy requirements. A key step in our method is an invertible

discrete Radon transform. This construction leads to a new family of orthonormal bases for

digital images. Its properties are demonstrated and studied in several applications.

Back to the image denoising problem, there are other approaches that explores the geometrical

regularity of edges, for example by chaining adjacent wavelet coe�cients and then thresholding

them over those contours [11]. However, the discrete ridgelet transform approach, with its \built-

in" linear geometrical structure, provide a more elegant way { by simply thresholding signi�cant

ridgelet coe�cients { in denoising images with straight edges.

The outline of this paper is as follows. In the next section we review the concept and motivation

of ridgelets in the continuous domain. In Section III, we introduce the �nite Radon transform

with a novel ordering of coe�cients as a key step in our discrete ridgelet construction. The �nite

Radon transform is also studied in the frame theory. The �nite ridgelet transform is de�ned

in Section IV, where the main result is a general family of orthonormal transforms for digital

images. In Sections V, we propose some variations on the initial design of the �nite ridgelet

transform in order to reduce artifacts. In Section VI, we extend the �nite ridgelet idea further to

obtain a transform that is free from periodization but at the cost of being redundant. Numerical

experiments are presented in Section VII, where the new transforms are compared with the

traditional ones, especially wavelets. We conclude in Section VIII with some discussions and an

outlook.

II. Continuous Ridgelet Transform

We start by briey reviewing the ridgelet transform and showing its connections with other

transforms in the continuous domain. Given an integrable bivariate function f(x), its continuous

ridgelet transform (CRT) in R2 is de�ned by [6], [7]

CRTf (a; b; �) =

Z
R2

 a;b;�(x)f(x)dx; (1)

where the ridgelets  a;b;�(x) in 2-D are de�ned from a wavelet-type function in 1-D  (x) as

 a;b;�(x) = a�1=2 ((x1 cos � + x2 sin � � b)=a): (2)

Fig. 1 plots a typical ridgelet: the function is oriented at the angle � and is constant along the

lines x1 cos � + x2 sin � = const.

In comparison, the (separable) continuous wavelet transform (CWT) in R
2 of f(x) can be
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Fig. 1. A typical ridgelet function  a;b;�(x1; x2).

written as

CWTf (a1; a2; b1; b2) =

Z
R2

 a1;a2;b1;b2(x)f(x)dx; (3)

where the wavelets in 2-D are tensor products

 a1;a2;b1;b2(x) =  a1;b1(x1) a2 ;b2(x2); (4)

of 1-D wavelets,  a;b(t) = a�1=2 ((t� b)=a).1

The CRT appears similar to the 2-D CWT except that the point parameters (b1; b2) are

replaced by the line parameters (b; �). In other words, these 2-D multiscale transforms are

related by:

Wavelets: !  scale; point�position,

Ridgelets: !  scale; line�position.
As a consequence, wavelets are very e�ective at representing objects with isolated point sin-

gularities, while ridgelets are very e�ective at representing objects with singularities along lines.

In fact, one can loosely view ridgelets as a way of concatenating 1-D wavelets along lines. Hence

the motivation for using ridgelets in image processing tasks is very appealing as singularities are

often joined together along edges or contours in images.

In 2-D, points and lines are related via the Radon transform, thus the wavelet and ridgelet

transforms are linked via the Radon transform. More precisely, denote the Radon transform as

Rf (�; t) =

Z
R2

f(x)�(x1 cos � + x2 sin � � t)dx; (5)

then the ridgelet transform is precisely the application of a 1-D wavelet transform to the slices

(also referred to as projections) of the Radon transform,

CRTf(a; b; �) =

Z
R

 a;b(t)Rf (�; t)dt: (6)

1In practice, however one typically enforces the same dilation scale on both directions thus leading to three

wavelets corresponding to horizontal, vertical and diagonal directions.
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Fig. 2. (a) The Radon transform in R
2 . For a �xed �, Rf (�; t) is a slice or projection in the Radon

domain. (b) Relations between transforms. The ridgelet transform is the application of 1-D wavelet

transform to the slices of the Radon transform, while the 2-D Fourier transform is the application of

1-D Fourier transform to those Radon slices.

Fig. 2(a) shows a graphical representation of the Radon transform. It is instructive to note

that if in (6) instead of taking a 1-D wavelet transform, the application of 1-D Fourier transform

along t would result in the 2-D Fourier transform. More speci�cally, let Ff (!) be the 2-D Fourier

transform of f(x) then we have

Ff (� cos �; � sin �) =

Z
R

e�j�tRf (�; t)dt: (7)

This is the famous projection-slice theorem and is used often in image reconstruction from pro-

jection methods [12], [13]. The relations between the various transforms are shown in Fig. 2(b).

III. Finite Radon Transform

A. Forward and Inverse Transforms

As suggested in the previous section, a discrete ridgelet transform can be obtained via a

discrete Radon transform. Numerous discretizations of the Radon transforms have been devised

to approximate the continuous formula [12], [13], [14], [15], [16]. However to our knowledge, none

of them were specially designed to be invertible transforms for digital images. Alternatively, the

�nite2 Radon transform theory [17], [18], [19], [20], which originated from combinatorics, provides

an interesting solution. Also, in [21], a closely related transform is derived from the periodization

of the continuous Radon transform.

The �nite Radon transform (FRAT) is de�ned as summations of image pixels over a certain

set of \lines". Those lines are de�ned in a �nite geometry in a similar way as the lines for the

2That means a transform for �nite length signals.
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Fig. 3. Lines for the 7 � 7 FRAT. Parallel lines are grouped in each of the eight possible directions.

Images in order from top to bottom, left to right are corresponding to the values of k from 0 to 7. In

each image, points (or pixels) in di�erent lines are assigned with di�erent gray-scales.

continuous Radon transform in the Euclidean geometry. Denote Zp = f0; 1; : : : ; p� 1g, where
p is a prime number. Note that Zp is a �nite �eld with modulo p operations [22]. For later

convenience, we denote Z�
p = f0; 1; : : : ; pg.

The FRAT of a real function f on the �nite grid Z2
p is de�ned as

rk[l] = FRATf [k; l] =
1p
p

X
(i;j)2Lk;l

f [i; j]: (8)

Here Lk;l denotes the set of points that make up a line on the lattice Z2
p , or more precisely

Lk;l = f(i; j) : j = ki+ l (mod p); i 2 Zpg ; 0 � k < p;

Lp;l = f(l; j) : j 2 Zpg : (9)

Fig. 3 displays an example of the �nite lines Lk;l where points in the grid Z2
p are represented

by image pixels.

We observe that in the FRAT domain, the energy is best compacted if the mean is subtracted

from the image f [i; j] previous to taking the transform given in (8), which is assumed in the

sequel. We also introduce the factor p�1=2 in order to normalize the l2-norm between the input

and output of the FRAT.

Just as in the Euclidean geometry, a line Lk;l on the a�ne plane Z2
p is uniquely represented

by its slope or direction k 2 Z�
p (k = p corresponds to in�nite slope or vertical lines) and its

intercept l 2 Zp. One can verify that there are p2 + p lines de�ned in this way and every line
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contains p points. Moreover, any two distinct points on Z2
p are in just one line. Also, two lines

of di�erent slopes intersect at exactly one point. For any given slope, there are p parallel lines

that provide a complete cover of the plane Z2
p . This means that for an input image f [i; j] with

zero-mean, we have

p�1X
l=0

rk[l] =
1p
p

X
(i;j)2Z2

p

f [i; j] = 0 8k 2 Z�
p : (10)

Thus (10) explicitly reveals the redundancy of the FRAT: in each direction, there are only

p � 1 independent FRAT coe�cients. Those coe�cients at p + 1 directions together with the

mean value make up totally of (p + 1)(p � 1) + 1 = p2 independent coe�cients (or degrees of

freedom) in the �nite Radon domain (as expected).

In analogy with the continuous case, the �nite back-projection (FBP) operator is de�ned as

the sum of Radon coe�cients of all the lines that go through a given point, that is

FBPr[i; j] =
1p
p

X
(k;l)2Pi;j

rk[l]; (i; j) 2 Z2
p ; (11)

where Pi;j denotes the set of indexes of all the lines that go through a point (i; j) 2 Z2
p . More

speci�cally, using (9) we can write

Pi;j = f(k; l) : l = j � ki (mod p); k 2 Zpg [ f(p; i)g (12)

From the property of the �nite geometry Z2
p that every two points lie in exactly one line, it

follows that every point in Z2
p lies in exactly one line from the set Pi;j, except the point (i; j)

which lies in all p+ 1 lines. Thus, by substituting (8) into (11) we obtain

FBPr[i; j] =
1

p

X
(k;l)2Pi;j

X
(i0;j0)2Lk;l

f [i0; j0] =
1

p

0
@ X

(i0;j0)2Z2
p

f [i0; j0] + p:f [i; j]

1
A = f [i; j]: (13)

So the back-projection operator de�ned in (11) indeed computes the inverse FRAT for zero-

mean images. Therefore we have an e�cient and exact reconstruction algorithm for the FRAT.

Both the forward and inverse of the FRAT require p3 additions and p2 multiplications. In

[19], Mat�u�s and Flusser described a fast implementation of the FRAT in which each projection

needs to pass through every pixel of the original image once using p histogrammers, one for each

FRAT coe�cient of that projection. With our implementation by programming in C on a Sun

Ultra 5 computer, both the forward and inverse FRAT take less than 0.1 second to compute for

an image of size 127� 127.

B. Optimal Ordering of the Finite Radon Transform Coe�cients

The FRAT described in Section III-A uses (9) as a convenient way of specifying �nite lines on

the Z2
p grid via two parameters: the slope k and the intercept l. However it is neither the unique
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nor the best way for our purpose. Let us consider a more general de�nition of lines on the �nite

Z2
p plane as

L0a;b;t =
�
(i; j) 2 Z2

p : ai+ bj � t = 0 (mod p)
	
; (14)

where a; b; t 2 Zp and (a; b) 6= (0; 0).

This is in analogy with the line equation: x1 cos � + x2 sin � � t = 0 in R2 . So for a �nite line

de�ned as in (14), (a; b) has the role as the normal vector, while t is the translation parameter.

In this section, all equations involving line parameters are carried out in the �nite �eld Zp, which

is assumed in the sequel without the indication of mod p.

To relate (9) with (14), consider the general line equation in (14)

ai+ bj � t = 0: (15)

If b 6= 0 then, (15) , j = �b�1ai + b�1t, where b�1 denotes the multiplicative inverse of b in

the �nite �eld Zp, i.e. bb
�1 = 1 (mod p). Otherwise, if b = 0, then it is necessary that a 6= 0,

thus (15), i = a�1t.

So by matching the line equations in (9) and (14), we have the following equivalences between

these two speci�cations of �nite lines in Z2
p :

L0a;b;t � Lk;l if a = �kb; b 6= 0; t = bl; for 0 � k < p; and

L0a;b;t � Lp;l if a 6= 0; b = 0; t = al:

In other words, there is a many (exactly p� 1) to one mapping between the line parameters in

(14) and in (9), such that they represent the same line. It is easy to see that for any c 2 Zp; c 6= 0

then fcl : l 2 Zpg is the same as the set Zp. So for a �xed normal vector (a; b), the set of parallel

lines
n
L0a;b;t : t 2 Zp

o
equals to the set of p lines fLk;l : l 2 Zpg with a same slope k, where

k = �b�1a for b 6= 0 and k = p for b = 0. Moreover, the set of lines with the normal vector (a; b)

is also equal to the set of lines with the normal vector (na; nb), for each n = 1; 2; : : : ; p� 1.

With the general line speci�cation in (14), we now de�ne the new FRAT to be

ra;b[t] = FRATf [a; b; t] =
1p
p

X
(i;j)2L0

a;b;t

f [i; j]: (16)

From the discussion above we see that a new FRAT projection sequence: (ra;b[0]; ra;b[1]; : : : ; ra;b[p�
1]), is simply a reordering of a projection sequence (rk[0]; rk[1]; : : : ; rk[p�1]) from (8). This order-

ing is important for us since we later apply an 1-D wavelet transform on each FRAT projection.

Clearly, the chosen normal vectors (a; b) control the order for the coe�cients in each FRAT's

projection, as well as the represented directions of those projections.
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The usual FRAT described in Section III-A uses the set of (p+ 1) normal vectors uk, where

uk = (�k; 1) for k = 0; 1; : : : ; p� 1; and

up = (1; 0): (17)

In order to provide a complete representation, we need the FRAT to be de�ned as in (16) with

a set of p + 1 normal vectors
�
(ak; bk) : k 2 Z�

p

	
such that they cover all p + 1 distinct FRAT

projections represented by
�
uk : k 2 Z�

p

	
. We have p�1 choices for each of those normal vectors

as

(ak; bk) = nuk; 1 � n � p� 1:

So which is the p + 1 optimal normal vectors for the FRAT? To answer this we �rst prove

the following projection slice theorem for the general FRAT. A special case of this theorem is

already shown in [19].

De�ning Wp = e�2
p�1�=p, the discrete Fourier transform (DFT) of a function f on Z2

p can be

written as

F [u; v] =
1

p

X
(i;j)2Z2

p

f [i; j]W ui+vj
p ; (18)

and for FRAT projections on Zp as

Ra;b[w] =
1p
p

X
t2Zp

ra;b[t]W
wt
p : (19)

Theorem 1 (Discrete projection-slice theorem) The 1-D DFT Ra;b[w] of a FRAT projection

ra;b[t] is identical to the 2-D DFT F [u; v] of f [i; j] evaluated along a discrete slice through the

origin at direction (a; b):

Ra;b[w] = F [aw; bw]: (20)

Proof: Substituting (16) into (19) and using the fact that the set of p parallel lines
n
L0a;b;t : t 2 Zp

o
provides a complete cover of the plane Z2

p , we obtain

Ra;b[w] =
1

p

X
t2Zp

X
(i;j)2L0

a;b;t

f [i; j]Wwt
p =

1

p

X
(i;j)2Z2

p

f [i; j]Ww(ai+bj)
p = F [aw; bw]:

2

From (20), we can see the role of the FRAT normal vectors (a; b) in the DFT domain: it

controls the order of the coe�cients in the corresponding Fourier slices. In particular, F [a; b]

equals to the �rst harmonic component of the FRAT projection sequence with the normal vector
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Fig. 4. Example of a discrete Fourier slice (consisted of all the black squares) with the best normal vector

for that FRAT projection. In this example, p = 17 and the slope k = 11. The normal vector can be

chosen as a vector from the origin to any other points on the Fourier slide. The best normal vector is

(1; 3) (the solid arrow).

(a; b). For the type of images that we are interested in, e.g. of natural scenes, most of the energy

is concentrated in the low frequencies. Therefore in these cases, in order to ensure that each

FRAT projection is smooth or low frequency dominated so that it can be represented well by

the wavelet transform, the represented normal vector (a; b) should be chosen to be as \close" to

the origin of the Fourier plane as possible.

Fig. 4 illustrates this by showing an example of discrete Fourier slice. The normal vector for

the corresponding FRAT projection can be chosen as a vector from the origin to any other points

on the Fourier slice. However, the best normal vector is selected as the closest point to the origin.

Furthermore, the choice of the normal vector (a; b) as the closest point to the origin causes

the represented direction of the FRAT projection to have least \wrap around", which is due to

the periodization in the transform. The e�ect of the new ordering of FRAT coe�cient in the

image domain is illustrated in Fig. 5 for the same example projection. As can be seen, the \wrap

around" e�ect is signi�cantly reduced with the optimal ordering compared with the usual one.

Formally, we de�ne the set of p+ 1 optimal normal vectors
�
(a?k; b

?
k) : k 2 Z�

p

	
as follows

(a?k; b
?
k) = arg min

(ak;bk)2fnuk :1�n�p�1g
s.t. Cp(bk)�0

k(Cp(ak); Cp(bk))k : (21)

Here Cp(x) denotes the centralized function of period p: Cp(x) = x � p:round(x=p). The

constraint Cp(bk) � 0 is imposed in order to remove the ambiguity in deciding between (a; b)

and (�a;�b) as the normal vector for a projection. As a result, the optimal normal vectors are

restricted to have angles in [0; �). We use norm-2 for solving (21). Fig. 6 shows an example of the

optimal set of normal vectors. In comparison with the usual set of normal vectors
�
uk : k 2 Z�

p

	
as given in (17), the new set

�
(a?k; b

?
k) : k 2 Z�

p

	
provides a much more uniform angular coverage.
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Fig. 5. Lines for the FRAT projection as shown in Fig. 4 using: (a) usual ordering, (b) optimal ordering.

They both represent the same set of lines but with di�erent orderings. The orderings are signi�ed by

the increasing of gray-scales. The arrows indicate the represented directions in each case.
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Fig. 6. The set of normal vectors, which indicate the represented directions, for the FRAT of size p = 31

using: (a) optimal ordering; (b) usual ordering.

After obtaining the set of normal vectors f(a?k; b?k)g, we can compute the FRAT and its inverse

with the same fast algorithms as described before. For a given p, solving (21) requires O(p2)

operations and therefore it is negligible compared with the transforms themselves. Furthermore,

this can be pre-computed, thus only presents as a \one-time" cost.

For the sake of simplicity and with an abuse of notation, in the sequel we write rk[t] for ra?
k
;b?
k
[t].

In other words, from now we regard k as an index in the set of optimal FRAT normal vectors

rather than a slope. Likewise, the line L0a?
k
;b?
k
;t is simply rewritten as Lk;t, for 0 � k � p; 0 � t < p.

C. Frame Analysis of the FRAT

Since the FRAT is an invertible linear operator, it can be considered as a frame { a useful

concept in analyzing redundant expansions [23]. In this section we will study the FRAT in more

detail and reveal some of its interesting properties in the frame setting.
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For a detailed introduction to frames, readers are referred to [5] (Chapter 5). The set

f'ngMn=1 � R
N is called a frame of RN if there exist two constants A > 0 and B < 1 such

that

A kxk2 �
MX
n=1

jhx; 'nij2 � B kxk2 ; 8x 2 RN : (22)

where A and B are called the frame bounds. When A = B the frame is said to be tight. It can

be shown that any �nite set of vectors that spans RN is a frame. Associated with a frame is the

frame operator F , de�ned as the linear operator from R
N to RM

(Fx)n = hx; 'ni; for n = 1; : : : ;M: (23)

The frame operator can be regarded as a left matrix multiplication with F , where F is an

M �N matrix in which its nth row equals to 'n. The frame condition (22) can be rewritten as

xTAx � xTF TFx � xTBx; 8x 2 RN : (24)

Since F TF is symmetric, it is diagonalizable in an orthonormal basis [24], thus (24) implies

that the eigenvalues of F TF are between A and B. Therefore, the tightest possible frame bounds

A and B are the minimum and maximum eigenvalues of F TF , respectively. In particular, a tight

frame is equivalent to F TF = A � IN , where IN denotes the N �N identity matrix; which means

the transpose of F equals its left inverse within a scale factor.

Now let us return to the FRAT; it can be regarded as a frame operator in l2(Z
2
p) with the

frame f'k;lg de�ned as

'k;l = p�1=2�Lk;l
k 2 Z�

p ; l 2 Zp; (25)

where �S denotes the characteristic function for a set S in Z2
p .

Note that this frame is normalized since
'(k;l) = 1. Moreover, using the properties of lines

in the �nite geometry Z2
p , it is easy to verify that

h'k;l; 'k0;l0i =

8>>><
>>>:

1 if k = k0; l = l0

0 if k = k0; l 6= l0

1=p if k 6= k0

(26)

Hence, the minimum angle between any two frame vectors of the FRAT is: cos�1(1=p), which

approaches the right angle for large p. So we can say that the FRAT frame is \almost" orthogonal.

Writing images as column vectors, the FRAT can be regarded as a left matrix multiplication

with p�1=2R, where fRg(k;l); (i;j) is the (p2 + p)� p2 incidence matrix of the a�ne geometry Z2
p :

R(k;l); (i;j) equals to 1 if (i; j) 2 Lk;l and 0 otherwise.
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Similarly, the FBP de�ned in (11) can be represented by a left multiplication with matrix

p�1=2B, where B(i;j); (k;l) equals to 1 if (k; l) 2 Pi;j and 0 otherwise. From the de�nition of Pi;j ,

we have

R(k;l); (i;j) = B(i;j); (k;l); 8i; j; k; l:

So the transform matrices for the operators FRAT and FBP are transposed of each other.3

Since the FBP is an inverse of the FRAT for the subspace of zero-mean images de�ned on Z2
p,

the FRAT is a normalized tight frame in this subspace. Thus we obtain the following result.

Proposition 1: If f is a zero-mean image on Z2
p , then

f =

pX
k=0

p�1X
l=0

hf; 'k;li'k;l: (27)

For general images, the FRAT operator is not a tight frame as shown in the following propo-

sition.

Proposition 2: The tightest bounds for the FRAT frame
�
'k;l : k 2 Z�

p ; l 2 Zp

	
in l2(Z

2
p ) are

A = 1 and B = p+ 1.

Proof: From discussion before, these tightest bounds can be computed from the eigenvalues

of C = p�1RTR. Since R is the incidence matrix for lines in Z2
p , (R

TR)(i;j); (i0;j0) equals to

the number of lines that goes through both (i; j) and (i0; j0). Using the properties of the �nite

geometry Z2
p that every two points lie in exactly one line and that there are exactly p+ 1 lines

that go through each point, it follows that the entries of C equal to (p+1)p�1 along its diagonal

and p�1 elsewhere.

The key observation is that C is a circulant matrix, hence its eigenvalues can be computed as

the p2-points discrete Fourier transform (DFT) on its �rst column c = ((p+1)p�1; p�1; : : : ; p�1)

[1] (x2.4.8). Writing c as

c = (1; 0; : : : ; 0) + p�1 � (1; 1; : : : ; 1);

we obtain,

DFTfcg = (1; 1; : : : ; 1) + p � (1; 0; 0; : : : ; 0) = (p+ 1; 1; 1; : : : ; 1)

where the DFT is computed for the Dirac and constant signals.

Therefore the eigenvalues of C are p + 1 and 1, the latter with multiplicity of p2 � 1. As a

result, the tightest (normalized) frame bounds for FRAT as A = 1 and B = p+ 1. 2

3In a more technical term, FBP is the adjoint of FRAT.
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Remark: It is instructive to note that constant images on Z2
p are eigenvectors of C with eigen-

value p+1. Taking constant images out leaves a system with all unity eigenvalues, or a tight frame

on the remaining subspace. Thus, we have another interpretation of FRAT being a normalized

tight frame for zero-mean images.

What is the consequence of those frame bounds? The answer is in the robustness of the

reconstruction when there is noise due to nonlinear approximation and quantization. In [23],

it is shown that with a simple additive noise model for quantization, a tight frame is optimal

among normalized frames in minimizing mean-squared error. Therefore by subtracting the mean

out of the image before applying the FRAT (which leads to a tight frame) we make the FRAT

coe�cients more robust against processing noise.

IV. Orthonormal Finite Ridgelet Transform

Now with an invertible FRAT, applying (6) we can obtain an invertible discrete ridgelet

transform by taking the discrete wavelet transform (DWT) on each FRAT projection sequence,

(rk[0]; rk[1]; : : : ; rk[p� 1]), where the direction k is �xed. The overall result can be called �nite

ridgelet transform (FRIT). Fig. 7 depicts these steps.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

 

m

i

j l

k k
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FRAT

DWT

FRAT domain FRIT domain

......

Fig. 7. Diagram for the FRIT. After taking the FRAT, a DWT is applied to each of the FRAT slices or

projections where k is �xed.

Typically p is not dyadic, therefore a special border handling is required. Appendix A details

one possible way of computing the DWT for prime length signals. Due to the periodicity property

of the FRAT coe�cients for each direction, periodic wavelet transforms are chosen and assumed

in this section.

Recall that the FRAT is redundant and not orthogonal. Next we will show that by taking the

1-D DWT on the projections of the FRAT in a special way, we can remove this redundancy and

obtain an orthonormal transform.

Assume that the DWT is implemented by an orthogonal tree-structured �lter bank with J

levels, where G0 and G1 are low and high pass synthesis �lters, respectively. Then the family

of functions
n
g
(J)
0 [� � 2Jm]; g

(j)
1 [� � 2jm] : j = 1; : : : ; J ; m 2 Z

o
is the orthogonal basis of the
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discrete-time wavelet series [1]. Here G(j) denotes the equivalent synthesis �lters at level j, or

more speci�cally

G
(J)
0 (z) =

J�1Y
k=0

G0(z
2k);

G
(j)
1 (z) = G1(z

2j�1
)

j�2Y
k=0

G0(z
2k); j = 1; : : : ; J:

The basis functions from G
(J)
0 are called the scaling functions where all the others functions in

the wavelet basis are called wavelet functions. Normally, the �lter G1 is designed to satisfy the

high pass condition, G1(z)jz=1 = 0 so that the corresponding wavelet has at least one vanishing

moment. Therefore, G
(j)
1 (z)jz=1 = 0; 8j = 1; : : : ; J , which means all wavelet basis functions have

zero sum.

For a more general setting, let us assume that we have a collection of (p+1) 1-D orthonormal

transforms on Rp (which can be the same), one for each projection k of FRAT, that have bases

as

n
w

(k)
m : m 2 Zp

o
; k = 0; 1; : : : ; p:

The only condition that we require for each of these bases can be expressed equivalently by

the following lemma.

Lemma 1 (Condition Z) Suppose that fwm : m 2 Zpg is an orthogonal basis for the �nite-

dimensional space Rp , then the following are equivalent:

1. This basis contains a constant function, say w0, i.e. w0[l] = const; 8l 2 Zp.

2. All other basis functions, wm; m = 1; : : : ; p� 1, have zero sum.

Proof: Denote 1 = (1; 1; : : : ; 1) 2 Rp . If w0 = c1; c 6= 0 then from the orthogonality assumption

that hw0;wmi = 0, we obtain
P

l wm[l] = 0; 8m = 1; : : : ; p� 1.

Conversely, let us assume that each basis function wm; 1 � m � p � 1, has zero sum. De-

note S the subspace that is spanned by these functions and S? is its orthogonal complement

subspace in Rp . It is clear that S? has dimension 1 with w0 as its basis. Consider the subspace

S0 = fc1 : c 2 Rg. We have hc1;wmi = c
P

l wm[l] = 0; 8m = 1; : : : ; p � 1, thus S0 � S?.

On the other hand, dim(S0) = dim(S?) = 1, therefore S? = S0. This means w0 is a constant

function. 2

As shown before, the Condition Z is satis�ed for all wavelet bases, or in fact any general

tree-structured �lter banks where the all-lowpass branch is carried to the maximum number of

stages (i.e. when only one scaling coe�cient is left).
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By de�nition, the FRIT can now be written as

FRITf [k;m] = hFRATf [k; �]; w(k)
m [�]i

=
X
l2Zp

w(k)
m [l]hf; 'k;li

= hf;
X
l2Zp

w(k)
m [l] 'k;li: (28)

Here f'k;lg is the FRAT frame which is de�ned in (25). Hence we can write the basis functions

for the FRIT as follows:

�k;m =
X
l2Zp

w(k)
m [l] 'k;l: (29)

Let us consider the inner products between any two FRIT basis functions

h�k;m; �k0;m0i =
X

l;l02Zp

w(k)
m [l] w

(k0)
m0 [l

0] h'k;l; 'k0;l0i:

Using (26), when the two FRIT basis functions have the same direction, k = k0, then

h�k;m; �k;m0i =
X
l2Zp

w(k)
m [l] w

(k)
m0 [l] = �[m�m0]:

So the orthogonality of these FRIT basis functions comes from the orthogonality of the basis�
w

(k) : m 2 Zp

	
. In particular, we see that �k;m have unit norm. Next, for the case when the

two FRIT basis functions have di�erent directions, k 6= k0, again using (26) we obtain

h�k;m; �k0;m0i = 1

p

X
l;l02Zp

w(k)
m [l] w

(k0)
m0 [l

0] =
1

p

0
@X

l2Zp

w(k)
m [l]

1
A
0
@X

l02Zp

w
(k0)
m0 [l

0]

1
A :

In this case, if either m or m0 is non-zero, e.g. m 6= 0, then using the Condition Z of these

bases,
P

l2Zp
w
(k)
m [l] = 0, it implies h�k;m; �k0;m0i = 0.

Finally, note that
S

l Lk(l) = Z2
p , for all direction k (see (10)). So, together with the assumption

that w
(k)
0 are constant functions, we see that all of the FRIT basis functions �k;0; (k = 0; 1; : : : ; p)

correspond to the mean of the input image so we only need to keep one of them (at any direction)

and denote it as �0. Hence we have proved the following theorem.

Theorem 2: Given p+1 orthonormal bases in l2(Zp) (which can be the same):
n
w

(k)
m : m 2 Zp

o
; 0 �

k � p, that satisfy the Condition Z then

f�k;m : k = 0; 1; : : : ; p; m = 1; 2; : : : ; p� 1g [ f�0g

is an orthonormal basis in l2(Z2
p), where �k;m are de�ned in (29).

Remarks
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1. An intuition behind the above result is that at each level of the DWT decomposition applied

on the FRAT projections, all of the non-orthogonality and redundancy of the FRAT is pushed

into the scaling coe�cients. When the DWT's are taken to the maximum number of levels then

all of the remaining scaling coe�cients at di�erent projections are the same, hence we can drop

all but one of them. The result is an orthonormal FRIT.

2. We prove the above result for the general setting where di�erent transforms can be applied

on di�erent FRAT projections. The choice of transforms can be either adaptive, depending on

the image, or pre-de�ned. For example, one could employ an adaptive wavelet packet scheme

independently on each projection. The orthogonality holds as long as the \all lowpass" branch

of the general tree-structured �lter bank is decomposed to a single coe�cient. All other branches

would contain at least one highpass �lter thus lead to zero-mean basis functions.

3. Furthermore, due to the \wrap around" e�ect of the FRAT, some of its projections could

contain strong periodic components so that a Fourier-type transform like the DCT might be

more e�cient. Also note that from Theorem 1, if we apply the 1-D Fourier transform on all of

the FRAT projections then we would obtain the 2-D Fourier transform. For convenience, we still

use the term FRIT to refer to the cases where other transforms than the DWT might be applied

to some of the FRAT projections.

Fig. 8 displays some of basis images for the 7 � 7 FRIT using 1-D Haar wavelets. As can be

seen from the �gure, FRIT basis images have elongated linear structure which closely resemble

the continuous ridge functions.
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Fig. 8. Examples of 7 � 7 FRIT basis functions using Haar wavelets. Black, gray and white pixels

correspond respectively to negative, zero and positive values. Notice the \wrap-around" e�ect due to

the periodic property of the FRAT.

V. Variations on the Theme

A. Folded FRAT and FRIT

The FRAT in the previous sections is de�ned with a periodic basis over Z2
p . This is equivalent

to applying the transform to a periodization of the input image f . Therefore relatively large
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amplitude FRAT coe�cients could result due to the possible discontinuities across the image

borders. To overcome this problem, we employ a similar strategy as in the block cosine transform

by extending the image symmetrically about its borders.

n p = 2n-1

Fig. 9. Extending the image symmetrically about its borders in order to reduce the discontinuities across

the image borders due to the periodization.

Given that p is a prime number and p > 2, then p is odd and can be written as p = 2n � 1.

Consider an n � n input image f [i; j]; 0 � i; j < n. Fold this image with respect to the lines

i = 0 and j = 0 to produce a p� p image �f [i; j], in which (also see Fig. 9)

�f [i; j] = f [jij ; jjj]; �n < i; j < n: (30)

The periodization of �f [i; j] is symmetric and continuous across the borders of the original

image, thus eliminating the jump discontinuity that would have resulted from the periodic ex-

tension of f [i; j]. Applying the FRAT to the �f [i; j] results in p(p + 1) transform coe�cients.

Notice the new range for the pixel indexes of the image �f [i; j]. We will show that the FRAT co-

e�cients of �f [i; j] exhibit certain symmetry properties so that the original image can be perfectly

reconstructed by keeping exactly n2 coe�cients.

Consider the 2-D DFT of �f [i; j]

�F [u; v] =
1

p

X
�n<i;j<n

�f [i; j]W ui+vj
p :

Using the symmetry property of �f [i; j] in (30), we obtain

�F [u; v] = �F [juj ; jvj]:

Theorem 1 shows that the FRAT �ra;b[t]; (�n < t < n) of �f [i; j] can be computed from the

inverse 1-D DFT as

�ra;b[t] =
1p
p

X
�n<w<n

�Ra;b[w]W
�wt
p ;
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where �Ra;b[w] = �F [aw; bw]. The symmetry of �F [u; v] thus yields

�Ra;b[w] = �Ra;b[jwj] and (31)

�Ra;b[w] = �Rjaj;jbj[w]: (32)

From (31) we have �ra;b[t] = �ra;b[jtj] or each projection �ra;b[t] is symmetric about t = 0, and

(32) reveals the duplications among those projections. In fact, with the set of optimal normal

vectors in (21), except for two projections indexed by (1; 0) and (0; 1) (the vertical and hori-

zontal projections, respectively) all other projections have an identical twin. By removing those

duplications we are left with 2 + (p � 2)=2 = n+ 1 projections. For example, we can select the

set of n+ 1 independent projections as the ones with normal vectors in the �rst quadrant (refer

to Fig. 6). Furthermore, as in (10), the redundancy among the projections of the folded FRAT

can be written as

�ra?k;b
?
k
[0] + 2

n�1X
t=1

�ra?k;b
?
k
[t] =

1p
p

X
�n<i;j<n

�f [i; j]: (33)

The next proposition summaries the above results.

Proposition 3: The image f [i; j] can be perfectly reconstructed from the following n2 � 1 co-

e�cients:

�ra?
k
;b?
k
[t] such that Cp(a?k) � 0 and 0 < t < n; (34)

and the mean of the image �f [i; j].

To gain better energy compaction, the mean should be subtracted from the image �f [i; j]

previous to taking the FRAT. The set of independent coe�cients in (34) is referred as the folded

FRAT of the image f [i; j].

However, orthogonality might be lost in the folded FRIT (resulting from applying 1-D DWT

on n+1 projections of the folded FRAT), since the basis functions from a same direction of the

folded FRAT could have overlaps. Nevertheless, if we loosen up the orthogonality constraint, then

by construction, the folded FRAT projections (�ra?k ;b
?
k
[t] : 0 < t < n) are symmetric with respect

to t = 0 and t = n � 1=2. This allows the use of folded wavelet transform with biorthogonal

symmetric wavelets [25] or orthogonal symmetric IIR wavelets [26].

B. Multilevel FRIT's

In the FRIT schemes described previously, multiscale comes from the 1-D DWT. As a result,

at each scale, there is a large number of directions, which is about the size of the input image.

Moreover, the basis images of the FRIT have long support, which extend over the whole image.
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Here we describe a di�erent scheme where the number of directions can be controlled, plus

the basis functions have smaller support. Assume that the input image has size n � n, where

n = p1p2 : : : pJq and pi are prime numbers. First, we apply the orthonormal FRIT to n1 � n1

non-overlapping subimages of size p1� p1, where n1 = p2 : : : pJq. Each sub-image is transformed

into p21 � 1 \detail" FRIT coe�cients plus a mean value. These mean values form an n1 � n1

coarse approximate image of the original one. Then the process can be iterated on the coarse

version up to J levels. The result is called as multilevel FRIT (MFRIT).

At each level, the basis functions for the \detail" MFRIT coe�cients are obviously orthogonal

within each block, and also with other blocks since they do not overlap. Furthermore, these basis

functions are orthogonal with the constant function on their block, and thus orthogonality holds

across levels as well. Consequently, the MFRIT is an orthonormal transform.

By collecting the MFRIT coe�cients into groups depending on their scales and directions, we

obtain a subband-like decomposition with J scales, where level i has pi directions. When pi = 2,

the orthonormal FRIT using the Haar DWT is the same as the 2� 2 Haar DWT. Therefore the

MFRIT scheme includes the multilevel 2-D Haar DWT. In general, when pi > 2, the MFRIT

o�ers more directions than the 2-D DWT.

C. Generalized (or Galois) Finite Radon and Ridgelet Transforms

All algebraic properties of the FRAT de�ned in Section III are based on the fact that Zp is a

�nite �eld with the modulo p addition and multiplication. Therefore one could extend this and

consider a general (or Galois) �nite Radon transform (GFRAT) that uses more general �nite

�elds GF (pr) [22].

Denote n = pr where p is a prime and r is a positive integer then we can de�ne the set of \lines"

on the a�ne plane Z2
n exactly in the same way in (9) or (14) except that modulo p operations

are replaced by the �nite �eld GF (pr) operations.

For the GFRAT, the issue of ordering coe�cients is even more complex since there is no

\natural" ordering for elements of a general �nite �eld. Besides, a disappointing aspect of the

GFRAT is its lines has little resemble to the natural lines in images except for the horizontal and

vertical lines. Thus there is little hope of using GFRAT as e�cient representation for images

with linear discontinuities. Nevertheless, by applying any orthogonal DWT on the projections

of GFRAT in the way described in Section IV, we would obtain an orthogonal transform for

digital images. In addition, wavelet transforms de�ned over �nite �elds [27], [28] could be used.

Potential applications for the resulting transforms could be in constructing of communication

codes or cryptography.
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VI. Ridgelet Frames

As mentioned above, the orthogonal FRIT has a drawback which is due to the annoying \wrap-

around" e�ect of the FRAT. As a result, in non-linear approximation, large FRIT coe�cients

that respond to a straight edge may also produce \alias" edges in the reconstructed image.

Furthermore, the construction of FRAT creates \holes" along some of its represented lines (refer

to Fig. 3). In this section, we will describe a construction for the discrete Radon transform that

overcomes these weaknesses and imitates more closely the continuous transform. However, as we

will see the price to pay is redundancy, and thus we get ridgelet frames.

The central issue is to form a collections of lines, which themselves are subsets of pixels, so

that the Radon transform can be de�ned as summations of pixels on each of those lines. To

remove the periodic e�ect of the FRAT, we need to drop the modulo operations in the �nite line

equations ai+ bj = t. In particular, we want to de�ne lines on a �nite grid Z2
n as

�
(i; j) 2 Z2

n : qt � ai+ bj < qt+1
	
: (35)

So it remains to construct a set of normal vectors (a; b) and translation steps qt. The set of

normal vectors will control the angular sampling or represented directions for the discrete Radon

projections, while the translation steps will control the radical sampling on each projection.

For the normal vectors, given a positive integer m, we construct 4m normal vectors as follows

(also see Fig. 10):

(ak; bk) =

8>>><
>>>:

(m; k) 0 � k < m

(2m� k;m) m � k < 3m

(�m; 4m� k) 3m � k < 4m

(36)

0 n1

n2

u0

u1

u2m

u4m�1

(m;m)(�m;m)

Fig. 10. Set of directions for the discrete Radon transform.

The directions are de�ned in this way in order to provide an uniform \coverage" for discrete

lines on a square image. Increasing m leads to �ner angular sampling. As a result, the angles
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for the Radon transform are quantized into a set of 4m values:

�k = tan�1(bk=ak); 0 = �0 < �1 < : : : < �4m�1 < �:

For the translation steps, given a direction that is represented by a normal vector (ak; bk),

based on the idea for representation of digital lines in [15], we de�ne the \contour line image"

Ck[i; j] as follows:

Ck[i; j] = round

�
aki+ bkj

jakj+ jbkj
�
+ dk (37)

where,

dk = � min
i;j2Zn

round

�
aki+ bkj

jakj+ jbkj
�
: (38)

By construction, the range of Ck[i; j] is precisely Zn. Thus we can de�nite the subset of pixels

that make up a discrete line with direction k and translation l as

Sk;l = f(i; j) : Ck[i; j] = lg : (39)

These lines satisfy the condition in (35) and the resulting collection has the following properties:

1. There are exactly n lines for each directions. Thus the corresponding Radon transform can

be arranged in a n�m matrix, one column for each projection.

2. For each direction, all n parallel lines have almost the same \width". They are non-

overlapping and provide a complete coverage for Z2
n.

3. Horizontal and vertical lines (when k equal to 0 and 2m) are rows and columns of the images.

Fig. 11 shows an example collection of lines that is generated by this method. The lines imitate

more closely the digital lines for image. With a set of lines fSk;l : 0 � k < 4m; 0 � l < ng, the
discrete Radon transform (DRAT) is de�ned as in the FRAT case:

DRATf [k; l] =
X

(i;j)2Sk;l
f [i; j] = hf; �Sk;li: (40)

Since the lines for each projection are non-overlapped, a similar fast algorithm for the FRAT

with n histogrammers can be used to compute the DRAT. The discrete ridgelet transform is

obtained by applying the DWT on DRAT projections. The resulting ridgelet images clearly

represent well linear singularities.

An obvious question is: Given the transform coe�cients DRATf [k; l], is it possible to recon-

struct f in a numerically stable way? To answer this, we need to check the completeness and

then the frame bounds of the set
�
�Sk;l : 0 � k < 4m; 0 � l < n

	
in l2(Z

2
n). Numerically, for a

�nite transform, the frame bounds can be computed as the squares of the smallest and largest
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Fig. 11. Lines for the 8� 8 discrete Radon frames. Compared with �nite lines in Fig. 3, those resemble

more the \natural" lines.

singular values of the transform matrix. Thus the frame bounds ratio is exactly the square of

the condition number with respect to inversion of the transform.

Table I lists the computed results for some small size transforms. The constructed discrete

Radon transform can provide complete representations for the image space with very small

oversampling rates. However, the frame bounds ratios are large and they increase with the

transform size. In general, there is a trade-o� between oversampling and good conditioning for

inversion.

Unfortunately, we can not �nd a fast structure algorithm for inversion of the discrete Radon

frames. One possible solution is to resort to algebraic methods that use Kaczmarz's iterative

algorithm or its variations for solving systems of linear equations [13], [29]. Alternatively, one

could use this construction to produce a dictionary of ridgelet images and employ matching

pursuits for image approximations [30].

VII. Numerical Experiments

A. Nonlinear Approximation

Following the study of the e�ciency of the ridgelet transform in the continuous domain on the

truncated Gaussian functions [7], we �rst perform numerical comparison on a 256�256 image of

the function: f(x1; x2) = 1fx2<2x1+0:5ge
�x21�x22 , using four 2-D transforms: DCT, DWT, FRAT
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Image size (n) Number of Oversampling rate Frame bounds ratio

directions (4m)

4 8 1.56 7.24e+01

8 12 1.33 4.94e+03

16 1.77 1.47e+03

16 20 1.18 2.72e+09

24 1.41 1.17e+05

28 1.64 1.35e+04

32 40 1.21 5.52e+06

44 1.33 7.17e+05

48 1.45 4.61e+05

52 1.58 1.60e+05

TABLE I

Conditions on the discrete Radon frames.

and FRIT.4 Unless state otherwise, the discrete ridgelet transform used in the experiments of

this section is the orthonormal FRIT. The wavelet used in both the DWT and FRIT is the \least

asymmetric" orthogonal wavelet with 8-taps �lters [31].

Our initial experiments indicate that in order to achieve good results, it is necessary to apply

the DCT instead of the DWT to capture some strong periodic FRAT projections due to the

\wrap around" e�ect (c.f. to the remarks at the end of Section IV). Without resorting to

adaptive methods, we employ a simple, pre-de�ned scheme where the least \wrap around" FRAT

projections { the ones with k(a?k; b?k)k � D { use DWT, while all the others use DCT. We set

D = 3 in our experiments, which means in the FRIT, only up to 16 FRAT projections are

represented by the DWT.

The comparison is evaluated in terms of the non-linear approximation power, i.e. the ability

of reconstructing the original image, measured by signal-to-noise ratios (SNR's), using the N

largest magnitude transform coe�cients. Fig. 12 plots the results; clearly the FRIT achieves the

best performance, as expected from the continuous theory.

Our next test is a real image of size 256� 256 with straight edges. Fig. 13 displays the image

together with the magnitude of its FRIT. In the FRIT image, each column corresponds to one

direction. As can be seen, most of the FRIT coe�cients are small.

To gain an insight into the FRIT, Fig. 14(a) plot the top �ve FRAT projections that contain

4For the FRAT and FRIT, we need to extend the image size to the next prime number, 257.
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Fig. 12. (a) Test image: a truncated Gaussian image of size 256 � 256 that represents the function

f(x1; x2) = 1fx2<2x1+0:5ge
�x2

1
�x2

2 . (b) Comparison of non-linear approximations using four di�erent

2-D transforms: DCT, DWT, FRAT and FRIT.
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Fig. 13. The FRIT coe�cients of an image that is smooth away from straight edges are sparse. Large

amplitude FRIT coe�cients correspond to linear singularities in the image.

most of the energy, measured in the l2-norm. Those projections correspond to the directions that

have discontinuities across, plus the horizontal and vertical directions. So we see that at �rst the

FRAT compacts most of the energy of the image into a few projections (see Fig. 14(b)), where

the linear discontinuities create \jumps". Next, taking the 1-D DWT on those projections, which

are mainly smooth, compacts the energy further into a few FRIT coe�cients.

B. Image Denoising

The motivation for the FRIT-based image denoising method is that in the FRIT domain, linear

singularities of the image are represented by a few coe�cients, whereas randomly located noisy
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Fig. 14. (a) Top �ve FRAT projections of the image in Fig. 13 that contain most of the energy. (b)

Distribution of total input image energy among FRAT projections. Only the top 30 projections are

shown in the descending order.

singularities are unlikely to produce signi�cant coe�cients. By contrast, in the DWT domain,

both image edges and noisy pixels can produce large amplitude coe�cients. Therefore, a simple

thresholding scheme for FRIT coe�cients can be very e�ective in denoising images that are

piecewise smooth away from singularities along straight edges.

We consider the simple case where the original image is contaminated by an additive zero-

mean Gaussian white noise of variance �2. With an orthogonal FRIT, the noise in the transform

domain is also Gaussian white of the same variance. Therefore it is appropriate to apply the

thresholding estimators that was proposed in [4] to the FRIT coe�cients. More speci�cally, our

denoising algorithm consists of the following steps:

1. Applying FRIT to the noisy image.

2. Hard-thresholding of FRIT coe�cients with the universal threshold T = �
p
2logN where

N = p2 pixels.

3. Inverse FRIT of the thresholded coe�cients.

For an image which is smooth away from linear singularities, edges are visually well restored

after Step 3. However due to the periodic property of the FRIT, strong edges sometimes create

their \wrap-around" e�ect which are visible in the smooth regions of the image. In order to

overcome this problem, we optionally employ a 2-D adaptive �ltering step. In some cases, this

can enhances the visual appearance of the restored image.

4. (Optional) Adaptive Wiener �ltering to reduce the \wrap-around" e�ect.
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The above FRIT denoising algorithm is compared against the wavelet hard-thresholdingmethod

using the same threshold value. Fig. 15 displays the denoising results on the real image. The

FRIT is clearly shown to be more e�ective than the DWT in recovering straight edges, as well

as in term of SNR's.

(a) (b) (c)

Fig. 15. Comparison of denoising on a real image of size 256�256 with linear structure. (a) Noisy Image;

SNR = 9.52 dB. (b) Denoise using 2-D DWT; SNR = 19.78 dB. (c) Denoise using FRIT and Wiener

�lter; SNR = 21.07 dB.

VIII. Conclusion and Discussion

Several discrete transforms based on the ridgelet idea were presented. Table II summarizes

those transforms. Experimental results indicate that the FRIT o�ers an e�cient representation

for images that are smooth away from straight edges.

Transform Image size Critical sampled Orthogonal Comments

FRIT p� p Yes Yes Basic scheme

Folded FRIT n� n (2n� 1 = p) Yes No Reduce border artifacts

Multiscale FRIT n� n (n = pJq) Yes Yes Block bases

Galois FRIT n� n (n = pr) Yes Yes Unnatural lines

Ridgelet frames any size No No Ill-conditioned

TABLE II

Summary of presented discrete ridgelet transforms.

The discrete ridgelet transforms presented in this paper can be used as a building block in

obtaining new schemes which can deal e�ciently with natural images. Those images are typically

piecewise smooth away from singularities along boundaries that are also smooth curves. Since

27



ridgelets are specially adapted only to straight singularities, a more practical transform would

�rst utilize a quad-tree division of images into localized blocks where edges look straight and

then apply the discrete ridgelet transform to each block.

However, a drawback with the ridgelet transform is that its basis functions generally have larger

support (which is due to the long length of the ridge function) than those of the wavelet transform.

As a result, we observed that the ridgelet transform makes rapid progress in reconstructing the

image after the �rst few coe�cients but then slows down signi�cantly; many additional ridgelet

coe�cients are then needed to correct the mismatch with the image from the �rst few coe�cients.

This behavior is also observed for many non-local bases such as the Fourier transform.

One suggestion to obtain more localized ridgelet transform is to rede�ne its basis functions

into some multiscale structure where both the length and the width of these functions are related

to the scale. This is reminiscent of the curvelet construction [32].

Our construction for digital ridgelets is based on the Radon transform. While this link holds in

the continuous space, it has shortcomings in the discrete space. A more \correct" discretization

of ridgelet transform would be the one in which the number of directions double at every �ner

scale. However, in the Radon-based approach, there is a same number of directions at each

scale. Thus one may look for a di�erent sampling scheme. We hope to address these issues in a

forthcoming paper.
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Appendix

I. Orthogonal wavelet transform for non dyadic length signals

In the construction of the orthonormal FRIT, we need wavelet bases for signals of prime length

p. In addition, those bases have to satisfy the Condition Z in Lemma 1. We will show here one

way of achieving this for p = n + 1, where n = 2J . The method can be generalized for other

prime numbers.

The idea is to extend the orthonormal wavelet basis vectors from a J-level and periodic wavelet

transform of length n to vectors of length p while preserving the zero sum property. Denote

fvm : 0 � m < ng to be the basis vectors of a such length n wavelet transform where v0 corre-

sponds to the single scaling coe�cient or the mean value, thus all other vectors must have zero
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sum. We then de�ne p vectors in Rp as

w0 = (1; 1; : : : ; 1) = p1=2;

wm = (vm; 0); m = 1; 2; : : : ; n� 1;

wp�1 = (1; 1; : : : ; 1;�(p� 1)) = [p(p� 1)]1=2:

It is easy to show that fwm : 0 � m < pg is an orthonormal basis of Rp and satis�es Condition

Z. For an input vector of length p: x = (x0; x1; : : : ; xp�1), the transform coe�cients correspond

to wm; 1 � m � n � 1, and can be computed e�ciently via the usual DWT of dyadic length

n with J-levels on the vector x0 = (x0; x1; : : : ; xn�1). Thus the new basis in Rp also has fast

transforms.
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