
REMOTE MONITORING OF RAILWAY EQUIPMENT
USING INTERNET TECHNOLOGIES

TXOMIN NIEVA a, b, ANDREAS FABRI b, ALAIN WEGMANN a

a Institute for comp. Communications and Applications (ICA)
Communication Systems Dept. (DSC)

Swiss Federal Institute of Technology (EPFL)
CH-1015 Lausanne, Switzerland

http://icawww.epfl.ch
{txomin.nieva, alain.wegmann}@epfl.ch

b Industrial Software Systems CHCRC.C2
Information Technologies Dept.
ABB Corporate Research Ltd.
CH-5405 Baden, Switzerland

http://www.abb.ch/chcrc
{txomin.nieva, andreas.fabri}@ch.abb.com

ABSTRACT

This paper outlines the main benefits of using Internet
technologies for the remote monitoring of railway
equipment. We present two prototypes of a remote
monitoring tool for railway equipment. The first has a 2-
tier architecture and is based on Java technology and Java
RMI as a communication protocol. The second has a 3-
tier architecture and is based on XML/XSL technology
and HTTP as a communication protocol. We compare
both systems and we give some conclusions from the
actual work. This paper is intended for people concerned
with industrial applications on the Internet and especially
for those developing remote monitoring tools for
embedded systems.

KEYWORDS

Internet Computing, XML/XSL, Java, Remote
Monitoring, Railway Equipment

1. INTRODUCTION

The Internet, having caused a revolutionary impact on
office automation, is currently heavily influencing the
industrial automation and information systems. The
emergence of the Internet provides a framework for
communication with any piece of hardware and software,
independently of where it is physically located.
Heterogeneous distributed embedded systems, which
were commonly isolated in the past, are increasingly
connected to networks and integrated within information
systems. The management of distributed embedded
systems is becoming an immense task for embedded
systems providers, operators, and service organizations
that want to offer their customers a high quality of
service. The interconnection of distributed embedded
systems and information systems brings significant
benefits and offers new business opportunities. One of the
applications of the Internet in the industry is for the
remote monitoring of embedded systems. Some examples
of these applications can be seen at [1-6].

This paper is organized as follows: First, we describe
the RoMain system, a remote monitoring tool for railway
equipment, outlining the main benefits of using the
Internet and Internet technologies for the remote
monitoring of railway equipment. Second, we describe a
prototype of this system based on Java technology and
Java communication middleware. Third, we describe
another prototype of the same system based on XML/XSL
technology and HTTP as communication protocol. Then,
we compare both prototypes, mainly regarding the
communication performances. Finally, we give some
conclusions from the actual work.

2. THE ROMAIN SYSTEM

We developed, in the frame of the Railway Open
System Interconnection Network (ROSIN) European
project, a web-based monitoring tool for trains that
supports maintenance work. This monitoring tool was
called Railway Open Maintenance tool (RoMain) [1, 7].
The objective of this tool was not to replace the existing
control network, but rather to enhance it with a parallel
low-cost on-line data network for railways, in order to
support maintenance work. This data network will allow
maintenance staff to supervise railway equipment from
anywhere at anytime. It will also enable experts at
different locations to collaborate and to anticipate
maintenance tasks. The user requirements for such a tool
were: (i) ubiquitous access, (ii) low cost, (iii) user friendly
interface with textual and graphical views of the
information and (iv) easy update of equipment
documentation. Taking into account all these
requirements, we decided to take an approach based on
the Internet. The Internet has had a revolutionary impact
on office automation, and now there is a clear trend
towards using Internet technologies for industrial
automation. The introduction of Internet technologies for
accessing embedded systems is mostly cost driven, thus
bringing significant benefits:

(i) Reduction of the development costs of an
application, by enabling the use of Common Off-
The-Shelf (COTS) software components.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(ii) Elimination of the costs of a proprietary
communication network, by using the common
Internet network.

(iii) Reduction of the costs of development of a client
application for each different platform, by using a
standard web-browser as a single client interface
for heterogeneous platforms.

(iv) Elimination of the costs of installing proprietary
client applications, as the client interface is a
standard web browser usually pre-installed on the
client machine.

(v) Reduction of the costs of maintaining up-to-date
equipment documentation, by offering a simple
way (hyperlinks) to publish documents accessible
immediately from anywhere in the world.

(vi) Reduction of maintenance personal travel costs, by
the possibility of ubiquitous access to the
information.

(vii) Reduction of maintenance scheduling costs, by the
possibility of ubiquitous access to the information
at any time.

Ground Stations

Manufacturer
Servers

Name &
Directory
Servers

Maintenance
Stations

Wireless
Network

Train Gateways Train Gateways

Internet

Wireless
Network

Figure 1. The RoMain System

The architecture of the RoMain system, shown in
Figure 1, is composed of:

(i) Train Gateways - connected to the train network
gather actual train data.

(ii) Ground Stations - automatically establish
connections to train gateways over wireless
networks.

(iii) Name and Directory Servers - provide information
about the train component models and train
directory.

(iv) Manufacturer Servers - provide on-line information
about train components, for example fact sheets,
user manuals, or installation instructions.

(v) Maintenance Stations - run a standard web browser
to access train data.

All these systems are interconnected by means of a
secure TCP/IP network, usually the Internet, or eventually
an Intranet or Virtual Private Network.

In the following sections, we describe the different
prototypes that we developed of the RoMain system.

3. ROMAIN JAVA: MONITORING OF
ALL DEVICES ON A SINGLE TRAIN

The first prototype has a 2-tier architecture and is
based on Java technology and Java Remote Method
Invocation (Java RMI) [8-10] as communication
protocol. Java, promoted by Sun Microsystems, is
basically a programming language and a running
platform. The Java language is an easy to learn but quite
efficient object-oriented programming language; the Java
Virtual Machine (JVM) enables platform independence;
and the Java Application Programming Interface (API)
provides software developers with a rich library of
classes. The Java API provides many ways to enable
network connectivity. One of them is Java RMI, which is
a communication middleware that enables communication
between objects running in different locations. Java RMI
brings a Remote Procedure Call (RPC) like mechanism to
execute methods of object located remotely.

The main goal of this prototype was to specify an API
for a Data Acquisition System (DAS) on-board a train.
This API defines the interface between client and server,
and it therefore allows for the implementation of new
client applications. As the API is object-oriented and as
the applications are distributed, we had a choice between
different middleware products: DCOM [11, 12], CORBA
[11, 13, 14], or Java RMI. We opted for the latter as we
strived for a 100% pure Java solution. Therefore, we
developed the on-board DAS as a Java RMI server. It
offers remote interfaces for, discovering train
configuration, and accessing train, vehicle and equipment
data - to give just two examples. Based on the API we
developed a client system, as a Java RMI client within a
Java applet, that uses these remote interfaces to display
the current state of a train within a web browser.

Two different updating mechanisms were
implemented based on pull and push technologies. Using
push technology the update of data is triggered by the
server, if and only if, there are changes in that data. Hence
a GSM connection is only open during notification
subscription and notification, even if there is an arbitrary,
long time span in between.

Client

Train Gateway
Java enabled
web browser

RMI
Registry

Ground Station

Equipment
Monitoring

Applets

Equipment
Monitoring

HTML Pages

W
eb

 S
er

ve
r

Train
Directory

Routing Services

Remote
Access

Services
Wireless
Network

Internet Data
Acquisition

System
[RMI Server]

Monitoring
Applet

[RMI Client]

Monitoring
HTML Page

Figure 2. Monitoring of all Devices on a Single Train

The architecture of the system is shown in Figure 2.
The remote train gateway is usually reachable by means
of a wireless network, in our case by GSM. A ground
station is responsible for transparently establishing a
TCP/IP connection to the remote train gateway via this
wireless network. As the bandwidth of GSM is still
relatively low, the downloading of the monitoring HTML
page, plus the downloading of the associated monitoring
Java applet, is slow. In order to improve the performance
of this download, we investigated an alternative: The
monitoring HTML page and the Java applet were moved
from the remote train gateway to a ground based web
server, in our case to the ground station. The train
gateway then became a pure data server.

In this prototype we also investigated security issues.
As the user must grant the client Java applet certain
privileges for stepping out of the sandbox (the restrictive
security policy implemented by the browser), he must be
able to check whether this Java applet is trustworthy or
not. Therefore, the developer of the Java applet must sign
it with a digital signature obtained from a certificate
authority. We use the same technology that is used to
make e-commerce applications more secure.

The main problem with this prototype is the problem
of accessing data for a client behind a firewall. This can
be partially overcome with HTTP tunneling, but this
slows down the communication and the use of server side
push technology is no longer possible.

A demonstration of this prototype can be found at
http://icapc62.epfl.ch/romainjava/. In this demonstration,
a train gateway is connected to a train network installed in
a laboratory at the CAF (a Spanish train manufacturer)
facilities in Beasain (Spain). This train network is exactly
the same as the network that was installed on a real train
for a demonstration in February’99. The data is collected
from real devices, which are interconnected via the Train
Communication Network (TCN) [15]. The ground station
is installed at the ICA institute. The only difference with
the real demonstration is that the connection of the ground
station with the train gateway is not done by a wireless
network but by an Internet wired connection. This is done
in order to reduce costs. However, this would be totally
transparent for any client using the application.

4. ROMAIN XML: MONITORING OF
ALL DEVICES ON A FLEET OF
TRAINS

The second prototype has a 3-tier architecture and is
based on XML/XSL [12, 16-18] technology and HTTP
as communication protocol. The eXtensible Markup
Language (XML) is the “de facto” standard for data
exchange over the Internet. This new standard was
specified, similarly to the Hypertext Markup Language
(HTML), by the World Wide Web Consortium (W3C)
from a subset of the historical Standard Generalized

Markup Language (SGML). XML data looks very much
like HTML. However, XML allows developers to define a
specific grammar for a specific application. This grammar
can be specified by the means of a Document Type
Definition (DTD). There are already many standard DTDs
that were agreed upon by companies working in the same
business domain. These standards enable data exchange
among heterogeneous systems. XML data is easy to
create, parse, combine and transform into other formats.
The eXtensible Style Language (XSL) is an advanced
style sheet language designed for the use with well-
formed XML documents. XSL documents contain a series
of XSL elements that apply to particular patterns of XML
documents. When a particular XML pattern is found, the
XSL element outputs a combination of text. The
HyperText Transfer Protocol (HTTP) is an application
protocol that defines a set of rules for exchanging data
over the Internet. HTTP is based on TCP/IP, the transport
and session standard protocols of the Internet.

In this prototype we implemented a system with a
three-tier architecture to investigate how data from an
entire fleet of trains can be integrated, but also to
overcome the problem we had with the previous
prototype. This allows a component manufacturer to
supervise, for example, all door controllers, regardless on
which trains they are. We investigated technologies that
allow the client to choose among different views, and to
receive data combined from train gateways on a single
page. Choosing among different views means that we
need a way to separate what is data and what is
presentation format. Combining data from different
sources means that we have to parse the data and create
new data. All these features are easily implemented by the
use of XML. As XML also enables the defining of new
domain specific markup languages, data can be
transmitted together with some metadata that describe
them. This makes it easy to parse and combine XML
documents. Moreover, the presentation format can be
added by means of a separate XSL file, which defines
how an XML document should be displayed. Therefore, it
is easy to implement different views of the same XML
document by providing different XSL files.

Client

Train GatewayWeb browser
with XML

direct browsing
capabilities

RMI
Registry

Ground Station

W
eb

 S
er

ve
r

Train
Directory

Routing Services

Remote Access Services

Data Acquisition
System [RMI Server]

Web Server

 Data Server

Internet
Document Server

[ASP]

[RMI Client]
[Java Servlet]

XSL
files

Train
Monitoring
XML Pages Wireless

Network

Figure 3. Monitoring of all Devices on a Fleet of Trains

The architecture of the system is shown in Figure 3. It
has a three tier architecture composed of: (i) a Java servlet

[19] on-board a train that gathers data from the Java RMI
server developed for the second prototype and that replies
to an HTTP request of data with XML documents giving
the requested information; (ii) a middle tier that receives
data from different sources in XML format, combines
them into a single XML document and adds the style
sheet corresponding to the client view; (iii) and the thin
client, which is like in the previous prototype, a web
browser. Note that in the first prototype the Java applet
also is loaded from the ground station, but then it
connects directly to the data server on the train; this
means in the first prototype we had a two-tier
architecture.

As in the previous prototype, a ground station is used
in order to access, via a wireless network, the remote train
gateway. In this prototype there is no monitoring HTML
page or Java applet. Instead there is a document server on
the middle-tier, which is responsible for integrating data
from different train gateways and for adding the
corresponding style sheet to make the output readable by
the client. In our case, the entire middle-tier is on the
ground station.

This architecture is scalable, extensible and adaptable
for future evolution, and it runs over firewalls. The main
drawback is that it is not possible to use server side push
technology.

A demonstration of this prototype can be found at
http://icapc62.epfl.ch/romainxml/. In this demonstration,
the train data source is the same as in the demonstration
of the previous prototype. The ground station is installed
at ICA. The communication with the train gateway is done
by means of an Internet wired connection.

5. ROMAIN JAVA VS. ROMAIN XML

In this section we present and discuss a comparison of
the RoMain Java prototype versus the RoMain XML
prototype, under the following criteria: communication
performance, client interface, scalability, security,
reliability, availability and evolvability.

5.1. COMMUNICATION PERFORMANCE

In both prototypes, in order to compare the
communication performance, we measured the response
time to obtain, for each equipment, the current values of
all the properties. A property of an equipment is an
attribute that gives some information about it and its
current state. In both prototypes the data source is a train
network installed in a laboratory at the CAF facilities. The
ground station and the clients are installed in the same
machine at ICA. This is because we wanted to compare
the communication performance of Java RMI versus
HTTP in a single client-server communication. The
overhead of the three-tier communication of the RoMain
XML prototype is not taken into account. The real

Internet is used as communication network. We used Java
1.1.7 to develop the Java RMI server and the performance
clients for this evaluation. These clients use the pull
mechanism to obtain the current values of the properties.

To obtain more reliable results we did 100 essays of
each measurement. We represent the average and standard
deviation of the results into a chart diagram. The X-axis
represents the different equipment, with the number of
properties in brakes. The Y-axis represents the time in
milliseconds. A column bar represents the average time in
milliseconds to obtain all the properties of an equipment.
A line appended to a column represents the standard
deviation of the measurements.

The first evaluation consisted in measuring the time to
obtain, for each equipment, 1 update of all its properties.
The results of this evaluation are shown in Figure 4a.

0

10,000

20,000

30,000

Eu
sko

Tre
n (

0)

T.
Ve

h.
(6)

T.
Doo

r C
on

tr.
(11

)

T.
Drive

r C
ab

 (2
3)

T.
Hea

ter
 Sys.

 (1
1)

T.
Lig

ht
Sys

. (9
)

T.
MMI (8

8)

M. V
eh

. (6
)

M. B
att

ery
 Sys.

 (1
4)

M. B
rak

e S
ys.

 (1
1)

M. D
oo

r C
on

tr.
(11

)

M. D
rive

r C
ab

 (2
3)

M. H
igh

 Vol.
Sys.

 (1
2)

M. L
igh

t S
ys.

 (9
)

M. M
MI (7

4)

M. S
pe

ed
 Sy

s. (
10

)

M. S
tat

ic C
on

v.
(10

)

Eq
uip

men
t

Time (ms)
RMI
HTTP

(a) 1 Update

0

100,000

200,000

300,000

Eu
sko

Tre
n (

0)

T.
Ve

h.
(6)

T.
Doo

r C
on

tr.
(11

)

T.
Drive

r C
ab

 (2
3)

T.
Hea

ter
 Sys.

 (1
1)

T.
Lig

ht
Sys.

 (9
)

T.
MMI (8

8)

M. V
eh

. (6
)

M. B
att

ery
 Sys.

 (1
4)

M. B
rak

e S
ys.

 (1
1)

M. D
oo

r C
on

tr.
(11

)

M. D
rive

r C
ab

 (2
3)

M. H
igh

 Vol.
Sys.

 (1
2)

M. L
igh

t S
ys.

 (9
)

M. M
MI (7

4)

M. S
pe

ed
 Sy

s. (
10

)

M. S
tat

ic C
on

v. (
10

)

Eq
uip

men
t

Time (ms)
RMI
HTTP

(b) 10 Updates

Figure 4. RoMain Java vs. RoMain XML
Communication Performance Comparison

These results demonstrated that, with 1 update of the
properties, the performance of Java RMI is generally
much better than the performance of HTTP. Only in the
case of an equipment with few properties (that is the case
of “Euskotren”) the performance of HTTP is slightly

better than the performance of Java RMI. The more
properties an equipment has, the longer the difference is
between the performances of Java RMI against HTTP. In
the case of an equipment with a huge quantity of
properties (this is the case of “T.MMI” and “M.MMI”)
the performance of Java RMI is substantially higher than
the performance of HTTP. Therefore, we can conclude
that the RoMain Java prototype demonstrated a better
communication performance than the RoMain XML
prototype.

0

100,000

200,000

300,000

Eu
sko

Tre
n (

0)

T.
Veh

. (6
)

T.
Doo

r C
on

tr.
(11

)

T.
Drive

r C
ab

 (2
3)

T.
Hea

ter
 Sy

s. (
11

)

T.
Lig

ht
Sys.

 (9
)

T.
MMI (8

8)

M. V
eh

. (6
)

M. B
att

ery
 Sy

s. (
14

)

M. B
rak

e S
ys.

 (1
1)

M. D
oo

r C
on

tr.
(11

)

M. D
rive

r C
ab

 (2
3)

M. H
igh

 Vo
l. S

ys.
 (1

2)

M. L
igh

t S
ys.

 (9
)

M. M
MI (7

4)

M. S
pe

ed
 Sy

s. (
10

)

M. S
tat

ic C
on

v. (
10

)

Eq
uip

men
t

Time (ms)
1 Update
10 Updates

(a) RoMain XML

0

1,000

2,000

3,000

4,000

Eu
sko

Tre
n (

0)

T.
Veh

. (6
)

T.
Doo

r C
on

tr.
(11

)

T.
Drive

r C
ab

 (2
3)

T.
Hea

ter
 Sy

s. (
11

)

T.
Lig

ht
Sys.

 (9
)

T.
MMI (8

8)

M. V
eh

. (6
)

M. B
att

ery
 Sys.

 (1
4)

M. B
rak

e S
ys.

 (1
1)

M. D
oo

r C
on

tr.
(11

)

M. D
rive

r C
ab

 (2
3)

M. H
igh

 Vol.
Sys.

 (1
2)

M. L
igh

t S
ys.

 (9
)

M. M
MI (7

4)

M. S
pe

ed
 Sy

s. (
10

)

M. S
tat

ic C
on

v. (
10

)

Eq
uip

men
t

Time (ms)
1 Update
10 Updates

(b) RoMain Java

Figure 5. 1 Update vs. 10 Updates Comparison

In the RoMain XML prototype, a client application has
to perform a new request to update the properties of an
equipment. Therefore, we presume that the cost of a
second and subsequent updates will be the same as the
cost of the first update. However, in the RoMain Java
prototype, in the first update a client application initially
obtains a local reference (a proxy object) to the remote
object, and then it invokes a remote call to this object to
obtain all the properties of an equipment. In successive
updates of the properties, it no longer needs to obtain the
proxy object. It has only to invoke a remote call to obtain
all the properties again. Thus, in Java RMI the cost of a
second and subsequent updates should be lower than the

cost of the first update. In order to corroborate this we
performed a second evaluation. This evaluation consisted
in measuring the time to obtain, for each equipment, 10
updates of all its properties. The results of this evaluation
are shown in Figure 4b.

These results demonstrated that with 10 updates of the
properties, the performance of Java RMI is always much
better than the performance of HTTP. Even more, the
differences between the performance of Java RMI and
HTTP have increased substantially. This is because the
time to obtain 10 updates of all properties in the HTTP
based prototype is, on average, about 10 times longer than
the time to obtain the first update. This comparison is
shown in Figure 5a. However, in the Java RMI based
prototype, the time to obtain 10 updates of all properties
is, on average, less than 4 times longer than the time to
obtain the first update. This comparison is shown in
Figure 5b. The reason for these differences between Java
RMI and HTTP is that in Java RMI the cost of successive
updates is lower than the cost of the first update.
However, in HTTP the time to obtain “n” updates
corresponds approximately to “n” times the time to obtain
the first update.

Therefore, we can state that the difference between the
performances of Java RMI against HTTP will increase as
we increase the numbers of updates. In conclusion, Java
RMI will perform even better than HTTP when numerous
updates are required.

5.2. CLIENT INTERFACE

In both prototypes, clients use Internet browsers to
access the current state of the properties of a train. But the
mechanisms to present this data to clients are very
different.

In the RoMain Java prototype, the client interface is
implemented as a Java applet. Java applets run on many
standard browsers (such as Netscape Communicator and
Microsoft Internet Explorer) without any pre-installation.
We made use of a graphical library, called “Swing”, to
present graphically the current state of the properties of a
train. This library is an extension to the standard Java
API, and it may not be locally installed with a specific
version of a browser. In this case, a client would need to
pre-install locally this library before running the Java
applet. Java applets and Swing offer a very powerful set
of graphical components to design graphical interfaces. In
order to save wireless communication bandwidth, the Java
applet is downloaded from a ground station and not from
the train gateway. Once the Java applet is running on the
client browser, the client-server communication is
established directly between the client Java applet and the
train gateway. A security restriction of Java applets in
Java 1.1 allows a Java applet to establish communication
only with the server it was downloaded from. To
overcome this problem we used special classes that allow

us to give special privileges (such as the communication
with any server) to Java applets. The problem is that the
classes we used are specific to the Netscape
Communicator browser. Hence, the RoMain Java
prototype only works using this browser. Similar
mechanisms exist for Microsoft Internet Explorer but
there is no cross browser compatibility. The problem of
the security restriction of Java applets is currently solved
with Java 1.2. This new version of Java provides a policy-
based, easily configurable, fine-grained access control.

In the RoMain XML prototype, we use XML direct
browsing to generate on the client side the view with an
XSL file. XSL has demonstrated to be a powerful means
to combine and transform XML files into another XML
file or another presentation format (such as HTML).
XML/XSL direct browsing capabilities offer an elegant
manner to generate an XML presentation directly on the
client side. Unfortunately, direct browsing of XML files is
currently only possible by using Microsoft IE5 as an
Internet browser. A possible solution to enable clients
with browsers without XML direct browsing capabilities
is to transform, on the server side, the XML data into
plain HTML. In this way, the data could be displayed on
any standard browser.

Using Java applets instead of XML direct browsing for
the client view brings significant benefits. A Java applet is
an application running on a web browser. Therefore, a
Java applet can make possible the implementation of
complex features such as receiving notifications of server
side updates of data. However, the cost of downloading a
Java applet is always significantly higher than the cost of
direct browsing of XML. Additionally, direct browsing of
XML allows for an efficient switching between different
client views at the client side, without performing a new
communication. An important advantage of Java applets
is that they can be displayed on many browsers, while
direct browsing of XML is only possible, today, using
Internet Explorer 5.

5.3. SCALABILITY

In both prototypes the bottleneck is obviously the train
gateway, which is implemented as a Java RMI server.
Java RMI servers can support efficiently a few hundred
simultaneous clients, but they are not scalable for large
systems. Additionally, the performance slows down as the
number of clients increase. In the case of our application -
the remote monitoring of railway equipment - we do not
expect a large amount of simultaneous clients. Therefore,
the limitation on the scalability of Java RMI servers does
not cause any real problems.

In the RoMain Java prototype, the communication is
established directly between client Java applets and the
Java RMI server. If scalability had been an important
requirement of our system, we would have designed the
application in a different way. One solution to designing

scalable systems using Java RMI is to implement a
middle tier with many application servers, each of them
handling requests from many client Java applets. Each
application server establishes a single Java RMI
communication with the Java RMI server on the train
gateway. A load-balancing manager would be responsible
to assign, at runtime, an application server with enough
resources to a client Java applet. In Java RMI does not
exists a pre-defined load balancing manager, but it should
not be too much complicated to develop such a system.

In the RoMain XML prototype, it is easier to scale the
system because it is implemented in a three-tier
architecture. In the middle tier an application server
handles requests from Internet clients and dispatches the
requests to a data server installed on the same machine as
the Java RMI server. If we need a very scalable system,
we have only to deploy the data server on many
machines. Then, a load-balancing manager on the
application server would decide, at run-time, which data
server to contact to dispatch the request to the Java RMI
server on the train gateway.

5.4. SECURITY

In both prototypes standard mechanisms for
authentication of users can be easily implemented. In the
RoMain Java prototype, the authentication of the user can
be done by a Java applet that is downloaded from the
ground station before downloading the monitoring Java
applets. Once a user has been authenticated, the user is
allowed to download the monitoring Java applets. In the
RoMain XML prototype, the authentication mechanisms
can be implemented in the ground station as well, as part
of the application server.

Both Java RMI and HTTP support the Secure Socket
Layer (SSL) for encryption of the information before
transmitting it over the Internet. SSL provides simple but
efficient mechanisms to encrypt the information in ways
that renders hacking difficult. Despite other more
complex and efficient mechanisms for security, SSL has
become the de-facto standard over the Internet for
encryption of data.

5.5. RELIABILITY

Both prototypes depend heavily on the network.
Therefore, the reliability of such systems depends very
much on the reliability of the network itself. In our
experiment we used the Internet as a communication
network. Due to the nature of the Internet and its fluctuant
bandwidth, this network cannot be considered reliable.

Analyzing the results of the evaluations we noticed
that the differences between the same measurements in
the RoMain XML prototype are larger than the
differences between the same measurements in the
RoMain Java prototype. This is due to the fact that the
RoMain XML prototype requires more use of the network

than the RoMain Java prototype, to obtain the same
information. Additionally, as the RoMain XML prototype
is implemented in a three-tier architecture it makes even
more use of the network than the RoMain Java prototype.
Effectively, two HTTP calls are needed to obtain the
current values of the properties of an equipment and send
these values back to a client application. However, in the
RoMain Java prototype an update of the properties of an
equipment needs only a Java RMI remote call.

In conclusion, we can state that the RoMain Java
prototype is more reliable than the RoMain XML
prototype.

5.6. AVAILABILITY

The RoMain XML prototype proposes a three-tier
architecture, whereas the RoMain Java prototype
proposes a two-tier architecture. Therefore, in the RoMain
XML prototype there are more agents that interact within
the system than in the RoMain Java prototype.
Effectively, in the RoMain XML prototype we have a
data server that obtains data from a DAS in the train
gateway, a document server in the ground station and a
client running IE5.

In the RoMain Java prototype, there is only one Java
RMI server that obtains data from a DAS in the train
gateway and the Java RMI client running within a Java
applet in the client’s browser. The probability of failure in
the RoMain XML prototype is increased by the inclusion
of a middle tier.

In conclusion, the RoMain Java prototype has a higher
availability than the RoMain XML prototype.

5.7. EVOLVABILITY

This is the point that makes the RoMain XML
prototype really interesting. The RoMain XML prototype
is based on XML. XML is easy to create, parse and
transform. It is very simple to integrate data coming from
different sources, using XSL style sheets. In the RoMain
XML prototype the integration of data coming from
different trains is easily done at the middle tier. The
RoMain XML prototype offers an architecture that allows
a high flexibility in evolution.

The RoMain Java prototype provides a good example
of client-server computing. However, it is more
complicated to integrate data coming from different trains
and to process the data of a train in different ways as is
done in the current prototype - just to give some
examples.

In conclusion, the RoMain XML prototype brings a
higher evolvability than the RoMain Java prototype. A
solution to increase the evolvability of the RoMain Java
prototype is to re-design this system with a three-tier
architecture. As in the RoMain XML prototype, a middle

tier would be responsible for establishing connections and
retrieving data from different trains. Furthermore, it
would be responsible for integrating this data and sending
it back to a client.

6. CONCLUSION

The RoMain Java prototype demonstrated a better
communication performance than the RoMain XML
prototype. The prototype based on Java RMI has the
additional advantage that it can use server side push
technology. This can optimize data communication by
only transmitting data that has been changed on the
monitored system. The main drawback of this prototype is
that clients within firewalls cannot efficiently use it. It is
possible to use Java RMI over firewalls by using the
concept of HTTP tunneling, but the efficiency of the
communication slows down considerably. The HTTP
based prototype enables clients to use the prototype even
within firewalls. However, the communication
performance is low. Eventually, this performance can be
improved by compressing the XML formatted data (using
an algorithm as ZIP) on the server and by uncompressing
it again on a client. The client interface offered by the
RoMain Java prototype allows for the implementation of
complex features such as receiving notifications of server
side updates of data. The client interface of the RoMain
XML prototype is much more simple but it allows for
switching between different client views at the client side.
The scalability and reliability of both prototypes are
acceptable for systems like RoMain. The reliability and
availability of the RoMain Java prototype are higher than
in the RoMain XML prototype. This is mainly due to the
fact that the RoMain XML prototype proposes a three-tier
architecture, whereas the RoMain Java prototype
proposes a, much simpler, 2-tier architecture. For the
same reasons, the RoMain XML prototype is also much
more flexible in evolution than the RoMain Java
prototype.

The conclusion of these experiments is that when a
high performance remote monitoring system is required,
Java and Java RMI are the right technologies. If flexibility
on evolution is a strong requirement, a three-tier system,
which is rather simple to develop using technologies such
as HTTP and XML, may be a better choice.

ACKNOWLEDGMENTS

Thanks to all the members of the ROSIN WP4, who
brought a real framework to the discussions and the
implementation of our hypotheses. We want to thank
especially to Hubert Kirrmann from ABB Corporate
Research, for his many contributions to this work, and to
Xabier Arizkorreta from CAF, for his invaluable support
during the performance measurements. Thanks also to Jan
Ellerbrock, who did excellent work implementing the
RoMain XML prototype as part of his diploma thesis.

REFERENCES

[1] A. Fabri, T. Nieva, and P. Umiliacchi, Use of the
Internet for Remote Train Monitoring and
Control: the ROSIN Project, Rail Technology
'99, London, UK, September 7-8, 1999,
http://icawww.epfl.ch/nieva/thesis/Conferences/
RailTech99/article/RailTech99.PDF.

[2] M. P. de Albuquerque and E. Lelievre-Berna,
Remote Monitoring over the Internet, Nuclear
Instruments & Methods in Physics Research,
412(1), 1998, 140-145.

[3] F. Olken, H. A. Jacobsen, C. McParland, M. A.
Piette, and M. F. Anderson, Objects lessons
learned from a distributed system for remote
building monitoring and operation, Conference
on Object-oriented Programming, Systems,
Languages and Applications, Vancouver,
Canada, October 18-22, 1998,
http://www.lbl.gov/~olken/rbo/rbo.html.

[4] K. Kusunoki, I. Imai, H. Ohtani, T. Nakakawaji,
M. Ohshima, and K. Ushijima, A CORBA-based
Remote Monitoring System for Factory
Automation, First International Symposium on
Object-Oriented Real-time Distributed
Computing - ISORC'98, Kyoto, Japan, April 20-
22, 1998.

[5] R. Itschner, C. Pommerell, and M. Rutishauser,
GLASS: Remote Monitoring of Embedded
Systems in Power Engineering, IEEE Internet
Computing, 2, 1998, 46-52.

[6] T. Lumpp, G. Gruhler, and W. Küchlin, Virtual
Java Devices: Integration of Fieldbus Based
Systems in the Internet, Annual Conference of
the IEEE Industrial Electronics Society -
IECON'98, Aachen - Germany, August 31 -
September 4, 1998.

[7] T. Nieva, Automatic Configuration for Remote
Diagnosis and Monitoring of Railway
Equipment, IASTED International Conference -
Applied Informatics, Innsbruck, Austria,
February 15-18, 1999,
http://icawww.epfl.ch/nieva/thesis/Conferences/a
i99/article/ai99.pdf.

[8] Sun Microsystems, The Java Tutorial, February,
2000,
http://java.sun.com/docs/books/tutorial/index.ht
ml.

[9] D. Flanagan, Java in a Nutshell, (Paris: O'Reilly
& Associates Inc., 1996).

[10] Sun Microsystems, Java Remote Method
Invocation White Paper, 1999,
http://java.sun.com/marketing/collateral/javarmi.
html.

[11] R. Orfali, D. Harkey, and J. Edwards, The
Essential Client/Server Survival Guide, 2nd ed,
(New York: John Wiley & Sons Inc., 1996).

[12] Microsoft, Microsoft Developer Network
(MSDN) Online, 2000,
http://msdn.microsoft.com/.

[13] A. Vogel and K. Duddy, Java Programming with
CORBA, (New York: John Wiley & Sons Inc.,
1997).

[14] OMG, OMG Home Page, 2000,
http://www.omg.org/.

[15] IEC, “Electric Railway Equipment - Train Bus -
Part 1: Train Communication Network”, IEC
61375-1, 1999.

[16] W3C, eXtensible Markup Language (XML)
Home Page, 1997, http://www.w3.org/XML/.

[17] C. F. Goldfarb and P. Prescod, The XML
Handbook, (Upper Saddle River, NJ: Prentice
Hall Inc., 1998).

[18] N. Bradley, The XML Companion, (Essex:
Addison-Wesley Longman Limited, 1998).

[19] J. Hunter and W. Crawford, Java Servlet
Programming, (Sebastopol: O'Reilly &
Associates Inc., 1998).

