
Linguistic Support for Large-Scale Distributed Programming

Patrick Th. Eugster Rachid Guerraoui Christian H. Damm

Distributed Programming Laboratory Department of Computer Science
Swiss Federal Institute of Technology, Lausanne University of Aarhus

CH-1015 Lausanne, Switzerland 8200 Aarhus N, Denmark

Abstract

This paper presents linguistic primitives for pub-
lish/subscribe programming using events and objects.
We integrate our primitives into a strongly typed object-
oriented language through four mechanisms: (1) seri-
alization, (2) multiple subtyping, (3) closures, and (4)
deferred code evaluation. We illustrate our primitives
through Java, showing how we have overcome its re-
spective lacks. A precompiler transforms statements
based on our publish/subscribe primitives into calls to
specifically generated typed adapters, which resemble
the typed stubs and skeletons generated by the rmic pre-
compiler for remote method invocations in Java.

1 Introduction

1.1 RPC et al.

One of the most popular styles of distributed pro-
gramming relies on extending the notion of invocation
to a distributed context, i.e., offering some form of re-
mote procedure call (RPC) [BN84]. The integration
of this distributed interaction style with an object-
oriented programming language has been thoroughly
studied, e.g., [Lis88, CDJ+89, Lis93, Car95]. More re-
cently, Java [GJS00] has introduced its own variant, the
remote method invocation (RMI) [Sun99b], through a
precompiler approach.
By using the same abstraction for distributed inter-

actions as for local ones, RPC and its derivatives inte-
grate naturally with a language, and make distributed
programming look simple.

1.2 Publish/Subscribe

Motivated by the observation that RPC is not al-
ways the best solution, the integration of alterna-
tive distributed interaction styles, like asynchronous

RPC (e.g., [YBS86, LS88]) or the tuple space [Gel85]
paradigm (e.g., [MK88]) with a language have also
been studied. More recently, Oki et al.[OPSS93] have
pointed out the existence of many distributed “event-
based” applications for which a publish/subscribe inter-
action style is very appealing, thanks to its strong de-
coupling of participants in (1) time (participants don’t
have to be up at the same time), (2) space (partic-
ipants don’t have to know each other), and (3) flow
(data reception/sending does not block participants).
Several authors suggested libraries for distributed

interaction based on publish/subscribe (e.g., JavaS-
paces [FHA99], SmartSockets [Cor99], Distributed
Asynchronous Collections [EGS00]), also implement-
ing standardized API’s (CORBA Event & Notifica-
tion Services [OMG01b, OMG00], Java Message Ser-
vice [HBS98], etc.), but to our knowledge, very lit-
tle effort has been done to inherently support pub-
lish/subscribe in a language.

1.3 Linguistic Support for Publish/Subscribe

The goal of this paper is precisely to explore the
ramifications of integrating publish/subscribe primi-
tives into a strongly typed object-oriented language.1

Our linguistic primitives have been designed based
on four simple principles:2

LP1 Type safety. In a strongly typed language, strong
typing is enforced in local interactions, and as far
as possible, should also be enforced for remote ob-
ject interaction. Type errors should be recognized
1The goal of this paper is not to advocate for a library vs

an integration approach in the case of publish/subscribe, but
rather to explore the ramifications of an integration approach
(see Section 7).

2These principles have resulted from our previous experiences
around objects and publish/subscribe (e.g., [EGS00, EG01]), in-
cluding applications we have helped devising in the domains of
banking and telecommunications. Obviously, these principles are
not exclusive; other application domains might identify different
requirements.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

at compilation, alleviating the already cumbersome
debugging of distributed applications.

LP2 Encapsulation preservation. Events are to be con-
sidered as objects, and hence as instances of abstract
types. Their implementation details should not be
revealed, and should not be systematically used to
describe subscription criteria.

LP3 Application-defined events. Events should be de-
finable by the application, with minimal imposed de-
sign choices.

LP4 Composable event semantics. To express some
form of Qualities of Service (QoS), different seman-
tics should be assignable to events, and these seman-
tics should be composable.

Combining these principles is not straightforward.
For instance, combining (1) content-based subscription
based on event properties and (2) preservation of en-
capsulation of event objects (i.e., not systematically
expressing subscriptions as attribute-value pairs, rul-
ing out any query languages such as SQL) is already
commonly pictured as a contradiction per se [Koe99].
Further complexity is added by requiring (3) trans-
parency of subscriptions, i.e., giving the underlying
publish/subscribe system full access to subscription cri-
teria in order to optimize the filtering of events (e.g,
by factoring out redundancies between subscriptions
of different subscribers [ASS+99]).

1.4 Contributions

We present two language primitives for the ex-
pression of type-based publish/subscribe programming:
publish and subscribe.
Instead of introducing a new programming lan-

guage, we illustrate our three primitives through the
well-known general-purpose Java language. Along the
way, we identify a set of four mechanisms, which pro-
vided by a language, strongly enforce its support for
publish/subscribe; roughly serialization, multiple sub-
typing, closures, and deferred code evaluation. These
are however not to be viewed as sufficient nor as nec-
essary conditions, as shown by Java, which does not
incorporate all these mechanisms.
Our solution for the Java language relies on a pre-

compiler, which transforms our specific constructs to
invocations on specifically generated typed adapters.
In that sense, our precompiler can be seen as the

publish/subscribe counterpart to the Java RMI com-
piler, and we show that the two interaction paradigms
are in fact not contradictory, but that a combination

of these two paradigms can be seen as a powerful tool
for devising distributed applications.

1.5 Status

Our primitives were implemented using the infras-
tructure offered by the Distributed Asynchronous Com-
puting Environment (DACE). This infrastructure has
already been the base for a library approach to in-
tegrating publish/subscribe with Java [EGS00, EG01]
along similar principles, making however use of other
mechanisms to their achievement, namely reflection
and parametric polymorphism together with serializa-
tion.
The goal of this paper is to emphasize language is-

sues, leaving aside issues related to distribution; the
implementation of our distributed architecture, its un-
derlying algorithms and their performance and scala-
bility have been addressed in other publications, e.g.,
[EGH+01, EBG01].
Supported by our two complementary approaches,

we believe that the current work is not intrinsically
tied to our architecture, but could be deployed on most
existing publish/subscribe systems.

1.6 Roadmap

This paper is structured as follows: Section 2 intro-
duces the type-based publish/subscribe variant which
has allowed us to combine objects and events. Section 3
discusses the semantics of our primitives and their syn-
tax in Java. Section 4 presents the implementation of
our primitives. Section 5 discusses several issues, like
design alternatives. Section 6 discusses related work.
Section 7 concludes this paper.

2 Type-Based Publish/Subscribe

This section introduces our model of events and ob-
jects, and the type-based variant of publish/subscribe
intrinsically coupled with that model. We depict the
effects of subscribing to types in Java, and give a rough
idea of our primitives for publish/subscribe interaction
along with a simple example.

2.1 Model

The core idea underlying our integration of pub-
lish/subscribe with objects consists in viewing events
as first class citizens, and subscribing to these events
by explicitly specifying their type.

2

2.1.1 Obvents

By considering events as first class citizens, that is, not
as specific constructs (e.g., [HMN+00]), but as spe-
cific application-defined objects, we strongly enforce
the support of LP3. To emphasize the object nature
of events, we call these event objects, or to abbreviate
notation, simply obvents.
Similarly to [OPSS93], we distinguish mainly be-

tween two categories of objects, but introduce two fur-
ther (sub)categories.

Unbound objects: Unbound objects are locality-
unbound, that is, their semantics do not depend
on any local resource. Such objects could be
serialized and transferred to another address space
(in [OPSS93] these are termed data objects).

Obvents: Obvents represent a specific kind of un-
bound objects. Such objects are used to notify
events, and can in a nested way, contain other un-
bound objects

Bound objects: These objects are locality-bound, i.e.,
they are tied to an address space remain in that
address space during their entire lifetime. They
may make use of local resources (service objects in
[OPSS93]).

Notifiables: Potentially, any bound object could take
the role of subscriber, but in general, only partic-
ular objects subscribe to obvents.

An obvent class can best be pictured as a factory
for instances incarnating notifications for events of the
same kind, i.e., from the same event source. A notifi-
cation from such an event source is reified through an
obvent; basically an object which is serialized and sent
over the wire to a set of destinations, where each copy
is deserialized.
Note that we do not introduce a specific publisher

type. Any object (bound but also unbound) can pub-
lish obvents. The notifiables introduced to represent
subscribers will mainly be used for illustration pur-
poses. As we will see shortly, the application will not
be explicitly dealing with such objects, but will view
these as obvent handlers, or simply handlers.

2.1.2 Effects of Publishing Obvents

Publishing an obvent o can thus be understood as some
form of distributed object creation, where the created
objects are clones of o which acts as template. More
precisely, a distinct copy of a published obvent is cre-
ated for each subscriber:

Obvent Global Uniqueness: Suppose an obvent o1
published from an address space a1: if an address
space a2 contains two notifiables n1 and n2, these
will receive references to two new distinct clones of
o1, say o2 and o3.

Obvent Local Uniqueness: In the above scenario, if the
address space a1 also contains a notifiable n3, then
n3 will receive a reference to a new obvent o4.

A subscription can in that sense be seen as a contract
for hosting objects created as copies of published ob-
jects. Note that if the same obvent is published twice,
two distinct copies will be created again for every sub-
scriber.

2.1.3 Type-Based Subscription

By using the type of obvents as basic subscription
criterion, we strongly enforce the integration of pub-
lish/subscribe interaction into a language in a way that
respects type safety (LP1): by matching the notion of
event kind with that of an event type, i.e., using the
type scheme of the programming language as subscrip-
tion scheme, the type of the received events is known,
and compile-time type checks can be performed.
Figure 1 illustrates the intuitive idea underlying

our approach, through a recurring example for pub-
lish/subscribe interaction, which is the stock trade ap-
plication. A possible scenario is the following. The
stock market, here denoted by p1, publishes stock
quotes, and receives purchase requests. These can be
“spot price” requests, which have to be satisfied im-
mediately, or “market price” requests for purchasing
quotes only at the end of the day, or once another
given criterion is fulfilled. Latter requests can however
expire, and for the broker’s (such as p2) convenience,
an intermediate party (p3), e.g., a bank, might also
handle such requests in behalf of her/him, for instance
by issuing spot price requests to the stock market once
the broker’s criterion is satisfied.
Note that by subscribing to a type StockObvent,

p3 receives all instances of its subtypes StockQuote
and StockRequest, and hence all objects of type
SpotPrice and MarketPrice.

2.2 Type-Based Publish/Subscribe in Java

In many strongly typed object-oriented languages
like C++ [ES92] or Eiffel [Mey92], the inheritance hier-
archy determines the conformance (subtype) relation.
In such type schemes, the notions of type (abstract type,
type definition, interface, signature) and class (concrete
type, type implementation) are identical.

3

StockRequest

SpotPrice

StockObvent

MarketPrice

p1

p2 p3

Figure 1. Type-based publish/subscribe

The Java type system is inspired by the separation of
inheritance and subtyping in the sense of [CHC90]. To
avoid problems known from multiple inheritance, Java
offers only simple inheritance, yet introduces multiple
subtyping through interfaces. In Java, types can be
defined in the following two ways:

Explicit declaration: A type can be explicitly declared
by declaring an interface, which can subtype several
superinterfaces: an interface I1 which extends an-
other interface I2 represents a subtype of the type
declared by I2.

Implicit declaration: Defining a class C implicitly de-
clares a type, and at the same time gives the class
which implements it. If a class C1 inherits from an-
other class C2, then the type defined by C1 is a sub-
type of the type of C2. A class can subtype multiple
interfaces: for any interface I implemented by a class
C, the type defined by C is a subtype of I.

Note that a class C which implements a single inter-
face I without adding any new methods also defines a
new type, which is a subtype of I’s type.
As a consequence of the intertwining of types and

classes in Java, it must be possible to subscribe to in-
terfaces as well as to classes.

2.3 Expressing Type-Based Publish/Subscribe

To express event-based distributed interaction based
on the type-based publish/subscribe paradigm, we in-

troduce two primitives. We give here an abstract
overview of these, and give more details in Section 3.

2.3.1 Publishing

An obvent o is published through a primitive publish,
leading to the simple syntax:

publish o;

This statement triggers the creation of a copy of o
for every subscribed object, according to the rules de-
scribed beforehand. In that sense, the publish prim-
itive can be seen as a distributed variant of the new
primitive found in many languages. Syntactically, the
publish primitive bears more resemblances with the
very common return primitive, or the throw primitive
for the raising of an exception in Java.

2.3.2 Subscribing

In attempt to satisfy LP1, LP2, and LP4, we chose the
obvent type as the basic subscription criterion. A pure
static subscription scheme, like topics (e.g., [OPSS93,
Ske98, AEM99, Cor99, TIB99], also called subjects)
or types in our case, has been shown to offer only
limited expressiveness. This observation has moti-
vated content-based publish/subscribe (e.g., [ASS+99,
CNF98, Car98, SA97], also called property-based pub-
lish/subscribe), where a subscription takes properties
of obvents into consideration. When subscribing, the
desired properties are expressed through a predicate,
or filter. We thus combine a subscription to a type T
with the declaration of such a filter:

Subscription s =

subscribe (T t) {...} {...};

The first expression enclosed in brackets represents a
block, provided by the application, which expresses
how to handle obvents of type T (represented by a
formal argument called t here) in order to return a
boolean value indicating whether the obvent is of in-
terest or not. The second expression is a block which is
evaluated every time an event successively passes the
filtering phase, and represents thus the notifiable ob-
ject. The same formal argument t represents the event
of interest in this case. A subscription handle is re-
turned by a subscription expression. It gives the possi-
bility to identify a subscription, activate and deactivate
it.
The motivation of capturing the code for filtering

in a closure is to delay its evaluation: to avoid re-
dundant filtering, as well as wasting network band-
width, it is interesting to apply filters on foreign hosts,
which are possibly entirely dedicated to filtering. By
gathering filters of several subscribers on a given host,

4

a compound filter can be generated which factors
out redundancies between these individual filters. By
doing so, performance can be significantly improved
(e.g., [ASS+99]).
The use of a closure also to capture the code applied

for the evaluation of received events enables the avoid-
ing of a callback mechanism, which greatly enforces
type safety and has the great advantage of regroup-
ing code related to a subscription in a single succinct
expression.
Note that one can easily subscribe to all obvents of

a type T by doing something like the following:

s = subscribe (T t) { return true; } {...};

2.3.3 Example

Consider the stock market example introduced above.
Stock quotes are published by the stock market, and
are received by brokers. Stock quotes carry a set of at-
tributes, like the amount and price of the stock quotes.
Figure 2 shows the Java code for simple stock quotes
and stock quote subscribers.

/* stock quote obvents */

public class StockObvent implements Obvent {

private String company;

private float price;

private int amount;

public String getCompany() { return company; }

public float getPrice() { return price; }

public int getAmount() { return amount; }

public StockObvent(String company, float price,

int amount)

{

this.company = company;

this.price = price;

this.amount = amount;

}

}

public class StockQuote extends StockObvent {

public StockObvent(String company, float price,

int amount)

{ super(company, price, amount); }

}

Figure 2. Stock quote notifications

The stock market can publish a stock quote obvent
by doing something like the following:

StockQuote q =

new StockQuote("Telco Mobiles", 80, 10);

publish q;

Below, we give an example of a subscription, which
expresses an interest in all stock quotes of the Telco
group with a price less than 100$:

Subscription s =

subscribe (StockQuote q) {

return (q.getPrice() < 100 &&

q.getCompany().indexOf("Telco") != -1);

}

{

System.out.print("Got offer: ");

System.out.println(q.getPrice());

};

It can easily be seen that the stock quote published in
the above example satisfies these criteria.

3 Javaps

This section illustrates mechanisms which strongly
support the implementation of publish/subscribe in
a language according to our model. We discuss the
syntax and precise semantics of our language primi-
tives, and informally show how these would fit into
the Java language (leading to a new instance of State-
mentWithoutTrailingSubstatement, and a new Prima-
ryNoNewArray expression, § 14.5 and § 15.8 in [GJS00]
respectively). We refer to this extension as Javaps. The
classes and interfaces related to our approach are re-
grouped in a package java.pubsub.

3.1 Inside Obvents

Obvents are objects that are serialized, sent over the
wire, and deserialized. Java incorporates a default se-
rialization mechanism, which can be exploited by sub-
typing java.io.Serializable.

3.1.1 Basic Type

The basic Java Obvent type (Figure 3) thus subtypes
that type. This eases the implementation of our obvent
model in general, and we state this as a first mecha-
nism which enforces the realization of our model in a
language:

LM1 Default serialization mechanism. A language-
provided serialization/deserialization mechanism
eases the transformation of event objects into
conveyable low-level messages.

This principle strongly supports LP3 : with a default
serialization mechanism, developers can be relieved
from the burden of implementing specific operations
or hooks in their obvents. The design phase of obvents
can be cut down to the essential meaning of the event.

5

package java.pubsub;

import java.io.*;

/* obvents */

public interface Obvent extends Serializable {...}

public interface Reliable extends Obvent {}

public interface Certified extends Reliable {}

public interface TotalOrder extends Reliable {}

public interface FIFOOrder extends Reliable {}

public interface CausalOrder extends FIFOOrder{}

public interface Timely extends Obvent {

public long getTimeToLive();

public long getBirth();

}

public interface Prioritary extends Obvent {

public int getPriority();

}

/* exceptions */

public abstract class NotificationException

extends Exception {...}

public class CannotPublishException

extends NotificationException {...}

public class CannotSubscribeException

extends NotificationException {...}

public class CannotUnsubscribeException

extends NotificationException {...}

/* subscription handle */

public final class Subscription {

public void activate() throws CannotSubscribeException;

public void activate(long id)

throws CannotSubscribeException;

public void deactivate()

throws CannotUnsubscribeException;

public void setSingleThreading();

public void setMultiThreading(int maxNb);

...

}

Figure 3. Obvents, exceptions, and subscriptions

3.1.2 Obvent Semantics

Obvents can also be viewed as reified messages, or
message objects. According to the different semantics
that such messages can manifest, several semantics are
imaginable for obvents. The first kind of characteris-
tics are the delivery semantics associated with obvents;
an expression of quality of delivery.

Unreliable: When such an obvent is published, there is
no guarantee that it will be received by any notifi-
able. There is only a best-effort attempt to deliver
it. This is assumed by default.

Reliable: Once successfully published, a reliable obvent
will be received by any notifiable that is “up for long

enough”. A notifiable which never fails will eventu-
ally deliver every such obvent.

Certified: With such obvents, even if a notifiable tem-
porarily disconnects or fails, it will eventually deliver
the obvent.

Totally ordered: Obvents can furthermore be notified
in a total order to the notifiables: roughly spoken,
two notifiables n1 and n2 which deliver two obvents
o1 and o2 both deliver o1 and o2 in the same order
(we also term this subscriber-side order).

FIFO ordered: Two obvents o1 and o2 that are pub-
lished through the same object are delivered to all
objects whose subscription matches both o1 and
o2, and in the same order they were published
(publisher-side order).

Causally ordered: This type of obvents are delivered in
the order they are published, as determined by the
happens-before relationship [Lam78]. Note that the
notion of event in [Lam78] represents either a mes-
sage send or receive. These translate respectively to
the publishing and receiving of an obvent in our case
(global order).

Further semantics, called transmission semantics,
can be associated to obvents. These govern the han-
dling of obvents when they are in transit, with respect
to other obvents.

Prioritary: Obvents can have priorities, that is, the de-
livery of obvents can be delayed to defer to obvents
with a higher priority.

Timely: Similarly, obvents can be delayed to prioritize
more recent obvents. Also, obvents might expire,
and become obsolete.

These different semantics are not all mutually exclu-
sive. For instance, obvents can be certified and have
some notion of priority, or be certified and totally or-
dered at the same time. It appears that contradictions
reside for instance between reliable and simultaneously
timely limited obvents, as well as between total, fifo or
causal order and priorities. In the above cases, the first
type takes precedence (Figure 4 illustrates the depen-
dencies between the different semantics). Note however
that we have not yet explored all possible ramifications
and combinations, and that the identification and im-
plementation of these semantics is an ongoing task.
Note also that for any kind of order expressed by

an obvent type, its instances satisfy that order with
respect to instances of the same type, its subtypes, and
supertypes with that same order only.

6

�����������	
�

�	�����	
 �����
���
	�����
���
	�

���	
���
	

�������
	�

�	
���
	

�

�

�����������	��������

Figure 4. Dependencies between obvent semantics

3.1.3 Expressing Obvent Semantics

In our model, such characteristics are associated with
the obvents, and should thus be part of these obvents.
Indeed, it makes most sense that every obvent reflects
its semantics (which can be seen as a context), such
that a correct handling of the obvent can be assured
at every moment of the transfer. Since instances of
an obvent type are bound to the same obvent source,
they present the same characteristics. In addition, the
obvent type is the only contract between publishers and
subscribers, and we have thus chosen to use subtyping
to express this limited form of QoS, mandated by LP4.
Figure 3 shows the Java types corresponding to the
different semantics outlined above.
Since several characteristics can be combined, this

scheme requires some mechanism of expressing multiple
subtyping.

LM2 Multiple subtyping. While simple subtyping
eases the expression and addition of different event
semantics, multiple subtyping enforces the composi-
tion of such semantics.

This is independent of whether it is assured through
some form of multiple inheritance as offered by C++,
Cecil [Cha95] or Eiffel, through subtyping abstract
types (e.g., interfaces in Java), or even mixins (e.g.,
Flavors [Moo86], Ada [Ada95]). The term multiple
subtyping here simply denotes the ability of express-
ing multiple specialization relationships.

3.2 The publish Primitive

An obvent can be published, which means that it
will be asynchronously sent to any concerned notifi-
able. Following the Java language specification gram-
mar [GJS00], based on a LALR(1) syntax, we introduce
a new statement (our specific definitions will be titled
in bold font).

PublishStatement:
publish Expression ;

Here Expression is a non-null expression of type
Obvent, as opposed to most classes relying on Java
serialization: in Java, a serializable root type is often
“faked” by using formal parameters of the root type
java.lang.Object, yet expecting an object of a spe-
cific type java.io.Serializable and throwing an ex-
ception if the actual argument is not of that type. We
prefer detecting such type errors at compilation. Nev-
ertheless, this primitive can throw an exception of type
CannotPublishException, signalling any problems in
transmitting the obvent. Figure 3 summarizes the ba-
sic exceptions.

3.3 The subscribe Primitive

As briefly shown in Section 2, we introduce a second
primitive subscribe, to express a subscription.

3.3.1 Syntax

A subscription expression combines the subscription to
a type T with (1) a closure declaration representing a
filter, where the full signature of that first closure is
the following:

boolean (T t) {...}

and (2) the declaration of a second closure representing
the handler, where the full signature is the following:

void (T t) {...}

A subscription expression hence has the following
syntax in Java (details are given in Figure 5):

SubscriptionExpression:
subscribe (ObventType Identifier) Block Block

ObventType represents a type which can be widened to
the Obvent type, that is, ObventType is a special case
of the ClassOrInterfaceType (§ 4.3 in [GJS00]). The
filter represented by the first Block must return an ex-
pression of type boolean, while the evaluation block,
which we refer to as event handler or simply handler,

7

returns nothing. The creation of a subscription returns
an object of type Subscription (cf. Figure 3). Such
a handle uniquely identifies a subscription, and is re-
quired, for instance, for the activation/deactivation of
subscriptions.

SubscriptionExpression:
subscribe SubscriptionDeclaration

SubscriptionDeclaration:
SubscriptionDeclarator FilterBody HandlerBody

SubscriptionDeclarator:
(SubscriptionFormalParameter)

SubscriptionFormalParameter:
ObventType Identifier

FilterBody:
Block

HandlerBody:
Block

ObventType:
ClassOrInterfaceType

Figure 5. Precise syntax of subscription statements

3.3.2 Handlers

Handlers are very close to the closures known form
Smalltalk (block closure) or Cecil (anonymous func-
tion), and represent an intuitive way of handling call-
backs from the underlying event dissemination system.
In languages like Java, which lack support for clo-

sures (or higher order functions [OW97]), such call-
backs are often implemented by having the applica-
tion provide a callback object with a callback method.
The argument of such a method represents the effective
event of interest. In Java, an interface implemented
for callbacks is commonly called a listener. To enforce
strong typing, the type of the formal argument of a
callback method in a listener must conform to the type
of the event of interest. This can be achieved with
parametric polymorphism [EG01] (see Section 5), but
in any case leads to isolating the event handling in a
separate class.
The use of a closure on the other hand enables the

regrouping of all code related to a subscription in a sin-
gle succinct expression, and since handlers are a spe-
cific type of closures, a language which already provides
some general form of closures can easily support the in-
tegration of subscription expressions.

LM3 Closures. With handlers being a specific type of
closures, a language which provides general closures
supports the expression of safely typed subscription
primitives.

By viewing these closures as objects, the handlers take
the role of the notifiables outlined in Section 2.

3.3.3 Filters

Akin to handlers, filters are closures with a specific
signature. Besides the concentrating of subscription-
related code, the use of such a syntax in the case of
filters is conducted by a further desire, namely the
confining of code both for the filtering, and especially
“revealing” it. This enables (1) the migration of such
code to foreign hosts, as well as (2) the factoring out
of redundancies between filters of different subscribers
gathered on individual hosts.
The compilation of these filters is hence deferred, in

a sense similar to the paradigm of deferred code eva-
lution known from two-level programming [NN88] (or
generalized to more than two levels, multi-stage pro-
gramming as advocated by MetaML [TS97]).

LM4 Deferred code evaluation. A mechanism provid-
ing some form of deferred code evaluation can easily
support the expression of safely typed content-based
filters, in a way that supports optimizations (avoid-
ing redundant queries) and the checking of the code.

3.3.4 Restrictions on Closures

“Local” closures vary in the degree of self-containment
they advocate: the first class block closure in Smalltalk
can use any variables in scope at the closure declaration
(at compilation), and these variables are bound for the
entire lifetime of the closure, even if it is executed in a
context where some of these variables are not visible.
To avoid some of this binding of variables, an anony-
mous class in Java can only access final variables from
the enclosing block in addition to the variables (mem-
bers) in scope at compilation. The handlers described
previously adopt these semantics.
Our “distributed” use of closures in the case of fil-

ters requires even more restrictions. Any variable used
in a filter might reference an object (which might ref-
erence an object, etc.) of a type which is not known on
a host where that filter is evaluated, forcing the trans-
fer of code. Similarly, any method invocation, whether
performed on a variable or as a static call, might force
the transfer of further code. In the case of Java, a class
can be compiled if the types it uses are present as byte
code, and it is very difficult to foresee the effects of calls

8

to classes based on their byte code. Thus, method in-
vocations (including the use of constructors) should be
cut down to the essential ones, in order to avoid filters
using opaque code and/or types unknown on filtering
hosts.

Invocations: The only method invocations allowed in a
filter are (nested) invocations on its variables.

Variables: The only variables allowed in a filter are
(1) the formal argument representing a filtered
obvent, (2) local variables, and (3) final outer
variables (from the enclosing block or class mem-
bers). Latter two types of variables are restricted
to primitive types (e.g., int) and their object-
counterparts (e.g., java.lang.Integer), including
java.lang.String.

These restrictions enforce the location-
independency of the expressed filter, offering the
possibility of applying it at a more favourable stage
(e.g., a remote host) to reduce network load and
filtering cost. If the filter declares any local variables
of unallowed types, or performs invocations differing
from the ones described above, its migration might be
problematic. In such a scenario, the filter is applied
locally (cf. next section).
Note that the above restrictions do not fully guar-

antee the location-independency of the filter, e.g., any
Java object referred to by a variable gives access to a
meta-object representing its class (java.lang.Class),
through which many “undesired” things can be done.
We will discuss this in Section 5.

3.3.5 Thread Semantics

Once an obvent has reached a process hosting an inter-
ested notifiable, it is delivered by executing the han-
dler. This is comparable to an RPC-style invocation
of an arbitrary method of a bound object, in the sense
that the thread which is used in that target object’s
process for the invocation is blocked until completion
of that invocation; the main difference being that an
invocation made in the context of an RPC can yield
a reply which is sent back to the invoker. There are
different levels of concurrency which can be supported.
In our context, we distinguish between two kinds of
thread semantics (policies):

Multi-threading: A handler can be executed concur-
rently for any number of obvents. These semantics
are assumed by default, except in the case of ordered
obvents.

Single-threading: A handler never processes more than
one obvent at a time.

One could easily extend this set, for instance by a
thread policy ensuring that only one instance of the
same obvent class is processed at a time.
Note that Java already integrates mechanisms for

concurrency control with which the above policies can
be achieved. To ensure that never more than one ob-
vent is processed at a time by a handler, one could
easily write:

final Object lock = new Object();

Subscription s =

subscribe (T t) {...} {

synchronized(lock) { /* handler */ }

};

However, in languages which do not integrate any
concurrency mechanisms, to obtain more sophisti-
cated concurrency control, or to involve the pub-
lish/subscribe system into concurrency issues with the
goal of optimizing concurrency, thread policies should
be made explicit. In our case, it seems most straightfor-
ward to express these through the subscription handle,
since such an object uniquely defines a subscription.
To control such parameters, corresponding methods are
added to the Subscription type shown in Figure 3.
In general, the expression of QoS has been proba-

bly the most tedious task when devising our language
primitives. Such QoS seem to become increasingly im-
portant when programming at a distributed scale, but
there is to our knowledge only very little work on how
to inherently express QoS in a programming language,
in an other way than through an API.

3.4 Managing Subscriptions

As explained above, the subscribe primitive cre-
ates an expression representing a subscription. Such a
subscription must then be activated, triggering the ef-
fective action of subscribing, and later on, deactivated,
representing the action of unsubscribing.

3.4.1 Activating a Subscription

A subscription is activated by a call to the activate()
method on the corresponding subscription handle.
This method throws a CannotSubscribeException ex-
ception if the subscription can not be issued, e.g., if the
subscription is already activated.

Subscription s = ...;

s.activate();

The variant of the activate() method with a long
argument is used in combination with certified events.
Indeed, with such events, the lifetime of subscriptions
might exceed the actual lifetime of the hosting pro-
cess. When recovering from a failure, or reactivating an

9

intentionally deactivated subscription, the concerned
subscription can be (locally) uniquely identified by us-
ing this method.

3.4.2 Deactiving a Subscription

Similarly the action of unsubscribing is ex-
pressed through a deactivate() method defined
on subscription handles, which can through a
CannotUnsubscribeException.

s.deactivate();

As an immediate consequence, subscriptions can be
cancelled also from inside a subscription, i.e., its as-
sociated handler. This is interesting when a particular
event, from the point of view of the concerned sub-
scriber, supersedes any following events, or signals the
absence of any further events. Since a handler can only
handle final variables declared in its enclosing block
however, the variable that the subscription handle is
affected to must be declared outside of that block, for
instance as a private attribute of the enclosing class.
The activation/deactivation of subscriptions can be

interleavingly performed an unlimited number of times.
Corresponding exceptions are also thrown upon an at-
tempt of (de-)activating an already (de-)activated sub-
scription.

4 Implementation Issues

This section depicts how we have implemented our
primitives for publish/subscribe interaction in Java in
a way that satisfies the principles stated in Section 1.

4.1 General Implementation Choices

Along the lines of extensions to the Java language
like Pizza [OW97] (adding parametric polymorphism,
algebraic types and closures) or [BC97] (for multi-
methods), we refrain from incorporating any new fea-
tures into the Java virtual machine, as well as from
extending a given compiler, or even modifying exist-
ing packages and classes of the Java environment. In-
stead, we advocate the use of a precompiler as the
publish/subscribe counterpart to the rmic compiler for
generation of remote invocation proxies [Sun99b].
Since remote invocations benefit from an inherent

support from the language, they require no specific
primitives, and hence only remotely invocable Java
types have to be compiled with rmic. Besides generat-
ing obvent-specific classes, our psc precompiler trans-
lates publish/subscribe statements and expressions to
calls to these classes, and must hence be run not only

on obvent types, but also on any class making use of
our primitives.

4.2 DACE Distributed Architecture

The Distributed Asynchronous Computing Environ-
ment (DACE) infrastructure has been initially de-
veloped as a general architecture to support pub-
lish/subscribe interaction, and has later been special-
ized for type-based publish/subscribe. The DACE ar-
chitecture can be roughly pictured as relying on a
class-based dissemination [EG01]. Every obvent class
is mapped to a dissemination channel, representing a
multicast group, which we refer to asmulticast class. In
the DACE architecture, such multicast classes are then
implemented with different multicast protocols with
guarantees ranging from strong guarantees (exploit-
ing a broad variety of primitives from group commu-
nication [BJ87], e.g., for causal ordering) to primitives
with weaker guarantees but strong focus on scalability
(network-level protocols like IP multicast [DC90] or its
derivates, e.g., [PSLB97, HSC95, FJM+96], or gossip-
based protocols, e.g., [BHO+99, SS00, EGH+01]).
We have adopted a reflexive approach, by using spe-

cific channels to disseminate protocol messages, like
subscription/unsubscription requests, or the advertise-
ment of the publishing of obvents. Such messages are
obvents themselves, and allow distributed processes to
learn about other, possibly new, multicast classes.

4.3 Typed Adapters

To avoid making the Java virtual machine
distribution-aware, and also to exploit our class-based
dissemination, we adopt the adapter [OPSS93] con-
cept. Adapters are intermediate entities between the
communication system and the application, whose role
consists mainly in mediating between events in a seri-
alized representation and objects.
In our case, adapters mainly mediate between seri-

alized generic objects and strongly typed obvents. In
other terms, adapters are type-specific, and are gener-
ated for each obvent class by the psc compiler. For any
given obvent class C psc generates a class CAdapter
with code for publishing/subscribing instances of C.
Similarly, to support subscriptions to abstract types
(interfaces), for any given abstract obvent type I, psc
generates a class IAdapter with code for subscribing
to instances of I. Figure 6 illustrates an adapter for a
given obvent type T.3

3Interestingly, the same parametric polymorphism applied to
the first class adapters used in our library approach [EGS00],
can not be applied here due to the purely static nature of the
adapters.

10

import java.pubsub.*;

public final class TAdapter {

public static Subscription subscribe(LocalFilter l,

Notifiable n)

throws CannotSubscribeException {...}

public static Subscription subscribe(RemoteFilter r,

Notifiable n)

throws CannotSubscribeException {...}

/* if T is a class */

public static void publish(T t)

throws CannotPublishException {...}

...

}

Figure 6. Obvent adapter for a type T

4.4 Translating Primitives

With our psc precompiler, publish/subscribe state-
ments and expressions are translated to method invo-
cations.

4.4.1 Publishing

Since a published obvent is disseminated through the
adapter for its dynamic type, which is only known
at runtime, a PublishStatement can not be directly
transformed to a call to publish on the correspond-
ing adapter class. Hence, we add a publish() method
to the Obvent interface in Java (Figure 7), whose body
is however automatically generated by psc for each ob-
vent class C:

public class C ... {

/* generated by psc */

public void publish()

throws CannotPublishException

{ CAdapter.publish(this); }

...

}

Accordingly, a PublishStatement expressing the
publishing of an Obvent o,

publish o;

is transformed into a call to the publish() method
of o, provided that o’s static type can be widened to
Obvent.

o.publish();

4.4.2 Subscriptions

By similarly transforming subscriptions to (static)
calls to the corresponding obvent types, subscriptions

package java.pubsub;

import java.io.*;

/* obvents */

public interface Obvent extends Serializable {

/* generated by psc */

public void publish() throws CannotPublishException;

}

/* top level */

public final class ObventAdapter {...}

public static Subscription subscribe(LocalFilter l,

Notifiable n)

throws CannotSubscribeException {...}

public static Subscription subscribe(RemoteFilter r,

Notifiable n)

throws CannotSubscribeException {...}

}

/* filters */

public interface Filter {...}

public interface RemoteFilter extends Filter {...}

public interface LocalFilter extends Filter {

public boolean eval(Obvent o);

}

/* handlers */

public interface Notifiable {

public void notify(Obvent o);

}

Figure 7. Details on Obvent, Subscription and fur-

ther types in java.pubsub

11

to interfaces would be impossible. Hence, subscrip-
tions, as well as unsubscriptions, are handled differ-
ently. In short, a subscription statement involving a
type T is transformed to an invocation of one of the
subscribe()methods in class TAdapter (possibly also
OventAdapter in package java.pubsub), as shown in
Figure 6.
An instance of an anonymous class representing a

notifiable, is created from the handler of a subscription
expression such as the following:

subscribe (T t) {...} { /* handler */ }

It implements the Notifiable interface given in Fig-
ure 7:

new Notifiable() {

public void notify(Obvent o) {

T t = (T)o;

/* handler */

}

}

Such an anonymous class declaration represents an ex-
pression, and can thus be passed as argument to the
subscribe() method of the corresponding adapter.

4.4.3 Filters

The handling of filters represents the most complex
task during precompilation. A filter whose statements
deviate from the guidelines which strongly enforce its
mobility according to the previous section, is similarly
transformed into an anonymous class representing a
unary predicate of type LocalFilter shown in Fig-
ure 7, and applied locally. A subscription expression
such as

subscribe (T t) { /* filter */ } {...}

is hence transformed into an invocation of the corre-
sponding adapter class:

TAdapter.subscribe(

new LocalFilter() {

public boolean eval(Obvent o) {

T t = (T)o;

/* filter */

}

},

new Notifiable() {...}

)

If the depicted restrictions are respected, psc gen-
erates an intermediate representation of the filter, in
a way similar to what is done for application-specific
handlers (ASHs) [EWM96], low-level message filters,
except that those are applied locally and expressed in

a neutral specification language, while our filters pro-
mote the use of the native language syntax. Our pre-
compiler generates two tree-like constructs, which are
more specific than for instance the parse trees used in
Smalltalk [Riv96].

Invocation tree: First, a representation of the invoca-
tions made in the filter is generated: the root repre-
sents the filtered obvent, and every node represents
a method invocation. A leaf node stands for the
outcome of a condition on the value obtained by ap-
plying the methods of the nodes on the path downto
that leaf in a nested fashion (nodes can also represent
attribute accesses).

Evaluation tree: Second, a tree representing the rela-
tionships between the leaves of the former tree and
the outcome of the filtering is generated: its nodes
represent mainly logical combinations of its subnodes
aso., and the leaves are references to the leaves of the
former tree.

This information is stored in an instance of
RemoteFilter (Figure 7).
A general description of our approach to instrument-

ing Java with first class parse trees, based on a gener-
alization of deferred code evaluation expressed through
filters, will be the subject of a future paper.

5 Discussion

This section discusses several issues, including two
design alternatives as well as interoperability issues.
We also contrast our type-based publish/subscribe
with RMI, pointing our the fact that the two paradigms
are not contradictory but complementary.

5.1 Fork

We have explored several alternative primitives for
the expression of publish/subscribe based on our ob-
vent model, among which we outline what we believe
to be the two which are most likely to come into
mind. This first alternative for the expression of pub-
lish/subscribe based on our obvent model makes use of
a fork-similar primitive for notification delivery.

5.1.1 Obvent Variable

A new notification is assigned to a variable, and a block
representing a handler is executed every time a new
value is put into the variable:

T t = null;

t = subscribe {...} {...};

/* here t is null */

12

This primitive could, in the case of Java, be imple-
mented similarly to the solution presented throughout
this paper. However this syntax makes it difficult to
express unsubscriptions, a problem which does not oc-
cur in the case of the fork primitive: when spawning
a new coroutine, the execution of the corresponding
block takes place once only. Here, notifications are de-
livered continuously, leading to a repeated evaluation of
the handler. By the absence of a subscription handle,
a subscription can not be referred to from outside of
its expression. Unsubscriptions would have to be dealt
with inside the handlers, either through a parameter-
less unsubscription statement, or by having the handler
return a boolean value after each obvent evaluation to
signal whether the subscription is to be pursued. Ei-
ther variant leads to a restrictive solution, where a sub-
scription can only be cancelled after the next event has
been delivered. While this can be desirable in many
case, which has motivated the support included in the
solution presented throughout this paper, it should not
be the only possibility of cancelling a subscription.

5.1.2 Filter

Note that alternatively, with this model, one could
think of implementing filters by giving the application
the possibility of instantiating the future variable t,
and in that sense, using it simultaneously as a tem-
plate object :

T t = new T(...);

t = subscribe {...};

However, filtering events by matching them against
template objects offers only little expressiveness: tem-
plate objects are usually compared attribute-wise with
events, making the matching of an attribute against a
range of values, or, since attributes might themselves
be objects, the matching only of a nested attribute dif-
ficult to express. Alternatively, the matching can be
performed inside the template object, which renders
the matching opaque, disabling any optimizations tar-
geted at avoiding redundancies.

5.2 Callback

As outlined in Section 3, a very common way of
implementing a callback in a language such as Java
consists in asking the application to provide a callback
object implementing a given interface.

5.2.1 Listener

This second considered alternative, which is pro-
moted by nearly all Java API’s for common pub-
lish/subscribe engines, introduces a specific listener like

the Notifiable type presented in Figure 7. This type,
which, as depicted, is inherently implemented by every
anonymous class representing a handler, would in this
case be explicitly implemented and instantiated by the
application to catch event notifications, e.g.:

Notifiable n = ...;

Subscription s =

subscribe (T t) { / *filter* / } n;

The declared notify() method with its weakly typed
argument does however not address LP1. A dynamic
overriding of the notify()method, i.e., adding a vari-
ant with an argument type T that subtypes Obvent in
order to subscribe to instances of T

public void notify(T t) {...}

would also allow handlers for several obvent types to
be provided by the same notifiable, yet does not add
type safety.

5.2.2 Dispatching

Through this dynamic overriding, the notify method
becomes a so-called multi-method. Unfortunately, dis-
patching (method selection) in Java, unlike CLOS
[Jr.90] or Cecil, does not support multi-methods. Dis-
patching in Java, similarly than in C++, offers dy-
namic uni-dispatch, i.e., the class of the object ref-
erenced by an invoked variable (representing its dy-
namic type) is determined at runtime, but only static
multi-dispatch. This prevents a typed solution based on
dynamic overriding of the notify() method desribed
above.
There have been several approaches to overcoming

Java’s lack for multi-methods, ranging from using re-
flection over modifying compilation to extending the
virtual machine. Another common technique is also
given by double dispatch [Ing86], which could however
not be applied in this case, like some of the above solu-
tions, unless a specific notifiable TNotifiable is gen-
erated and implemented for every obvent type T that
a notifiable type handles. This would however remove
the main advantage of this approach based on listen-
ers, which consists namely in giving much freedom to
the developer in defining event handlers for any types
(including subtypes of subscribed types). In addition,
the required dynamic multi-dispatch is a high price
to pay, especially if only introduced for the use with
publish/subscribe primitives, also given the fact that
it does not improve type safety.
Note furthermore, that the scenario of multiple

subscriptions of a notifiable to the same type, or
through subtyping related types, is not straightfor-
ward to handle: are the different filters combined,

13

and is the same event delivered several times? On
the other hand, the callback approach also enables
an easy expressing of thread semantics: by subtyping
a SingleThreadNotifiable, the developer could ex-
press the desire of processing only one instance of a
given obvent type at a time. Multiple subtyping, in-
troduced to express a limited form of QoS for obvents,
could here be used again to express complex event han-
dling semantics.

5.3 Obvents vs Objects

In languages which provide a default serialization
mechanism through a type which must be subtyped,
e.g., Java (java.io.Serializable), obvents are in-
stances of that type. Hence in a general case, as shown
by our distinction between bound/unbound objects,
not every object can be an obvent: the opposite would
have not only mandated the type system to be singly-
rooted (requiring extensions to languages like C++ and
Ada), but also to integrate the before-mentioned seri-
alization mechanism at that very root like in Smalltalk,
possibly including a publish() method.
How about an obvent publishing obvents, or sub-

scribing to obvents? The former case does not bear
any particular dangers, and should thus not be prohib-
ited. Similarly, subscriptions could also be issued inside
obvents, since a subscription does not affect the object
in which it was performed. Subscriptions only have
a “local” effect, since an instantiated closure can not
be referenced. Hence the effective handlers/notifiables
can not be passed around, and in particular, can not be
attributes of obvents. To underline this characteristic
of subscriptions, the Subscription type is not serial-
izable.
Note that in the second presented design alterna-

tive, any application object can be defined as a no-
tifiable by implementing a given interface, that is, a
notify()method. Equipping all objects with the abil-
ity of subscribing would have translated to adding that
notify() method to the root type. Furthermore, no-
tifiables could be attributes of obvents. The danger
of endless recursions whenever an obvent subscribes to
itself could however easily be banned, by not consider-
ing a subscription as part of the state of a subscribed
obvent: once published, the copies of an obvent would
have to reissue any subscriptions performed by their
“master copy”.

5.4 RMI and Publish/Subscribe

Originally introduced as remote procedure call
(RPC) [BN84], remote invocations have been quickly

applied to object-oriented languages, leveraging some
form of remotely accessible entity, e.g., guardians in
Argus [Lis88] (its follow-up CLU [Lis93]), network ob-
jects in Modula-3 [CDJ+89] and Obliq [Car95] (every
object is potentially a network object), and of course
remote objects in Java RMI [Sun99b].

5.4.1 Invocations vs Events

There are mainly two differences between such remote
invocations and our event-based model:

Interaction styles: The RPC model promotes the same
abstraction for remote object interactions as for lo-
cal ones. By doing so, (synchronous) RPC is in-
herently integrated with the language, and requires
little more support than that very inherent interac-
tion abstraction. In contrast, our model promotes
two interaction styles, namely (1) event-based pub-
lish/subscribe interaction remotely, and (2) method
invocations locally, making the application developer
more aware of distribution.

Object passing semantics: With remote invocations,
there are two possible ways of passing objects,
namely (1) by reference, i.e., a proxy object is cre-
ated in the receiver’s address space, and (2) by value.
The distinction goes along the notion of the granular-
ity mediated in Section 2, i.e., “large” locality-bound
objects interact via remote invocations, where the in-
vocation arguments are “small” unbound objects or
references to “large” remotely invocable objects. In
contrast, when using our obvent-based model, ob-
jects are primarily passed by value.

However, publish/subscribe and RPC are not con-
tradictory, but complement each other. A combination
of both represents a very powerful tool for devising dis-
tributed applications, e.g., by passing object references
with obvents.

5.4.2 Hand in Hand

A collaboration between the two interaction styles
can be illustrated by reconsidering the simple exam-
ple given in Section 2. Though the use of a pub-
lish/subscribe interaction for the dissemination of stock
quotes seems appropriate by scaling easily to many
brokers, it might seem more appropriate to use a sy-
chronous interaction with the stock market when pur-
chasing stock options, e.g., a remote method invoca-
tion.
Figure 8 shows how Java RMI and publish/subscribe

can work together, hand in hand. To correctly han-
dle the serialization of remote objects (in the sense

14

of RMI), the RMI serialization mechanism is used,
enabling a transparent integration of RMI and pub-
lish/subscribe. However, the current implementation
of Java RMI presents a severe caveat, which becomes
especially visible through this integration with events.
In fact, the distributed garbage collection keeps a re-
motely accessible object from being garbage collected
as long as there is at least one proxy for that object.
When publishing an event containing a reference to a
remote object, such a proxy is created for each sub-
scriber, which can sum up to several 1000’s. Every
time a proxy is garbage collected, the Java virtual ma-
chine hosting the represented object is notified. Con-
sequently, if a single subscriber crashes, the remote ob-
ject will never be garbage collected. With a “weaker”
implementation of Java RMI, such as the one proposed
in [CNH99], this problem could be circumvented.

5.5 100% Pure Content

Java, like most statically typed languages, uses
name equivalence of types, which means that two types
are compatible only if declared so. If two different types
T1 and T2 have exactly the same parents in their type
hierarchy, instances of T1 can not be assigned to vari-
ables of T2 or vice versa. A type scheme which allows
this is said to enforce structural equivalence of types.

5.5.1 Reflection

When subscribing to obvents it might be of interest in
certain cases to subscribe to any obvents which im-
plement a given method (specified by its name and
formal/actual parameters) irrespective of the types of
these obvents. Java, just like Smalltalk, provides intro-
spection mechanisms [Sun99a], that enable the query-
ing of objects for their type, and also members (at-
tributes and methods, including facilities for dynami-
cally reading/writing former ones and invoking latter
ones). Every Java object gives access to these features
through a method getClass(), which would enable the
expression of a purely content-based subscription like
the following:

Subscription s =

subscribe (Obvent o) {

...

Class c = o.getClass();

Method m = c.getMethod("getPrice", null);

return

m.invoke(o,null).equals(new Float(150));

...

} {...};

Now, any obvent type which implements a given
method getPrice() (e.g., the StockQuote class) could

import java.rmi.*;

import java.rmi.server.*;

import java.pubsub.*;

/* user */

public interface StockBroker extends Remote {...}

/* stock market */

public interface StockMarket extends Remote {

public boolean buy(String company, float price,

int amount, StockBroker buyer)

throws RemoteException;

...

}

/* stock quote obvents */

public class StockObvent implements Obvent {

private String company;

private float price;

private int amount;

public String getCompany() { return company; }

public float getPrice() { return price; }

public int getAmount() { return amount; }

public StockObvent(String company, float price,

int amount)

{

this.company = company;

this.price = price;

this.amount = amount;

}

}

public class StockQuote extends StockObvent {

private StockMarket market;

public Stockmarket getMarket() { return market; }

public StockObvent(String company, float price,

int amount, StockMarket market)

{

super(company, price, amount);

this.market = market;

}

}

/* subscribing */

final StockBroker broker = ...; /* this broker */

...

Subscription s =

subscribe (StockQuote q) {

return (q.getPrice() < 100 &&

q.getCompany().indexOf("Telco") != -1);

}

{

...

boolean bought =

q.getMarket().buy(q.getCompany(), q.getPrice(),

q.getAmount(), broker);

...

};

...

Figure 8. Buying stock quotes

15

be captured by this filter, and the following handler
could similarly dynamically extract information from
a conforming event. Note that this feature, though
giving much flexibility to the application developer, is
somehow opposed to our requirement for type safety
(LP1), and we therefore do not consider introspec-
tion as a necessary language mechanism, though our
current Java prototype supports such untyped filters.
Note that this scheme is usually realized by using spe-
cific event types implementing introspective mecha-
nisms, like the self-describing messages advocated by
[OPSS93].

5.5.2 Tuples: Back to the Roots

Another way of achieving structural equivalence could
consist in coming back to the concept of tuples used
in Linda [Gel85] (see next section), one of the spiri-
tual ancestors of the publish/subscribe pardigm. In
that sense, the publish primitive could be extended in
order to accept any number of actual arguments:

String company = ...;

float price = ...;

int amount = ...;

StockMarket market = ...;

publish (company, price, amount, market);

Inversely, the subscribe primitive could be used with
an arbitrary number of formal arguments, e.g,

Subscription s =

subscribe (String company,

float price,

int amount,

StockMarket market)

{ /* filter */ }

{ /* handler */ };

which could all be used as subscription criteria by the
filter, and could all be accessed by the handler.
Though one can argue that languages which do not

inherently support structural equivalence should not be
instrumented with a distributed interaction style that
relies on that paradigm, we believe that this could lead
to a very appealing style of distributed programming,
but requires a more complex filtering.

5.6 Language Integration vs Interoperability

Language integration seems to be somehow contra-
dictory with the requirement of interoperability ex-
pressed in [OPSS93]. Publish/subscribe has how-
ever nowadays found application in various contexts
(e.g, virtual reality [HMN+00], group collaboration
[MHJ+95], real time [Fet98]), mainly due to its scal-
ability properties achieved through strong decoupling
of participants.

Just like CORBA [OMG01a] has added interoper-
ability to the RPC through a neutral interface de-
scription language (IDL), there have been several ap-
proaches to using a neutral event description lan-
guage (EDL) to help adding interoperability to pub-
lish/subscribe. Proposals for such languages are plen-
tiful, like the OMG’s object definition language (ODL)
used in the Cambridge Event Architecture [BMB+00],
languages used in tuple space implementations, e.g.,
object interchange language (OIL) in Objective Linda
[Kie95], or more recently, XML.
We believe that such a specification language could

help adding interoperability to our system, and that
in that sense, the types in package java.pubsub can
be seen as a Java mapping. However, since events are
in our case not pictured as structures as in the above
cases, but also encompass methods and thus code, an
EDL can not by itself provide for interoperability. The
issue of passing objects by value from one language to
another has also been tackled in CORBA, and we are
currently investigating on the impact of an application
of those concepts to our system.

6 Related Work

Though publish/subscribe engines are plentiful,
there has been only little work on integrating pub-
lish/subscribe interaction with an object-oriented pro-
gramming language up to now. We first overview the
two closest efforts, and then focus on linguistic support
for alternative distributed interaction styles other than
RPC, which has already been discussed previously.

6.1 Publish/Subscribe

Most event-based solutions focus less on language
integration, and more on interoperability.

6.1.1 ECO

One approach to integrating event-based interaction
with C++ is discussed in [HMN+00], but also starting
from a general event model. The authors dissociate two
ways of adding event semantics to an object-oriented
language, namely (1) by extension with specific con-
structs and (2) by addition of specific classes, adopting
the first approach. Their ECO (events + constraints
+ objects) model incorporates events as specific lan-
guage constructs which are complementary to objects,
and thus necessitate a considerable number of language
add-ons. The use of a precompiler to handle these ex-
tensions is also mentioned, but [HMN+00] gives no de-
tails about its implementation.

16

6.1.2 CEA

The Cambridge Event Architecture (CEA) [BMB+00]
promotes a publish/register/notify interaction style,
where an intermediate event trader mediates between
publishers and subscribers. The CEA is based on an
interopable object model, in which events are described
by the ODMG’s object definition language (ODL), but
alternative specification languages, like XML, are also
mentioned. Events are typed according to the def-
inition language, and C++ and Java mappings are
mentioned. Filtering mechanisms are also included,
however based on viewing the events as sets of at-
tributes, forcing the application to define filters based
on attribute-value pairs.

6.2 Message Passing

Language integration has evolved along the commu-
nication paradigms. One of the first distributed in-
teraction paradigms was message passing, consisting
basically of a usually asynchronous send of messages
(mainly for single sends, but also for addressing groups
similar to publish), and a blocking receive primitive.
Like many “distributed” interaction paradigms, mes-
sage passing has also extensively been used first in
parallel and concurrent programming. Early, mainly
procedural and process-oriented languages, like Occam
[Pou84] (using named unidirectional channels) or also
SR [AO86] (first only with semi-synchronous sends,
later also with synchronous remote procedure calls),
included some form of message passing.

6.3 Tuple Spaces

The well-known tuple space paradigm [Gel85] repre-
sents the distributed interaction scheme which is closest
to publish/subscribe.

6.3.1 The Original

The tuple space, first introduced for parallel computing
in Linda, can be viewed as a form of distributed shared
memory, with the main difference being the structured
form of data inserted into and retrieved from the tuple
space: tuples inserted into a tuple space are sets of
values, and tuples read from the space are specified as
a set of formal and actual arguments, where former
ones can be seen as placeholders defining the types of
the corresponding elements, and latter ones define the
values of the corresponding elements for a candidate
tuple.

6.3.2 Decoupling

The original tuple space in Linda was based on a form
of name-based addressing, i.e., tuple elements could
be strings carrying a specific name. This idea has
been reused in the “original” publish/subscribe vari-
ant based on topics, and the possibility of using more
than one name element in Linda has been straightfor-
wardly transposed to topic hierarchies, expressing con-
tainment relationships on topics. In general, the pub-
lish/subscribe paradigm has been strongly influenced
by the tuple space, more specifically by its strong de-
coupling of participants in time and in space.

6.3.3 Publish/Subscribe vs Tuple Space

Publish/subscribe further increases this decoupling by
adding flow decoupling, that is, replacing the syn-
chronous interaction (pulling) of the subscribers with
an asynchronous notification mechanism. In fact,
the original tuple space had three primitives, namely
(1) out to push a tuple into the space (similarly to
publish), (2) read to read a tuple without erasing
it, and (3) in to withdraw a tuple from the space.
Publish/subcribe adds an asynchronous callback mech-
anism, and by omitting an equivalence to in, sacrifices
concurrency control to scalability.

6.3.4 Linguistic Support

There have been a series of attempts to transform the
structured form of tuples to an object form, mainly by
extending the exact type equivalence for tuple elements
in Linda to the notion of subtyping. While early ap-
proaches to integrating the tuple space with an object
language like [MK88] (for Smalltalk) promoted tuples
as sets of objects, later approaches, like [Pol93] (C++)
or [Kie95] (Objective Linda) considered tuples, just like
events in our case, as single first class citizens, and
added some form of content-based matching based on
templates. Very recently, callback mechanisms have
also been added, e.g. JavaSpaces [FHA99], TSpaces
[LLW99] (both Java), supporting a publish/subscribe-
like interaction. In contrast to our approach however,
latter ones basically promote publish/subscribe inter-
action through some weakly typed reified bus, and ad-
vocate template-based matching.

7 Concluding Remark

Throughout the history of computing, many
paradigms have first been implemented as separate li-
braries, and have then made their way into program-
ming languages. The monitor abstraction for concur-

17

rent programming introduced by Hoare [Hoa74] for in-
stance, was first implemented through a library be-
fore becoming a specific language construct (e.g., Por-
tal [Bus88]). Nowadays, every Java object is poten-
tially a monitor.
This evolution does however not apply to all

paradigms, as can be shown again by Java, which cur-
rently only includes a limited form of pointers through
a library (Reference in java.lang.ref), while one of
main spiritual ancestors, C++, integrates pointers as
a first class concept.
This paper does not aim at advocating an integra-

tion vs a library approach to support publish/subscribe
programming. Yet, we hope that based on the practi-
cal experience we are currently gathering with both
our library approach [EGS00, EG01] and the present
integration approach, we will be able to answer the
question of which kind of approach is more adequate
to achieve “object-oriented publish/subscribe”.

8 Acknowledgments

Many ideas presented here have been refined
through discussions with Andrew Black (Oregon Grad-
uate Institute of Science and Technology), Joe Sven-
tek (Agilent Laboratories, Edinburgh), Martin Oder-
sky, Mathias Zenger, and Michel Schinz (Swiss Federal
Institute of Technology, Lausanne), and Nicolas Ricci
(Lombard & Odier, Geneva). We would like to thank
all the above-mentioned, as well as the anonymous re-
viewers, for their valuable comments and suggestions.

References

[Ada95] International Organization for Standardiza-
tion. Ada 95 Reference Manual - The Lan-
guage - The Standard Libraries, January 1995.
ANSI/ISO/IEC-8652:1995.

[AEM99] M. Altherr, M. Erzberger, and S. Maffeis. iBus
- a software bus middleware for the Java plat-
form. In International Workshop on Reliable
Middleware Systems of the 13th IEEE Sympo-
sium On Reliable Distributed Systems (SRDS
’99), pages 43–53, October 1999.

[AO86] G.R. Andrews and R.A. Olsson. The evolu-
tion of the SR language. Distributed Comput-
ing, 1(2), April 1986.

[ASS+99] M.K. Aguilera, R.E. Strom, D.C. Sturman,
M. Astley, and T.D. Chandra. Matching events
in a content-based subscription system. In Pro-
ceedings of the 18th ACM Symposium on Prin-
ciples of Distributed Computing (PODC ’99),
November 1999.

[BC97] J. Boyland and G. Castagna. Parasitic meth-
ods: Implementation of multi-methods for
Java. In Proceedings of the 12th ACM Con-
ference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA
’97), pages 66–76, October 1997.

[BHO+99] K.P. Birman, M. Hayden, O.Ozkasap, Z. Xiao,
M. Budiu, and Y. Minsky. Bimodal multi-
cast. ACM Transactions on Computer Systems,
17(2):41–88, May 1999.

[BJ87] K.P. Birman and T.A Joseph. Reliable commu-
nication in presence of failures. ACM Transac-
tions on Computer Systems, 5(1):47–76, Febru-
ary 1987.

[BMB+00] J. Bacon, K. Moody, J. Bates, R. Hayton,
C. Ma, A. McNeil, O. Seidel, and M. Spiteri.
Generic support for distributed applications.
Computer, 33(3):68–76, March 2000.

[BN84] A.D. Birrel and B.J. Nelson. Implementing re-
mote procedure calls. ACM Transactions on
Computer Systems, 2(1):39–59, February 1984.

[Bus88] A. Businger. PORTAL Language Description.
Number 198 in LNCS. Springer-Verlag, 1988.

[Car95] Luca Cardelli. A Language with Distributed
Scope. In Proceedings of the 14th ACM Sym-
posium on Principles of Distributed Computing
(PODC ’95), pages 286–297, 1995.

[Car98] A. Carzaniga. Architectures for an Event No-
tification Service Scalable to Wide-area Net-
works. PhD thesis, Politecnico di Milano, De-
cember 1998.

[CDJ+89] L. Cardelli, J. Donahue, M. Jordan, B. Kalsow,
and G. Nelson. The Modula-3 type system. In
Conference Record of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Program-
ming Languages (POPL ’89), pages 202–212,
Austin, Texas, January 1989.

[Cha95] C. Chambers. The Cecil language specifica-
tion and rationale: Version 2.0. Technical Re-
port UW-CS Technical Report 93-03-05, De-
partment of Computer Science and Engineer-
ing, University of Washington, December 1995.

[CHC90] W.R. Cook, W.L. Hill, and P.S. Canning. In-
heritance is not subtyping. In Conference
Record of the 17th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Lan-
guages (POPL ’90), pages 125–135, 1990.

[CNF98] G. Cugola, E. Di Nitto, and A. Fuggetta. Ex-
ploiting an event-based infrastructure to de-
velop complex distributed systems. In Proceed-
ings of the 10th International Conference on
Software Engineering (ICSE ’98), pages 261–
270, april 1998.

18

[CNH99] M. Philippsen Ch. Nester and B. Haumacher.
A more efficient rmi for java. In Proceedings
of the ACM 1999 conference on Java Grande,
pages 152–159, Palo Alto, CA USA, June 1999.

[Cor99] Talarian Corporation. Everything You need
to know about Middleware: Mission-Critical
Interprocess Communication (White Paper).
http://www.talarian.com/, 1999.

[DC90] S. Deering and D. Cheriton. Multicasting rout-
ing in datagram internetworks and extended
LANs. ACM Trans. on Computer Systems,
8(2):85–110, May 1990.

[EBG01] P.Th. Eugster, R. Boichat, and R. Guer-
raoui. Effective multicast programming in
large scale distributed systems. Technical Re-
port DSC/2001/003, to appear in Concurrency:
Practice & Experience, Wiley & sons., Swiss
Federal Institute of Technology, Lausanne,
http://dscwww.epfl.ch/EN/publications/, Jan-
uary 2001.

[EG01] P.Th. Eugster and R. Guerraoui. Content-
based publish/subscribe with structural reflec-
tion. In Proceedings of the 6th Usenix Con-
ference on Object-Oriented Technologies and
Systems (COOTS’01), pages 131–146, January
2001.

[EGH+01] P.Th. Eugster, R. Guerraoui, S. Handurukande,
A.-M. Kermarrec, and P. Kouznetsov.
Lightweight probabilistic broadcast. Tech-
nical Report DSC/2001/002, Swiss Fed-
eral Institute of Technology, Lausanne,
http://dscwww.epfl.ch/EN/publications/,
January 2001.

[EGS00] P.Th. Eugster, R. Guerraoui, and J. Sventek.
Distributed Asynchronous Collections: Ab-
stractions for publish/subscribe interaction. In
Proceedings of the 14th European Conference on
Object-Oriented Programming (ECOOP 2000),
pages 252–276, June 2000.

[ES92] M.A. Ellis and B. Stroustrup. The Annotated
C++ Reference Manual. Addison-Wesley, 1992.

[EWM96] D.R. Engler, D.A. Wallach, and M.F.Kaashoek.
Design and implementation of a modular, flex-
ible, and fast system for dynamic protocol
composition. Technical Report TM-552, Mas-
sachusetts Institute of Technology, Laboratory
for Computer Science, May 1996.

[Fet98] C. Fetzer. Fail-aware publish/subscribe in Er-
lang. In Proceedings of the Fourth International
Erlang User Conference, September 1998.

[FHA99] E. Freeman, S. Hupfer, and K. Arnold.
JavaSpaces Principles, Patterns, and Practice.
Addison-Wesley, June 1999.

[FJM+96] S. Floyd, V. Jacobson, S. McCanne, C. G. Liu,
and L. Zhang. A reliable multicast framework

for light-weight sessions and application level
framing. IEEE/ACM Transactions on Net-
working, November 1996.

[Gel85] D. Gelernter. Generative communication in
Linda. ACM Transactions on Programming
Languages and Systems (TOPLAS), 7(1):80–
112, January 1985.

[GJS00] J. Gosling, B. Joy, and G. Steele. The Java Lan-
guage Specification, Second Edition. Addison-
Wesley, 2000.

[HBS98] M. Happner, R. Burridge, and R. Sharma. Java
Message Service. Technical report, Sun Mi-
crosystems Inc., October 1998.

[HMN+00] M. Haahr, R. Meier, P. Nixon, V. Cahill, and
E. Jul. Filtering and scalability in the ECO
distributed event model. In Proceedings of the
5th International Symposium on Software En-
gineering for Parallel and Distributed Systems
(PDSE 2000), pages 83–92, June 2000.

[Hoa74] C.A.R. Hoare. Monitors: An operating sys-
tem structuring concept. Communications of
the ACM, 17(10):549–557, October 1974.

[HSC95] H.W. Holbrook, S.K. Singhal, and D.R. Cheri-
ton. Log-based receiver-reliable multicast for
distributed interactive simulation. In Proceed-
ings of the 1995 ACM Conference on Applica-
tions, Technologies, Architectures, and Proto-
cols for Computer Communication (SIGCOMM
’95), pages 328–341, August 1995.

[Ing86] D.H.H. Ingalls. A simple technique for han-
dling multiple polymorphism. In Proceedings
of the ACM Conference on Object-Oriented
Programming Systems, Languages and Applica-
tions (OOPSLA ’86), pages 347–349, 1986.

[Jr.90] G.L. Steele Jr. CommonLisp the Language.
Digital Press, second edition, 1990.

[Kie95] Th. Kielmann. Object-oriented distributed
programming with objective linda. In Pro-
ceedings of the First International Workshop
on High Speed Networks and Open Distributed
Platforms, June 1995.

[Koe99] P. Koenig. Messages vs. objects for application
integration. Distributed Computing, 2(3):44–45,
April 1999.

[Lam78] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Communica-
tions of the ACM, 21(7):558–565, July 1978.

[Lis88] B. Liskov. Distributed programming in Argus.
Communications of the ACM, 31(3):300–312,
March 1988.

[Lis93] B. Liskov. A history of CLU. ACM SIGPLAN
Notices, 28(3):133–147, March 1993.

19

[LLW99] T.J. Lehman, S.W. Mac Laughry, and P. Wyck-
off. Tspaces: The next wave. In Proc. of Hawaii
International Conference on System Sciences
(HICSS-32), January 1999.

[LS88] B. Liskov and L. Shrira. Promises: Linguis-
tic support for efficient asynchronous procedure
calls in distributed systems. In Proceedings of
the SIGPLAN’88 Conference on Programming
Language Design and Implementation, pages
260–267, June 1988.

[Mey92] B. Meyer. Eiffel: The Language. Object-
Oriented Series. Prentice-Hall, 1992.

[MHJ+95] A.G. Mathur, R.W. Hall, F. Jahanian,
A. Prakash, and C. Rasmussen. The pub-
lish/subscribe paradigm for scalable group col-
laboration systems. Technical Report CSE-TR-
270-95, University of Michigan, EECS Depart-
ment, 1995.

[MK88] S. Matsuoka and S. Kawai. Using tuple space
communication in distributed object-oriented
languages. In Proceedings of the 3rd ACM Con-
ference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA
’88), pages 276–284, 1988.

[Moo86] D. A. Moon. Object-oriented programming
with Flavors. In Proceedings of the ACM Con-
ference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA
’86), pages 1–8, November 1986.

[NN88] F. Nielson and H.R. Nielson. Two-level seman-
tics and code generation. Theoretical Computer
Science, 56(1):59–133, January 1988.

[OMG00] OMG. Notification Service Standalone Docu-
ment. OMG, June 2000.

[OMG01a] OMG. The Common Object Request Broker:
Architecture and Specification. OMG, February
2001.

[OMG01b] OMG. CORBAservices: Common Object Ser-
vices Specification, Chapter 4: Event Service.
OMG, March 2001.

[OPSS93] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The
information bus - an architecture for extensible
distributed systems. In 14th ACM Symposium
on Operating System Principles, pages 58–68,
December 1993.

[OW97] M. Odersky and Ph. Wadler. Pizza into Java:
Translating theory into practice. In Con-
ference Record of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Program-
ming Languages (POPL ’97), pages 146–159,
Paris, France, 15–17 January 1997.

[Pol93] A. Polze. Using the object space: A dis-
tributed parallel make. In Proceedings of

4th IEEE Workshop on Future Trends of Dis-
tributed Computing Systems, pages 234–239(6),
September 1993.

[Pou84] D. Pountain. The Transputer and its special
language, Occam. Byte Magazine, 9(8):361–
366, August 1984.

[PSLB97] S. Paul, K.K. Sabnani, J.C. Lin, and S. Bhat-
tacharyya. Reliable multicast transport proto-
col (RMTP). IEEE Journal on Selected Areas
in Communications, 15(3):407–421, April 1997.

[Riv96] F. Rivard. Smalltalk : a Reflective Language.
In Proceedings of the International Conference
on Metalevel Architectures and Reflection (Re-
flection’96), pages 21–38, April 1996.

[SA97] B. Segall and D. Arnold. Elvin has left
the building: A publish/subscribe notifica-
tion service with quenching. In Proceed-
ings of the Australian UNIX and Open Sys-
tems User Group Conference (AUUG ’97),
http://www.dtsc.edu.au/, September 1997.

[Ske98] D. Skeen. Vitria’s Publish-Subscribe Ar-
chitecture: Publish-Subscribe Overview.
http://www.vitria.com, 1998.

[SS00] Q. Sun and D.C. Sturman. A gossip-based re-
liable multicast for large-scale high-throughput
applications. In Proceedings of the IEEE In-
ternational Conference on Dependable Systems
and Networks (DSN2000), New York, USA,
July 2000.

[Sun99a] Sun. Java Core Reflection API and Specifica-
tion, 1999.

[Sun99b] Sun. Java Remote Method Invocation - Dis-
tributed Computing for Java (White Paper),
1999.

[TIB99] TIBCO. TIB/Rendezvous White Paper.
http://www.rv.tibco.com/, 1999.

[TS97] W. Taha and T. Sheard. Multi-stage program-
ming. In Proceedings of the ACM SIGPLAN In-
ternational Conference on Functional Program-
ming (ICFP ’97), pages 321–321, June 1997.

[YBS86] A. Yonezawa, J. P. Briot, and E. Shibayama.
Object-oriented concurrent programming in
ABCL/1. Proceedings of the ACM Confer-
ence on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA ’86),
pages 258–268, September 1986.

20

