
Democratizing the Parliament�

(Extended Abstract)

Svend Fr�lund1 Rachid Guerraoui2

1 Hewlett-Packard Laboratories, Palo Alto, CA 94304
2 Swiss Federal Institute of Technology, Lausanne, CH 1015

Abstract

This paper presents a replication algorithm that

implements a highly-available, non-deterministic

state machine. Our algorithm generalizes the

Paxos parliament algorithm of Lamport to cope
with non-deterministic computations, while pre-

serving its nice resilience and e�ciency proper-

ties. The algorithm is surprisingly simple, thanks

to the use of two powerful underlying abstrac-

tions: weak consensus and weak leader election,

together with a generic data structure: consen-

sus bag. As a side-e�ect of our work, we discuss

some similarities and di�erences between replicat-

ing deterministic and non-deterministic state ma-

chines. Indirectly, we revisit the traditional clas-

si�cation between state-machine replication and
primary-backup.

1 Introduction

Motivation. Replication is a well-known soft-
ware technique to cope with failures in a distrib-

�Paxons, the citizens of the Paxos island, had a very
sophisticated parliament protocol that enabled their legis-
lators to pass decrees despite their frequent forays from the
chamber and the forgetfulness of their messengers. Recent
archaelogical studies revealed that Paxons could adapt
their parliament protocol to a complete democratization
of their society. Paxons were able to submit their wishes
to the legislators, who had to translate those wishes into
decrees and then pass them through the parliament. The
legislators maintained copies of the parliamentary records,
despite the non-determinism of the translation procedure,
i.e., even if every legislator had her own way of translating
citizen wishes into decrees.

uted system. Although intuitive, the idea of repli-
cation is not trivial to implement. The di�culty
is to give the replicated program's environment
the illusion that the program executes on a sin-
gle, fault-tolerant machine, i.e. the replicas must
coordinate their activities to behave consistently
as a single highly-available copy. Lamport pre-
sented in [Lam89] an algorithm (the Paxos part-
time parliament) that ensures replica consistency
even if the network is completely asynchronous
and an arbitrary number of the processes may
crash. Whenever the system stabilizes (commu-
nication delays and relative process speeds be-
come bounded) and a majority of the processes
remain up for su�ciently long, the protocol en-
sures fast progress. Thanks to its nice resilience
and e�ciency properties, the Paxos algorithm was
claimed to be very useful in practice [Lam96].
However, Paxos assumes that the replicated pro-
gram is a deterministic state-machine. In prac-
tice, most critical programs that we want to be
highly-available are non-deterministic. These in-
clude multi-threaded web servers and middle-tier
applications that access third-party servers.
The following question naturally comes to

mind: can we devise a Paxos-like algorithm that
consistently replicates non-deterministic state
machines? In fact, Paxos already deals with
the non-determinism of the underlying net-
work. Through a leader-follower pattern, repli-
cas agree on the same total order for executing
requests [Lam89]. The fact that replicated pro-
grams are deterministic state machines ensures
that, after executing any given request, the repli-
cas end up with the same result (�nal state and

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

reply). Obviously, ordering requests would not
be enough with non-deterministic state machines.
One might think of adding an agreement phase
to Paxos, in order to have the replicas agree (a
posteriori) on the same result. This agreement
phase would however introduce a signi�cant over-
head. Alternatively, one might rely on a strict
notion of leader to resolve the agreement, as-
suming an underlying synchronous system model
(e.g., [BMST93]). As we will point out below, the
resulting algorithm would however not be very re-
silient.
A more challenging question consequently

follows: can we devise an algorithm that copes
with non-deterministic actions, while preserving
the nice resilience and e�ciency properties of
Paxos?

Contribution. This paper shows that the an-
swer to this question is yes. We present a sur-
prisingly simple algorithm that generalizes Paxos
to non-deterministic state machines, while pre-
serving its nice resilience and e�ciency
avors.
Roughly speaking, our algorithm addresses, at

the same time and using the same leader-follower
pattern, the non-determinism due to concurrent
requests and the non-determinism of the state
machine. We use an optimistic scheme to agree
on the total order of requests: a replica makes an
informed guess about where a request �ts in the
total order, and uses an agreement phase after

computing a result to both certify the estimated
order and enforce the result. If this agreement
fails, we simply retry the computation.
The simplicity of our algorithm lies in the use

of two powerful underlying abstractions: weak

leader election and weak consensus. Interestingly,
each abstraction factors out a speci�c typical as-
sumption in replication algorithms. Weak con-
sensus factors out the assumption of a majority of
correct processes (or more generally the assump-
tion of a correct quorum) and weak leader election
factors out the assumption of a minimal level of
synchrony needed to solve any form of agreement
(or more abstractly the assumption of a minimal
knowledge about failures [CHT96]). We manipu-
late instances of the weak-consensus abstraction

through a generic data structure: a consensus

bag . This data structure allows us to simulta-
neously agree on the request ordering and on the
results.
We prove that our algorithm implements an x-

able service [FG00] and ensures one-copy seman-
tics even in the presence of multiple clients. That
is, the algorithm implements a service that, be-
sides its high-availability, behaves with respect to
its environment as if it were executing on a single
process.
By focusing on what to replicate, instead of

how to do it, we revisit the traditional clas-
si�cation between primary-backup (also called
passive replication) [BMST93] and deterministic

state-machine replication (also called active

replication) [Sch93]. The di�culty in replication
indeed has to do with non-determinism, and this
is typically dealt with through a leader-follower
pattern. Primary-backup makes this pattern
explicit. State-machine replication usually
hides this pattern in an underlying total-order
broadcast abstraction [Sch93]. By using �ner

grained abstractions (weak leader election and
weak consensus), we point out the very fact that
underlying every replication scheme, there is a

leader-follower pattern waiting to come out.

Related Work. To our knowledge, the only
precise and formally proven algorithm that repli-
cates a non-deterministic state machine was given
in [BMST93]. The correctness speci�cation re-
lies on a synchronous model and explicitly con-
tains the assumption that there can only be at
most one single leader at any point in time. If
synchrony assumptions are violated (e.g., during
instability periods of the system where multiple
leaders are elected), the algorithm might violate
replica consistency. The very same issue holds
with the semi-active replication algorithm given
in [Pow91].
In [SM94], a \simulation" of the single-leader

notion is suggested, with the main motivation
of building a replication protocol that deals
with non-deterministic computation in a non-
synchronous model. The proposed solution relies
on a group membership abstraction with, as

2

pointed out by the authors, the risk of ending up
with an empty group during instability periods of
the system. This undesirable behavior, detailed
in [ACBMT95, VKCD99], may also occur in the
coordinator-cohort scheme of [Bir86]. In [DSS98],
the group membership abstraction is replaced
with a consensus abstraction, precisely to circum-
vent that behavior. Roughly speaking, consensus
is used to prevent any disagreement on the result
of a request, in case multiple leaders are elected.
Nevertheless, building a leader-follower scheme
on top of consensus hampers its performance
for two main reasons: (1) the duplication of
the leader election mechanism and (2) the
obligation for all correct processes to propose
an initial consensus value. The �rst situation
happens whenever the replication leader does
not coincide with the leader (coordinator) of the
underlying consensus protocol: this typically
adds communication steps and messages. The
second situation is related to the speci�cation of
consensus [FLP85]: all processes are supposed to
propose a value, which means that even if the
leader of the replication scheme is correct (and
not suspected to have crashed), all followers must
also compute the request in order to propose
the result to the consensus abstraction. These
issues are circumvented in [DS00] through a
new speci�cation of the consensus abstraction
that exposes the underlying failure detection
mechanism and relies on higher-order functions.

Rather than specify correctness in terms of
what goes on inside a replicated service (for
example, that the service has a single leader
as in [BMST93]), we use x-ability [FG00] as a
correctness condition for our replication algo-
rithm. X-ability speci�es correctness in terms of
how the service interacts with its environment
(e.g., clients and third-party entities). This
external view of replication correctness allows
us to reason about correctness of a replication
algorithm that deals with non-deterministic
computation, without inherently requiring a
strict notion of single leader. Our leader election
notion is strictly weaker than the traditional
one [SM95] in the sense that it does not pre-

clude the existence of concurrent leaders for an
arbitrary period of time. This is precisely what
enables us to preserve the resilience
avor of
Paxos: replica consistency is always ensured,
even during instability periods of the system
(e.g., even if multiple leaders are elected), and
progress is fastly achieved whenever the system
stabilizes. Our consensus notion is also strictly
weaker than the traditional one [FLP85] in the
sense that it only ensures agreement in the
absence of concurrency. In a sense, we extract
leader election from consensus to make it a �rst
class citizen, along the lines of Paxos [PLL97]:
this is precisely what enables us to preserve its
e�ciency
avor.

Roadmap. Section 2 de�nes our system model,
Section 3 introduces our abstractions, Section 4
presents our replication algorithm and Section 5
concludes the paper with some �nal remarks. For
space limitations, we do not recall the details of
the x-ability theory [FG00], and we only sketch
the correctness proofs of our algorithms (more de-
tails are given in the optional appendix).

2 Model

We represent a distributed system as a �nite
set of processes �. Processes fail by crashing|
we do not deal with Byzantine failures, nor do
we assume that processes recover after a crash.
(We come back to this in Section 5.) A process is
correct if it does not fail.
Processes communicate by message passing. A

message can be sent by the primitive send and
received by the primitive receive. Message pass-
ing is one-way, asynchronous, and reliable in the
following sense: (termination) if a correct process
sends a message to a correct process, the message
is eventually received, (no duplication) each mes-
sage is received at most once, and (integrity) the
network does not create nor corrupt messages.

3

3 Abstractions

We describe below two abstractions that un-
derly our replication algorithm. The �rst abstrac-
tion is weak leader election and the second is weak
consensus. We also introduce a (local) data struc-
ture, called a consensus bag , which processes use
to manage multiple instances of the weak consen-
sus abstraction.

3.1 Weak Leader Election

We describe here the abstraction of a shared
object that provides the guarantee of eventually
electing a unique and correct leader. The leader-
election abstraction has one operation leader().
This operation does not take any input parame-
ter. It returns an output parameter, which is a
process identity. When pi invokes leader() and
gets pj as an output at some time t, we say that
pi elects pj at t. We also say that pj is leader

(for pi) at time t. We de�ne the semantics of our
leader election abstraction through the following
properties.

� Agreement: There is a time after which
no two correct processes elect two di�erent
leaders.

� Validity: There is a time after which every
leader is correct.

� Termination: After a process invokes
leader(), either the process crashes or it
eventually returns from the invocation.

It is easy to see that our speci�cation does
not preclude the existence of concurrent lead-
ers for arbitrary periods of time: hence the no-
tion of eventual leader election. Our abstraction
corresponds to the failure detector
 introduced
in [CHT96]. This failure detector outputs, at very
process, a \trusted" process (i.e., a process that
is trusted to be up) and ensures that, eventually,
all correct processes trust the very same correct
process.1

1Since our abstractions are inspired by Paxos, we follow
the terminology of [Lam86], i.e, we use the term leader
election instead of failure detector.

3.2 Weak Consensus

Basically, whereas consensus [FLP85] always
ensures agreement, weak consensus ensures agree-
ment only in the absence of \concurrent propos-
als." Roughly speaking, weak consensus looks
like consensus when there is no concurrency (just
like a regular register looks like an atomic register
where there is no concurrency [Lam86]).
Our weak consensus object has one operation:

propose(). The operation takes as an input para-
meter a value v (we say that the process proposes
v) and returns as an output parameter a value v0

(we say that the process decides v0). We de�ne
the semantics of our weak consensus abstraction
through the following properties.

� Agreement: If a process pi proposes a
value vi and decides vi, and a process pj
proposes a value vj and decides vj , then
vi = vj.

� Validity: If a process decides a value v,
then some process has proposed v.

� Termination: After a process invokes pro-
pose(), either the process crashes or it even-
tually returns from the invocation.

We say that a process commits a value v when
the process proposes and decides v. Agreement
means here that no two processes can commit dif-
ferent values. Just like in traditional consensus,
validity means that a value that is decided must
have been proposed.
In Figure 1, we give a simple implementa-

tion of weak consensus with a majority of correct
processes.2 We actually implement here a generic
weak consensus: the type of the values proposed
(and decided) is denoted by ConsT and we as-
sume that nil 62 ConsT . The idea of the algo-
rithm is the following (we prove its correctness in

2Obviously, consensus is strictly harder than weak con-
sensus in the sense that the assumption of a majority of
correct processes is not su�cient to implement consensus
in an asynchronous system [FLP85]. Intuitively, consen-
sus = weak consensus + weak leader election. Just like
in [Lam86], we extract the leader election of consensus to
make it a �rst class abstraction in the replication algo-
rithm.

4

class WeakCons<ConsT> f
estimate := nil;

// Process p i proposes a value:

ConsT propose(v) f
send [Propose,v] to all;

wait until received |(n+1)/2| [Reply,r-val];

if any r-val != v then

return r-val;

else return v;

g

// Process p i receives a proposition

when receive [Propose,r-val] from p j:

if estimate == nil then estimate := r-val;

send [Reply,estimate] to p j;

g
g

Figure 1: Implementing weak consensus

optional Appendix D). Every process pi main-
tains a copy of the weak consensus object value,
i.e., a local variable estimate. The initial value of
that variable at every process is set to nil. When
a process pi proposes a value v, pi sends to all
processes the message [Propose,v]. Process pi
waits to receive a majority of replies. If pi re-
ceives a value v0 that is not equal to v, then pi
decides v0, i.e., returns v0. (Process pi is free to
choose arbitrarily from any value v0 di�erent than
v, if it indeed receives such a value.) Otherwise,
pi decides v (i.e., pi commits v).
When a process pi receives a message

[Propose,v] from some process pj, pi updates
estimate with v if estimate was equal to nil
(we say that pi adopts pj's proposition). Other-
wise, pi simply ignores v. In both cases, pi sends
back estimate to pj .

3.3 Consensus Bags

Our replication algorithm uses series of weak
consensus instances. In stable periods of the sys-
tem, only one weak consensus is typically needed
to ensure agreement on both the order and the
result for a given request.3 Otherwise (if the sys-

3And this can be performed in a very e�ective manner
as discussed in Section 5.

type RequestNumber: IndexType f
Int num; Request req;

Boolean operator==(RequestNumber r1,r2) f
return (r1.num == r2.num) or

(r1.req == r2.req);

g
... // Constructors, etc.

g

Figure 2: The index type for our algorithm

tem is not stable), the replicas might need several
weak consensus instances to commit a speci�c re-
sult for a given request. To gather weak consensus
instances, we introduce a speci�c data structure:
consensus bag .
A consensus bag has an operation lookup that

takes the \name" of a consensus instance, and re-
turns that instance. Processes can then access the
same consensus instance and use it to agree on a
result. A name is a pair, which contains an index
type and an integer. The index type identi�es a
given request. The integer component of a name
allows us to create a series of consensus instances
that are all related to the same request. Having
a series instead of a single consensus instance per
request is necessary to handle concurrent propos-
als from di�erent processes and still end up with
a unique result.
In our algorithm, we use the RequestNumber

index type shown in Figure 2. The
RequestNumber index type not only identi-
�es a request, it also identi�es a number for
this request. The index type re
ects the need
to establish a global total order of requests,
and the number re
ects the sequence number in
this total order. We de�ne equality for request
numbers in such a way that a consensus bag
returns the same series of consensus instances for
two request-number pairs if either the requests
are the same or the numbers are the same. With
this notion of equality, we ensure that we get
a unique result for a given \slot" in the total
order of requests and for a given request|since
we want such two-dimensional uniqueness, we
need two-dimensional equality inside of the index

5

class ConsBag<IndT,ConsT> f

ConsInst lookup(IndT i,Int j) f
// If the pair (i,j) has not been accessed,

// create a weak consensus instance for

// that name;

// Return the instance for (i,j);

g

ConsT clean(IndT ind,Int inx,Int l-inx) f
ConsT l-c, c := ?;

for Int i := inx to l-inx do f
c := lookup(ind,i).propose(c);

if c 6= ? then l-c := c;

g
return(l-c);

g
g

Figure 3: Consensus Bag

type.
We illustrate the basic functionality of consen-

sus bags in Figure 3. A consensus bag is a generic
class with two parameters: IndT and ConsT. IndT
is the index type whereas ConsT is the value type
for the weak consensus instances stored in the bag
(we assume that the type ConsT contains the spe-
cial element ?). The lookup method returns a
consensus instance (an object of type ConsInst).
The method creates these instances in a lazy man-
ner, i.e., when they are �rst accessed. The clean
method captures a pattern that we use in our
algorithm: processes try to prevent concurrent
processes from committing a value by proposing
a speci�c value ? in a number of consensus in-
stances. The clean method takes a value ind of
the index type. This value gives rise to a series
of consensus instances. The clean method iter-
ates over an interval in this series|the interval is
de�ned by the parameters inx and l-inx. The
method proposes ? in every consensus instance
in that interval, and returns either ?, or the \lat-
est" value di�erent from ?. In a sense, a process
that invokes that function tries to clean a portion
of the consensus bag.

4 Replication Algorithm

We distinguish here between two categories of
processes: clients and replicas. We assume a bag
of weak consensus instances used by the replicas.
We assume that both clients and replicas have
access to the weak leader election object. The
function leader() of this object outputs the iden-
tity of a replica (with the properties given in Sec-
tion 3.1).
We �rst informally de�ne below the kind of ac-

tions executed by our state machines. Then we
give an overview of our algorithm and we describe
its pseudo-code. Finally we discuss its correct-
ness.4

4.1 State Machines

Each replica has a copy of the same state ma-
chine. A state machine exports a number of ac-
tions. An action takes an input value and pro-
duces an output value. In addition, an action
may modify the internal state of its state ma-
chine, and it may communicate with external en-
tities. We assume that actions are idempotent:
although we invoke an action n times, its e�ect
(e.g. state update) appears to happen only once
(e.g. because the action only updates local state
and performs duplicate elimination based on re-
quest identi�ers). Moreover, actions may be non-
deterministic: the e�ect and output value of an
action may not be the same each time we execute
it, even if we execute it in the same initial state
and with the same input value. An action that
updates local state only, and performs this update
under (local) duplicate elimination, is idempo-
tent and may be non-deterministic. The action is
idempotent because no individual state-machine
copy is updated more than once; the action can
be non-deterministic because the duplicate elim-
ination scheme does not prevent multiple state-
machine copies from being updated once each.

4Due to space limitations, we relegate many details to
the optional appendix. In particular, the appendix (1) uses
the theory of [FG00] to formally de�ne the type of actions
we consider, (2) formally recalls what it takes for a service
to be x-able [FG00], and (3) we proves the correctness of
our algorithm.

6

A state machine has a function, called execute

that takes a request and executes the correspond-
ing action. The execute function returns the re-
ply of the action execution. The execution of an
action may fail (for example if the action ma-
nipulates a remote database and the database
crashes). If the action fails, the execute function
returns an error. Otherwise, we say that the ac-
tion executes successfully. We assume that there
is a time after which execute never returns an er-
ror. A state machine also has an attribute, called
state, that allows us to read and update the state
of the state machine.

4.2 Overview

To provide clients with the illusion of a single
state machine copy that does not fail, our repli-
cation algorithm addresses the following issues:

� Total order . State updates are coordinated
so that subsequent requests are processed in
the context of previous requests. That is,
if a client submits a request req1 after a re-
quest req2, then the state update performed
by req1 should be visible to req2 even if the
two requests are processed by di�erent repli-
cas. The requirement of single-copy seman-
tics implies that the replication algorithm
has to establish a global total order for the
requests.

� Deterministic replies. To handle failures,
the same request may be executed multiple
times by di�erent replicas. However, to give
clients the illusion that no failures occur,
the replicas agree on the state produced by
any request in the total order.

The idea of the algorithm is the following.
Every request has a \row" of consensus instances
in a consensus bag. The replicas have to agree on
which request has which row (the total order of
requests) and the replicas have to agree on the re-
sult for a given request. To facilitate these agree-
ments, each replica owns a \column" of consensus
instances in a consensus bag. With n replicas, a
replica process pi owns column number i, i + n,

i+2n, and so on. Here, ownership means the fol-
lowing: if process pi is leader, and has a request r
to process, pi will try to �nd r's row and commit
a result in that row. However, pi will only pro-
pose a result value for the instances it owns, e.g.,
at column i. To prevent the situation where dif-
ferent replicas are leaders and commit di�erent
results, pi tries �rst to \clean" every consensus
instance in a candidate row with column index
smaller than i. Replica pi cleans a consensus in-
stance by proposing a distinct value ?.
Assume that a replica pi believes row num to

be the row for a request r, and assume that pi is
trying to clean a consensus instance in row num-
ber num . There are two reasons why replica pi
may not be able to clean the consensus instance:
(1) row num is already used for another request
or (2) row num is in fact the row for r, but some
other replica has already proposed a result for
r in row num. In case (1), replica pi tries an-
other row (e.g. num +1). Before continuing with
the next row however, replica pi installs the state
from row num into its state-machine copy. In
case (2), replica pi considers the proposed result
as its own. If pi proposes a result in consensus i
but does not commit it (e.g. because some other
replica has already committed ? in consensus i),
pi tries again with a consensus instance at row
i+n, and so forth. If pi commits a result at some
row num, then num is the row for the request,
and the computed result is the result for the re-
quest.
The stylized use of consensus bags prevents

any disagreement, even in the presence of concur-
rency (which weak consensus by itself does not
ensure). The leader election protocol abstrac-
tion that eventually, only one replica keeps trying,
and if no result has been committed, this replica
will reach an \empty" weak consensus instance it
owns and will commit a result.

4.3 Pseudo-Code

Our replication algorithm has a client part and
a replica part, which are shown in Figure 4.
A client process has a submit function that it

calls to send a request to the replicated service.
The submit function takes a request (the name of

7

an action and an input value) and returns a reply
(an output value). From the client's point of view,
the submit function is a \wrapper" of the server-
side state machine that encapsulates the fact that
the state machine is replicated. The submit func-
tion embeds the given request in a message, and
sends this message to the leader replica. The
function then waits for a reply message. If the
leader changes and no reply was returned from
the former leader, the request message is simply
sent to the new leader.
The server-side behavior is triggered by the re-

ception of a request message. If a replica is not a
leader (as determined by the leader() function),
it simply ignores the request message. If a replica
is a leader, it enters a while loop to process the
request. The variable num contains the �rst row
that replica pi believes to be empty.
The consensus bag at each replica is parameter-

ized by two types: RequestNumber and Outcome.
We already introduced the RequestNumber type
in Section 3.3. The Outcome type is a product
type: values of type Outcome are tuples that con-
tain a request, a reply, and a state. Each replica
will have a consensus bag as illustrated in Fig-
ure 5. The consensus bag in the �gure could be
the bag of replica number 3 in a system of 3 repli-
cas. A consensus bag maps values of the index
type to a series of consensus instances. Each row
in the �gure shows the mapping for a particular
value of the index type; in our case these values
are request-number pairs. In the �gure, req1 is a
request and v1 is a value (or result) that is com-
mitted to a consensus instance.

4.4 Correctness

Our replication algorithm implements an x-
able service [FG00]: i.e., a service that provides
the illusion to its environment that it is execut-
ing every action (request) exactly-once. Here, we
give some intuition about about the properties
that characterize an x-able service.
In short, X-ability covers (1) state consistency,

(2) action execution and (3) reply validity. (1)
State consistency is concerned with the internal
state of state machines (as opposed to the exter-
nal state of third-party entities, such as databases

behavior Client f
Replica p i;

Reply submit(Request req) f
Reply rep;

while true f
p i := leader();

send [Request,req] to p i;

await (receive [Reply,rep]) or

p i != leader();

if(received [Reply,rep]) then

return rep;

g
g

g

behavior Replica f// Algorithm for p i

type [Request,State,Reply] Outcome;

ConsBag<RequestNumber,Outcome> bag;

Int l-inx, inx, num := 1;

Request req;

State-machine S;

Outcome out;

ConsInst obj;

when receive [Request,req] from client:

inx := 0; l-inx := i;

while(leader() == p i) f
out := bag.clean([num,req],inx,l-inx);

if out != ? then

if req == out.req then

send [Reply,out.rep] to client

return;

else

S.state := out.state;

num++;

continue;

else

while true f
try rep := S.execute(req);

catch(error) continue;

g
obj := bag.lookup([num,req],l-inx);

out := obj.propose(req,S.state,rep);

if out != ? then

send [Reply,out.rep] to client;

num++;

return;

else

l-inx := l-inx + n;

inx := l-inx + 1;

g
g

Figure 4: Our replication algorithm

8

v1

v2

v3

name series

column 3

row 2

[1,req1]

[2,req2]

[3,req3]

[4,req4] v4

Figure 5: A possible consensus bag for replica 3
in an ensemble of 3 replicas

or other services). With x-ability, we character-
ize state consistency in terms of what clients ob-
serve, which are the replies returned to clients.
We capture state consistency by insisting that
replies should appear as if they were produced by
a single state machine copy. Proving state con-
sistency for our algorithm is not straightforward.
We essentially have to prove that our scheme for
checkpointing a state, storing it in the consensus
bag as part of a result, and installing it in other
state-machine copies preserves the illusion of a
single-copy state machine. (2) The actions exe-
cuted for each request should have a combined
e�ect that is exactly once. More precisely, when
multiple executions of the same action take place,
these should appear as if only a single execution
took place. For the kind of actions we consider
(e.g., updating a state), this requirement is rela-
tively straightforward to satisfy. Finally, (3) reply
validity in general prevents the algorithm from
\inventing" replies, and requires the algorithm to
eventually terminate. For our algorithm, the ter-
mination property is primarily due to the termi-
nation property of the leader election abstraction.

5 Discussion

We discuss here the resilience and performance
of our algorithm, with respect to Paxos [Lam89].
We also point out some fundamental similarities
and di�erences between replicating deterministic
and non-deterministic state machines.

5.1 Resilience Assumptions

The correctness of our algorithm relies on the
assumption of a crash-stop system model where
channels are reliable, a majority of the processes
are correct (do not crash), and there is a time
after which there is exactly one leader process
(that is furthermore correct). This model makes
it easy to describe our abstraction implementa-
tions. In a companion paper [BDFG01], we give
optimized implementations of our abstractions in
various practical crash-recovery models.5 Thanks
to the modularity of our approach, one can easily
use those implementations to adapt our replica-
tion algorithm to various crash-recovery system
models.
Basically, the processes would need to (1) re-

transmit messages in order to cope with a tempo-
rary crash of the channels and (2) log (in stable
storage) the values of the weak consensus abstrac-
tion in order to cope with their own crash and re-
covery. Just like in Paxos, (a) safety would always
be preserved, 6 and (b) liveness would be achieved
as soon as a majority of the processes remain up,
can reliably communicate, and elect a unique cor-
rect leader for \su�ciently long" [Lam89].

5.2 Performance Issues

In practice, most runs of a distributed system
are nice: processes and channels do not crash and
are completely synchronous. In these runs, the
leader process, initially elected by default, does
not change. Typically, the default leader is p0
and p0 can directly compute a request and pro-
pose it to weak consensus 0, i.e., p0 does not need
�rst to go through a \cleaning" phase precisely
because there is no consensus to clean. In this
scenario, after p0 receives a request from a client,
p0 needs only one round trip communication step
with other replicas before returning the reply to
the client. In other words, our algorithm has
the same communication pattern as Paxos in nice

5The weak consensus speci�cation we consider in this
paper is actually simpler and even easier to implement than
the consensus speci�cation we considered in [BDFG01].

6Remember that processes do not behave maliciously
and channels do not create or corrupt messages.

9

runs. A crash-recovery variant of our algorithm
would also have the same number of logs as Paxos
in these nice runs.
Lamport has informally described in [Lam89] a

clever way to apply the optimal case above when-
ever the system stabilises, i.e., even in runs that
are not nice but simply eventually nice. The even-
tual leader pk would also only need one round
trip communication step with other replicas be-
fore returning the result to the client. In our ter-
minology, this basically means that, in stable pe-
riods, the leader process pk would not need to
go through a cleaning phase. Intuitively, this is
made possible after the leader process pk asks the
processes not to use any consensus with a row
lower than k.7

5.3 Similarities and Di�erences

To sum up, we point out here the very fact that
there is nothing inherent to non-deterministic
state machines that make their consistent repli-
cation harder or signi�cantly di�erent than repli-
cating deterministic ones. This somehow contra-
dicts the belief underlying early work on replicat-
ing non-deterministic state machines [BMST93],
which might have given for instance the impres-
sion that a strong notion of leader election (and
an underlying synchronous system model) is nec-
essary to replicate non-deterministic state ma-
chines.
Roughly speaking, replicating a deterministic

state machine requires agreement on some or-
der for the requests, whereas replicating a non-
deterministic state machine requires agreement
on the order plus agreement on the results of
these requests (�nal states and replies): this pa-
per shows that the agreement can however be the
same one. Basically, we combine an optimistic
form of agreement on the order with the order
on the result. As a consequence, we end up with
the same communication pattern for both kinds
of replication.
The fact that the nature of the agreements

are di�erent have however some important con-

7Roughly speaking, pk recon�gures the system so that
it can play the role of p0 in a nice run.

sequences. Indeed, while talking about e�ciency,
we have focused here on the number of messages,
communication steps, and logs needed for the
replicas to compute a result corresponding to a
given request. Obviously, the size of the mes-
sages is not the same: our replication algorithm
involves agreement on states and this more expen-
sive than an agreement on integers (on an order).
Some optimisations could to be considered how-
ever. Typically, one should avoid having a new
leader always start from row 0 but periodically
log the current state or contact other processes
for updates. Similarly, one should employ spe-
ci�c semantic-based techniques to avoid sending
out states but only state di�erences. Neverthe-
less, there are also some optimisations that one
can achieve with deterministic state machines but
not with non-deterministic ones. In particular, if
the agreement is only on the order, one can gather
several requests together and have only one agree-
ment for these requests. This does not seem to
be possible with non-deterministic state machines
since the agreement should hold for every state.

References

[ACBMT95] E. Anceaume, B. Charron-Bost, Pascale
Minet, and S. Toueg. On the formal
speci�cation of group membership ser-
vices. Technical Report 95-1534, Depart-
ment of Computer Science, Cornell Uni-
versity, August 1995.

[BDFG01] R. Boichat, P. Dutta, S. Frolund, and
R. Guerraoui. Deconstructing the par-
liament. Technical Report EPFL-2001,
Swiss Federal Institute of Technology,
January 2001.

[Bir86] K. P. Birman. Isis: A system for fault-
tolerant distributed computing. Tech-
nical Report TR86-744, Department of
Computer Science, Cornell University,
April 1986.

[BMST93] N. Budhiraja, K. Marzullo, F. B. Schnei-
der, and S. Toueg. The primary-backup
approach. In S. Mullender, editor, Dis-
tributed Systems. Addison-Wesley, 1993.

[CHT96] T. Chandra, V. Hadzilacos, and
S. Toueg. The weakest failure detector

10

to solve consensus. Journal of the ACM,
43(4):685{722, 1996.

[DS00] X. D�efago and A. Schiper. Semi-passive
replication and lazy consensus. Techni-
cal Report DSC/2000/012, Swiss Fed-
eral Institute of Technology, February
2000.

[DSS98] X. D�efago, A. Schiper, and N. Sergent.
Semi-passive replication. In Proceedings
of the IEEE Symposium on Reliable Dis-
tributed Systems, October 1998.

[FG00] S. Fr�lund and R. Guerraoui. X-ability:
A theory of replication. In Proceedings
of the Symposium on Principles of Dis-
tributed Computing. ACM, 2000.

[FLP85] M. Fisher, N. Lynch, and M. Pater-
son. Impossibility of distributed consen-
sus with one faulty process. Journal of
the ACM, 32(2):374{382, 1985.

[Lam86] L. Lamport. On interprocess communi-
cation. Distributed computing, 1(1):77{
101, 1986.

[Lam89] L. Lamport. The part-time parliament.
Technical Report 49, DEC Systems Re-
search Center, 1989.

[Lam96] B. Lampson. How to build a highly avail-
able system using consensus. In Pro-
ceedings of the International Workshop
on Distributed Algorithms, Springer-
Verlag, LNCS (WDAG), September
1996.

[PLL97] R. De Prisco, B. Lampson, and
N. Lynch. Revisiting paxos. In Pro-
ceedings of the International Workshop
on Distributed Algorithms, Springer-
Verlag, LNCS (WDAG), September
1997.

[Pow91] D. Powell. Delta-4: A Generic Architec-
ture for Dependable Distributed Comput-
ing. Springer Verlag, ESPRIT Research
Reports, volume 1 edition, 1991.

[Sch93] F. B. Schneider. Replication manage-
ment using the state machine approach.
In S. Mullender, editor, Distributed Sys-
tems. Addison-Wesley, 1993.

[SM94] L. Sabel and K. Marzullo. Simulat-
ing fail-stop in asynchronous distributed
systems. In Proceedings of the 13th IEEE

Symposium on Reliable Distributed Sys-
tems (SRDS), pages 138{147, October
1994.

[SM95] L. Sabel and K. Marzullo. Election
vs. consensus in asynchronous systems.
Technical Report TR95-1488, Dept. of
Computer Science, Cornell University,
1995.

[VKCD99] R. Vitenberg, I. Keidar, G. V. Chock-
ler, and D. Dolev. Group communi-
cation speci�cations: A comprehensive
study. Technical Report MIT-LCS-TR-
790, Laboratory for Computer Science,
Massachusetts Institute of Technology,
April 1999.

11

A X-ability

We give in this appendix a brief reminder of
the main ideas behind x-ability [FG00], which we
extend with a notion of atomic actions.

A.1 Basic Sets

We �rst introduce the basic elements that we
consider in de�ning x-ability. The set Action

contains the name of actions; the sets Input

and Output contain input and output values
for actions. Both input and output values are
structured entities: besides an \application-level"
value (an element in the set Value), they also con-
tain an identi�er (an element in Identi�er), which
distinguishes di�erent invocations of the same ac-
tion on the same logical application-level value.
We use iv to refer to an input value in Input, and
we use ov to refer to an output value in Output.
Furthermore, we identify two sets, Request and
Reply. A reply is an output whereas a request is
a pair that contains an action name and an input
value. We write pairs as \(a; iv)" (this pair con-
tains the action name a and the value iv). These
sets are more precisely de�ned as follows.

Input = (Identi�er � Value)

Output = (Identi�er � Value)

Request = (Action� Input)

Reply = Output

Usually, we treat input and output values as
opaque values and do not explicitly refer to con-
stituent values from Identi�er and Value. In par-
ticular, we assume that a state machine action
takes a value in Input and produces a value in
Output. That is, the action ignores the Identi�er

component in input values during execution and
returns an output value with the same identi�er
as the input value.
We use the following expressions to explicitly

refer to the constituent of input and output val-
ues: iv:val returns the value component and iv:id
returns the identi�er component (we use similar
operators for output values).

A.2 Events and Histories

We use event histories to specify x-ability. We
consider two kinds of events: start events and
completion events. A start event denotes the in-
vocation of a state machine action on a particular
input value. A completion event captures the suc-
cessful completion of an action with a particular
output value. We use the following notation for
events:

e ::= S(a; iv) j C(a; ov)

The event S(a; iv) captures the start of execut-
ing the action a with iv as argument. The event
C(a; ov) captures the completion of executing the
action a, and ov is the output value produced by
the action.
A history is a sequence of events. We use the

following notation for histories:

h ::= � j e1 : : : en j h1 � : : : � hn

The symbol � denotes the empty history|a his-
tory with no events. The history e1 : : : en con-
tains the events e1 through en. The history
h1 � : : : � hn is the concatenation of histories h1
through hn. The semantics of concatenating his-
tories is to concatenate the corresponding event
sequences.
We say that an event e appears in a history h

if h contains e. We write this as e 2 h. We refer
to the complement of 2 as =2.

A.3 History Equivalence

With x-ability, we de�ne what it means for a
history of action invocations to have exactly-once
e�ect. The idea is to (1) de�ne a notion of history
equivalence (based on equivalent e�ects), (2) de-
�ne a notion of failure-free history (histories that
have exactly-once e�ect per de�nition), and (3)
de�ne x-able histories as those that are equiva-
lent to a failure-free history.
Our equivalence relation for histories is based

on so-called re-write rules for histories. We write
this as h)x h0 (h can be re-written to h0, which
also means that h and h0 are equivalent).

12

The algorithm in Figure 4 replicates state ma-
chines with idempotent actions (though they are
non-deterministic). In [FG00], we give re-write
rules for idempotent actions. Essentially, a his-
tory with n invocations of an idempotent action
is equivalent to a history with a single invocation,
as long as both histories contain a successful in-
vocation of the action.
The actions we consider here are also atomic:

their e�ect either happens completely or not at
all. This means that executing an action will
never leave the system in an inconsistent state.
Even if the action fails during its execution, no
partial updates will be visible. An action that
only updates the internal state of its state ma-
chine is typically both idempotent and atomic.
Updating the internal state is idempotent: the ac-
tion can perform duplicate elimination based on
request identi�ers. Moreover, an internal state
update fails only if the process itself fails (after
all, the process is the only entity involved in the
state update). This property ensures atomicity:
if the state update fails during the action execu-
tion, the process itself failed and the partial state
update will never be visible to other processes.
In Figure 6, we use re-write rules to de�ne a

notion of atomic action. The rules capture the
following idea: although we only observe the start
event for an action a (we do not observe the ac-
tions completion event), the e�ect is equivalent
to one of two possible failure-free histories. One
failure-free history is one in which the action did
not occur at all. That is, we can remove the
start event. The other failure-free history is one
in which the action happened successfully. To
obtain this latter action, we add the completion
event.

A.4 X-able Histories

We de�ne x-able histories as the ones that are
equivalent (under)x) to a failure-free history.
A failure-free history is a history that could have
been produced by a failure-free execution of a
single state-machine action. To de�ne the no-
tion of failure-free history, we de�ne a function,
called eventsof, on actions and their values. The

eventsof function returns the failure-free history
associated with an action and its values.

eventsof(ai; iv ; ov) = S(ai; iv)C(ai; ov)

Due to non-determinism, there are multiple
failure-free histories which are possible for a given
action a and a given input value iv . We de�ne the
set of all possible histories, FailureFree(a;iv), as fol-
lows:

FailureFree(a;iv) = fh 2 History j

9 ov 2 Result;9 iv 0 2 Input :

h = eventsof(a; iv 0; ov) ^ iv:val = iv0:valg

An x-able history is one that satis�es the pred-
icate x-able on histories:

x-able(a;iv)(h) =(
true if 9h0 2 FailureFree(a;iv) : h)x h0

false otherwise

We use x-able histories to de�ne the contract
a service has with its environment. Insisting on
histories being x-able forces the service to have
a side-e�ect that appears to be exactly-once. In
de�ning x-ability, we also address the relation-
ship between clients and services. Intuitively,
clients should see the service as a single-copy state
machine. We recapitulate our formalization of
single-copy semantics in the following sub-section.

A.5 Single-Copy Consistency

The reply value given to a client in response
to a request must be the value returned from
the server-side state machine when the service
processes the request. In other words, the service
should not be allowed to \invent" a reply value
and pass it back to the client. Moreover, the ser-
vice should not be allowed to invent requests, it
should only process the requests sent by clients.
We use the server-side history to de�ne the con-

straints for requests and replies. The history con-
tains a request value as part of start events and

13

8 C(a; ov) 2 h2 : iv:id 6= ov:id

h1 � (S(a; iv)) � h2)x h1 � h2
(1)

8 C(a; ov) 2 h2 : iv:id 6= ov:id ov 0 2 fv 2 Result j ov0:id = iv:idg

h1 � (S(a; iv)) � h2)x h1 � (S(a; iv)C(a; ov 0)) � h2
(2)

Figure 6: De�nition of atomic actions

reply values as part of completion events. We in-
troduce the notion of a history signature, which
de�nes the client-side information (request and
result) that is legal relative to a given server-side
history. Because of non-determinism and server-
side retry, a history can have multiple signatures.
The set Signature is the set of all possible his-

tory signatures. We de�ne the set of signatures
for a given history h as follows:

Signature = (Action� Input�Output)

signature(h) = f(a; iv ; ov) 2 Signature j

9 ov 0 2 Result;9 iv 0 2 Input :

h)x eventsof(a; iv 0; ov 0) where

iv:val = iv0:val ^ ov:val = ov0:valg

The basic idea is that the client's view should
correspond to the actual server-side e�ect. How-
ever, we have to de�ne the server-side e�ect in
terms of parameter values and ignore the identi-
�ers associated with input and output values.
If a client submits a sequence of requests, one

after the other, later requests should be processed
in the context of earlier requests. This consis-
tency requirement prevents a service from \for-
getting" updates to its state.
To prevent a service from forgetting the e�ect

of previous requests, we want to characterize the
set of possible reply values for a given request.
Since we do not know what state-machine ac-
tions do, we cannot describe which speci�c val-
ues are possible. Instead, we assume the exis-
tence of a set PossibleReply that contains the pos-
sible reply values for a given request. To capture
the history-sensitive nature of the set of possi-

ble replies, we de�ne PossibleReply in the con-
text of a request sequence r1 : : : rn. The inter-
pretation of PossibleReply in the context of a se-
quence is the set of possible replies to request rn
after the state machine has executed the requests
r1 : : : rn�1 one after the other. Thus, we write the
set as: PossibleReply(r1:::rn).
Notice that the set PossibleReply is de�ned for

state machines, not replicated services. Thus,
there is no notion of failures or replication in-
volved in its de�nition. The set is well-de�ned
for state machines in general.

A.6 X-able Services

We can now describe the requirements for a ser-
vice to be x-able. Given a set of replicas that all
have a copy of a state machine S. Given a client
with a submit action that takes a request and re-
turns a reply. The replicas constitute an x-able
service if the following properties are satis�ed:

� Consistency: The action submit is idem-
potent.

� Termination: There is a time after which
submit always executes successfully.

� Effect: If the client submits a re-
quest (a; iv), then the server-side history
for (a; iv) is either empty or it satis�es
x-able(a;iv).

� Result: If the client receives a reply ov

in response to a request (a; iv), and if the
server-side history for executing this request
is h, then (a; iv ; ov) 2 signature(h).

14

� State: If the client successfully submits a
sequence of requests, r1 : : : rn, and receives
the reply ov in response to rn, then ov is in
PossibleReply(r1:::rn).

B Proof of X-ability

We prove that the algorithm in Figure 4 imple-
ments an x-able service for state machines with
idempotent atomic actions.

Proposition 1 (Consistency) The action

submit is idempotent.

Proof (SKETCH): Consider a client-side his-
tory from invoking the submit action on a request
req n times. We have to show that, if one of these
n invocations is successful, then the e�ect of this
n-invocation history is equivalent to the e�ect of
a history with a single successful invocation. The
e�ect we consider is the e�ect of executing state-
machine actions.
First, observe from the algorithm that the sub-

mit action only returns successfully for a request
req if a state-machine copy executed req success-
fully. Because they both contain a successful in-
vocation of the submit action on req, both the n-
invocation and single-invocation histories contain
a successful invocation of a state-machine action
on req. Because state machine actions are idem-
potent, the resulting server-side histories are both
equivalent to a history with a single successful in-
vocation of the state-machine action. 2

Proposition 2 (Termination) There is a time

after which submit always executes successfully.

Proof: Assume by contradiction, that the
proposition does not hold. By the leader abstrac-
tion, there eventually is a unique, correct and per-
petual leader. By the reliable channels assump-
tion, the eventual perpetual leader receives the
request, and keeps trying to commit that request.
Since we assume that eventually, execute is al-
ways successful, the leader eventually proposes a

successful result in an empty weak consensus that
was not cleaned by any process and succeeds in
deciding that reply and returning it to the client.
2

Proposition 3 (Effect) If the client submits

a request (a; iv), then the server-side history for
(a; iv) is either empty or it satis�es x-able(a;iv).

Proof (SKETCH): Given a run R of the al-
gorithm on the request (a; iv), and let h be hR.
We show that if h is non-empty, then h satis�es
x-able(a;iv).
Assume that h is non-empty. Then h contains

at least one start event for (a; iv). Consider the
last start event for (a; iv) in h. If h also con-
tains a completion event for (a; iv) after this last
start event, then we can use the idempotence rules
to reduce h to a single successful invocation of
(a; iv). If h does not contain a completion event
after the last start event, we can use rule (2) to
add such a completion event. After adding this
event, we can again use the idempotence rules to
reduce h to a failure-free history. 2

Proposition 4 (Result) If the client receives a

reply ov in response to a request (a; iv), and if the

server-side history for executing this request is h,
then (a; iv ; ov) 2 signature(h).

Proof: Since the client receives a reply, which
is di�erent from ?, we can deduce from the algo-
rithm that h is not the empty history. Thus, by
Proposition 3, h satis�es x-able(a;iv). This again
means that there exists values iv 0 and ov 0 such
that h)x eventsof(a; iv 0; ov 0). From the de�-
nition of failure-free histories, we know that iv

has the same parameter value as iv 0. We have
to prove that ov has the same parameter value
as ov 0. This is the case because the algorithm
never changes parameter values. Thus, we can
now conclude that the signature (a; iv ; ov) is in
signature(h). 2

To prove the State property (Proposition 9),
we �rst need to establish some new terminology
and concepts. For a given state machine, we have

15

already introduced the set of possible replies af-
ter executing a sequence of requests|we refer to
this set as PossibleReply(r1:::rn). Along the same
lines, we can refer to the set of possible states
that a state machine can be in after executing a
sequence of requests. We write this set of states
as PossibleStates(r1:::rn). A state is an element in
the set State, and we use the symbol � to refer to
a state.
We want to formalize the idea that if we exe-

cute a request in a \legal" state, then we obtain
a \legal" reply. In other words, we want to use
a notion of action execution to connect the con-
cept of possible states with the concept of possible
replies. We formalize action execution through
the function execute:

execute : (State� State� Request)! Result (3)

The execute function satis�es the following ax-
iom:

Axiom 5 Given a state machine S. If

� 2 PossibleStates(r1:::rn�1) for S, then
execute(S; �; rn) 2 PossibleReply(r1:::rn).

Recall that a process p is said to commit a value
for a weak consensus instance if p proposes and
decides that value. Based on this de�nition, we
also introduce the notion that a replica in our
algorithm can commit a result for a given name.
Remember that a name is a request-number pair.
We say that a replica p commits a result res for a
name nam , if p commits res in a weak consensus
instance in the series associated with nam .
With this de�nition, we can now prove the fol-

lowing lemma:

Lemma 6 At most one replica commits a result

for a given name.

Proof: For a contradiction, assume that two
replicas p1 and p2 commit two di�erent results
res1 and res2 for a given name. Because of the
agreement property of weak consensus, the two
results must be committed by two di�erent con-
sensus instances. Assume that res1 is committed

by instance number i and that res2 is commit-
ted by instance number j. Furthermore, assume
without loss of generality that i < j.
According to the algorithm, any replica p will

only propose a result for consensus instance k if p
has successfully cleaned all instances with index
smaller than k. Thus, for p2 to commit res2, r2
must clean all instances with index smaller than
j. This is a contradiction with the assumption
that p1 commits res1 for instance i with i < j.
2

Lemma 7 Given a run R in which a client suc-

cessfully submits the requests r1 : : : rn. If a replica

commits a result for a name nam in R, then nam

has the following format: [i; ri], where 1 � i � n.

Proof: Replicas construct names from a re-
ceived request req and the variable num. The
lemma follows from the following properties and
the fact that requests are submitted one after the
other by a single client:

� A replica only increments the variable num

to the value k + 1 if some replica has com-
mitted a value for a name of the form [k;�].

� Given two names [k; r] and [k; r0]. No
replica commits a value for both names.

2

We say that a replica p commits a result for a
request req, if p commits the result for any name
with req as component (i.e. names of the form
[�; r].

Lemma 8 Given a run R in which a client suc-

cessfully submits the requests r1 : : : rn. Then a

replica commits a result [rn; �; rep] for rn in R,

and the following holds:

1. rep 2 PossibleReply(r1:::rn).

2. � 2 PossibleStates(r1:::rn).

Proof: If the client successfully submits rn,
the client receives a reply for rn. A client only

16

receives a reply for request, if some replica com-
mits a result for that request. Moreover, any re-
sult committed for rn will have rn as its request
component.
We prove (1) and (2) by induction on n (the

number of submitted requests).

� n = 1: Let p be the replica that commits a
result for r1. Because no other replica com-
mits a result for r1, p will not execute the
state assignment S.state := out.state.
Moreover, since p commits a result for r1, p
will execute its state machine copy (which
is in its initial state) on r1. Per de�nition,
the reply produced by the execution is in
PossibleReply(r1) and the state produced is
in PossibleStates(r1).

� n = k; k > 1: Let p be the replica that com-
mits a result for rn. There are two cases: (a)
p commits a result for rn�1 or (b) p does not
commit a result for rn�1.

Consider �rst case (a). When p com-
mits a result for rn�1, its state-machine
copy has a state � that belongs to
PossibleStates(r1:::rn�1). It then increments
its num variable to n, and waits for another
request. If p receives any request in the
set r1 : : : rn�1, then p will obtain the result
for this request from the bag, and return
the reply to the client. Some replica will
have committed a result for any such re-
quest, and p will not execute the state as-
signment \S.state := out.state." Thus,
when p receives rn, p's state machine is still
in state �, and p will compute the reply for
rn in this state. By Axiom 5, the compu-
tation will produce a result that complies
with (1) and (2) above.

Consider next case (b). Since p commits
a result for rn, p's num variable will even-
tually have the value n. Moreover, since
p does not commit a result for rn�1, num
is incremented from n � 1 to n as part
of the code that contains the state assign-
ment \S.state := out.state." In this as-
signment, the state out.state is returned

from the clean method, which means that
some replica committed this state as part
of a result. This result was committed for
rn�1, and the state in out.state belongs to
PossibleStates(r1:::rn�1) by the induction hy-
pothesis. As in case (a), we can now show
that replica p computes a result for rn in
this state, and the result complies with (1)
and (2) above.

2

Proposition 9 (State) If the client success-
fully submits r1 : : : rn and receives the reply

value ov in response to rn, then ov is in

PossibleReply(r1:::rn).

Proof: >From Lemma 8, we know that
some replica p commits a result for rn. More-
over, the reply portion of this result belongs
to PossibleReply(r1:::rn). The proposition follows
from the fact that replicas only return replies from
committed results to clients. 2

C Handling Multiple Clients

X-ability deliberately does not encompass the
issue of concurrent access by multiple clients.8

We prove that the algorithm in Figure 4 ensures
that a multi-client system is equivalent to a single-
client system.
To characterize correct handling of multiple

clients, we introduce the concept of delivering a
request. We say that a replica delivers a request
if either it executes the request, or it installs a
corresponding state.

Proposition 10 Let req1 and req2 be any two

di�erent requests. If any replica delivers req1 be-

fore req2, then no replica delivers req2 without

having delivered req1.

8One of our motivations in de�ning x-ability [FG00] was
precisely to separate correct handling of failures from cor-
rect handling of concurrent accesses. By de�ning x-ability
in terms of a single-client system, it is simpler to express
the notion that it should appear as if there is a single copy
only of the server-side state machine. The speci�cation
does not have to account for the possibility that multiple
clients share this single copy.

17

Proof (SKETCH): Assume by contradiction
that some replica pi delivers req1 before req2,
whereas some replica pj delivers req2 without hav-
ing delivered req1. For pi to deliver req1 be-
fore req2, the consensus bag must have a num-
ber num1 associated to req1 and a number num2

associated to req1 such that num1 < num2.
Since replicas scour the consensus bag sequen-
tially, starting from number 0, process pj reaches
num1 before num2. If num1 is not associated
with any request, then pj associates req2 with
num1: a contradiction. Otherwise, pj computes
req1 before req2: a contradiction. 2

D Weak Consensus Algorithm:

Correctness

Proposition 11 The algorithm of Figure 1 im-
plements weak consensus with a majority of cor-

rect processes.

Proof (SKETCH): Validity is satis�ed since
we assume that processes can only fail by crash-
ing and channels do no invent or corrupt mes-
sages; any value decided is a value proposed by
some process. Termination is satis�ed with the
assumption of reliable channels and a majority of
correct processes. Consider now Agreement. As-
sume that some process p commits some value vi
and some process q commits some value vj . Since
none of the processes can decide without having a
majority adopts its value, and no process adopts
more than one value, then vi = vj . 2

18

