
Type-Based Publish/Subscribe∗

Patrick Eugster † Rachid Guerraoui† Joe Sventek‡
†Swiss Federal Institute of Technology, Lausanne

‡Agilent Laboratories Scotland, Edinburgh

Abstract

This paper presents type-based publish/subscribe, a new
variant of the publish/subscribe paradigm. Producers pub-
lish message objects on a communication bus, and con-
sumers subscribe to the bus by specifying the types of the
objects they are interested in. Message objects are consid-
ered as first class citizens and are classified by their types,
instead of arbitrarily fixed topics.

By reusing the type scheme of the language to classify
message objects, type-based publish/subscribe avoids any
unnatural subscription scheme and provides for a seamless
integration of a publish/subscribe middleware with the pro-
gramming language. Type-based publish/subscribe has sev-
eral quantifiable advantages over other publish/subscribe
variants. In particular, the knowledge of the type of message
objects enforces performance optimizations when combined
with dynamic filters for content-based subscription.

Our type-based publish/subscribe prototype is based on
Distributed Asynchronous Collections (DACs), program-
ming abstractions for publish/subscribe interaction. They
are implemented using GJ, an extended Java compiler
adding genericity to the Java language, and enable the ex-
pression of safely typed distributed interaction without re-
quiring any generation of typed proxies.

Keywords
Objects, distribution, asynchrony, publish/subscribe,

typing, collection, messaging, genericity

1 Introduction

This paper introduces type-based publish/subscribe: a
new variant of distributed messaging based on the pub-
lish/subscribe paradigm. Publish/subscribe interaction is
a message-centric approach to communication in a dis-
tributed environment, characterized by the strong decou-

∗This work is partially supported by Agilent Laboratories and Lombard
Odier & Co.

pling of participants in time as well as space.1 Producers
publish information on an information bus [OPSS93] and
consumers subscribe to information they want to receive.

Classical approaches to publish/subscribe messaging in-
volve different models for the middleware and the pro-
gramming language. Consequently, the object-oriented and
message-oriented worlds are often claimed to be incom-
patible [Koe99]. Our type-based publish/subscribe variant
makes an attempt to reunite both worlds, by viewing mes-
sages as first class objects and letting consumers subscribe
to such message objects by subscribing to the types of mes-
sage objects they want to receive.

Figure 1 illustrates the intuitive idea underlying our ap-
proach. Participant P1 subscribes to type A, which can be
viewed as connecting to a flow of published message ob-
jects conforming to type A. Through subtyping, P 1 also
receives objects of types B and C, and as a consequence,
D. On the other hand, participant P3 subscribes to objects
of type D, while it publishes objects of types B and D.

Publish, Deliver

P1

fC (fC, fD)

A

C

D

B

fB

fA(fA, fB, fC, fD)

P2

P4

Flow of Objects of Type TfT

Subtyping Hierarchy

fB, fD

P3

fD

Figure 1. Type-Based Publish/Subscribe

1Time decoupling: the interacting parties do not need to be up at the
same time. Space decoupling: the interacting parties do not need to know
each other.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Integrating programming language and middleware.
With the increasing complexity and distribution of comput-
ing systems, separation of concerns [KLM+97, TOHS99]
becomes important to isolate problems, but aspects which
are not quite orthogonal are sometimes tackled indepen-
dently. This issue has already been identified for instance
in the domain of object-oriented data management sys-
tems [BZ87], where two separate languages coexist; one
for the definition of data and another one for the manipula-
tion of data with the management system. A similar mis-
match has occurred between object-orientation and prac-
tices in message-oriented middleware. Publish/subscribe
middleware systems introduce subscription schemes which
are artificial and reduce messages to the data they carry.

The notion of type-based publish/subscribe we present in
this paper represents a subscription scheme which is fully
based on a natural classification of messages according to
their type. It differs fundamentally from the notion of type-
based subscription introduced in [HLS97], by fully relying
on the type as an inherent attribute of objects and not on
an external property added to objects in order to express a
language-extrinsic subscription scheme.

Type-based publish/subscribe in perspective. Besides
enabling a seamless integration of middleware and lan-
guage, type-based publish/subscribe has several advantages
over the traditional publish/subscribe styles, namely the
topic-based (subject-based) style [TIB99, AEM99, Ske98],
based on group-like notions [Pow96], and the content-based
publish/subscribe variant [Car98, SA97, BCM+99], which
enables applications to describe runtime properties of mes-
sages they wish to receive.

Common topic-based systems arrange topics in hierar-
chies and denote them with URL-like references. Such
references can not express multiple specialization, i.e., a
topic can not have several supertopics. Types offer a nat-
ural way of doing this, provided that the language offers
multiple subtyping. The static nature of topics, which en-
ables efficient implementations by reusing known multicast
primitives, is often seen as its limitation. An increased ex-
pressiveness [Car98] is obtained with content-based pub-
lish/subscribe, in which subscribers describe runtime prop-
erties of the message objects they wish to receive. Such a
subscription scheme tends to violate object encapsulation,
and is usually realized with a subscription language. The
expression of custom filters can be made with a filter li-
brary in order to avoid any subscription language and pre-
serve encapsulation, but might lead to dynamic code, i.e.,
using reflection [KdRB91]. As we will illustrate in this pa-
per, the knowledge a priori of the runtime type of messages
in type-based publish/subscribe enables the generation of
static filter code from dynamically implemented instances
of a general filter library.

Generic DISTRIBUTED ASYNCHRONOUS COLLEC-
TIONS. In classical middleware approaches based on
derivatives of the remote procedure call (so-called
method-based middleware, e.g., CORBA [OMG98a],
DCOM [Mic99], or JAVA RMI [Sun99a]), precompilers
are widely employed for the generation of typed proxies. In
some standard approaches to typed event-based communi-
cation this technique is used as well [OMG98b], while other
solutions force the application to provide its own prox-
ies [Obe00], or even to make explicit type casts [HBS98,
Sun99c, Sun99b]. In this paper we describe a way to ex-
press type-safe message-oriented interaction based on the
publish/subscribe paradigm through genericity (parametric
polymorphism). With our approach, explicit type casts in
the application code can be avoided, and precompilation
becomes obsolete. The realization presented in this paper
combines the power of DISTRIBUTED ASYNCHRONOUS

COLLECTIONS (DACs) [EGS00], abstractions which en-
able the expression of various publish/subscribe variants,
with GJ [BOSW98], an extended JAVA compiler which of-
fers generic types and methods.

Contributions. In short, this paper introduces our type-
based variant of the publish/subscribe interaction model.
We show how types enforce a natural and inherent sub-
scription scheme, avoiding any explicit message classifica-
tion through topics. We furthermore depict how paramet-
ric polymorphism can be used to express typed event-based
distributed interaction, circumventing any type casts or gen-
eration of typed proxies. And finally, we illustrate how our
generic DACs promote the efficient use of content-based fil-
ters with an underlying type-based scheme, in a way that
preserves encapsulation and circumvents the need for any
subscription language.

Roadmap. The remainder of this paper is organized as
follows. Section 2 first recalls the topic-based and content-
based publish/subscribe interaction styles and points out
their limitations. Section 3 gives an overview of our notion
of type-based publish/subscribe. We introduce a simple for-
malism to help specifying the semantics of “subscribing to
a type” and to point out a peculiarity of the JAVA type sys-
tem. Section 4 shows how we have used DACs to express
type-based publish/subscribe. Section 5 presents details of
our realization of generic DACs based on GJ, while Sec-
tion 6 illustrates how type-based publish/subscribe provides
for a highly flexible and efficient subscription mechanism
when combined with content-based filters. In Section 7
we discuss some issues related to GJ and types in JAVA,
and contrast our efforts with current practices in method-
based middleware. Section 8 presents an overview of re-
lated approaches to typed event-based interaction. Finally,
Section 9 concludes the paper.



2 Common Publish/Subscribe Models

The publish/subscribe paradigm is a loose communica-
tion scheme for modeling the interaction between appli-
cations in distributed systems. Unlike the classic remote
procedure call model, publish/subscribe provides decou-
pling in time and in space. This makes publish/subscribe
very attractive for large scale interaction. Nevertheless cur-
rent publish/subscribe models, namely the topic-based and
content-based interaction models, present both significant
shortcomings.

2.1 Topic-Based Publish/Subscribe

The classic publish/subscribe interaction model is based
on the notion of topics or subjects, which basically resemble
groups [Pow96]. Subscribing to a topic T can be viewed as
becoming member of a group T. The topic abstraction how-
ever differs from the group abstraction by its more dynamic
nature. While groups are usually disjoint sets of members
(e.g., when used for replication [Bir93]), topics typically
overlap, i.e., a process participates (in the role of publisher
and/or subscriber) in more than just one topic.

Referencing topics. In order to classify topics more eas-
ily, it is of great use to furthermore arrange them in a hier-
archy [TIB99, AEM99, Cor99]. In this model, a topic can
be a derived or more specialized topic of another one, and
is therefore called subtopic.

Connecting to a topic thus requires the name in a URL-
type format. Typically, if the department of communication
systems (DSC) of the Swiss Federal Institute of Technology
(EPFL) organizes talks, it could notify these to its collab-
orators through a topic /DSC/Talk, as shown in Figure 2.
/DSC/Talk is a subtopic of /DSC.

Subscribing to a topic can trigger subscriptions for the
subtopics as well. In Figure 2, subscriber S1 subscribes to
topic /DSC and claims its interest in all subtopics. Hence
S1 does not only receive message m2 but also message m1

published for topic /DSC/Talk. In contrast, S2 only sub-
scribes to /DSC/Talk and thus not only receives message
m2, which belongs to the supertopic /DSC.

DSC

m1 m2 m2

m1

Subscribe

Deliver

Publish

Publisher

Subscriber

P

Si
Talk

m1

P S1 S2

Figure 2. Topic-Based Publish/Subscribe

Limited expressiveness. The static classification of mes-
sages in topics makes efficient implementations possible.
Multicast protocols have been largely studied in the con-
text of group communication [BJ87], also focusing on scal-
ability issues [KKT96]. Topics are thus often mapped to
such multicast groups, which can be pictured as dissemina-
tion channels.2 A widely employed primitive is IP mul-
ticast [Dee94]. IP multicast is inherently unreliable, but
further multicast protocols offering reliability are emerging
[SSLB97], and it seems straightforward to map topics to
such multicast groups.

However, the division of the message space in topics can
be seen as “artifical” and leads to a coarse-grained classifi-
cation of messages. Consumers might subscribe to topics,
but only be effectively interested in messages correspond-
ing to strongly individual and finer criteria, which leads
to an inefficient use of bandwidth. The same might oc-
cur when introducing a large number of topics to achieve
a fine-grained taxonomy, since each topic might see the
occurrence of only few messages. This presents a severe
drawback for solutions based on IP multicast, since such
addresses are limited in number. Disposing topics in hierar-
chies does not circumvent the problem, because subtopics
are handled just like top-level topics, in the sense that they
are mapped to separate channels: a message published for
the topic referenced by /DSC/Talk, will be disseminated in
a channel /DSC/Talk, and not in /DSC. Consumers that have
subscribed to the subtopics of /DSC are automatically “con-
nected” to /DSC/Talk.

2.2 Content-Based Publish/Subscribe

A next step to loosen the restrictions of communication
models has been taken by the introduction of content-based
publish/subscribe [Car98, SA97, BCM+99].3 This new fea-
ture gives more expressiveness and flexibility to the appli-
cation, by removing entirely the limitations of statically de-
fined distinct topics. Subscribers can announce their indi-
vidual interests by specifying the properties of the event no-
tifications they are interested in. The notifications or mes-
sages are therefore not classified according to arbitrarily
fixed criteria, but by their runtime properties.

Subscription patterns and filters. Each subscriber only
receives the notifications that match entirely its individual
criteria. Such application requirements can be seen as a pat-
tern against which messages are matched, and are translated
to filters. Applying such filters enables the drastic reduction
of unnecessary message transfers.

Figure 3 shows the difference to topic-based subscribing.

2The CORBA EVENT SERVICE [OMG98b] provides the application
with channels at the programming abstraction level.

3The taxonomy introduced in [RW97] refers to this as property-based.



As a matter of fact, one can picture the message space as a
single topic. Every subscriber announces its individual cri-
teria on the messages. In the situation outlined in the figure,
message m1 contains ◦ and therefore matches the pattern
of S2 (which is interested in messages containing • or ◦)
and S1 (only interested in ◦). Message m1 is thus delivered
to both. The content of message m2 though only matches
the pattern of subscriber S2, and is hence not delivered to
subscriber S1.

m1 m1,
m2

m2

m1

v
Subscribe

Deliver

Publish

Publisher

Subscriber

P

Si

S1 S2P

Figure 3. Content-Based Subscribing

The cost of dynamism. Content-based publish/subscribe
removes limitations of the static topic-based flavor, but the
dynamism it brings requires sacrifices.

Efficiency: Content-based publish/subscribe requires
specifically tuned dissemination protocols. In fact, the
matching of events against subscription patterns should
take place as close to the source as possible, in order
to avoid unnecessary message transfers. On the other
hand, one should not end up in the case of matching a
message at the publishers site against the pattern of each
subscriber, since this would require every publishing
participant to know every subscriber, which is usually
unfeasible at large scale. Therefore the filtering has to
take place in transit, which makes the reuse of known
group multicast primitives and efficient realizations hard
(e.g., [OAA+00]).

Encapsulation: There is another difficulty which we will
devote more consideration in the context of this paper:
describing properties of messages usually means intro-
ducing a subscription language, which makes it cumber-
some to express complex patterns. Such subscription
languages enable the description of message objects but
are usually orthogonal to the programming language, in
which those message objects are implemented. Further-
more they tend to violate encapsulation, by using the at-
tributes of messages to describe requirements.

To avoid subscription languages, the application can be
asked to provide filters in the form of executable code.
These filters are however opaque to the middleware system

and are not necessarily safe. Furthemore, avoiding redun-
dant queries on message objects (like the ones proposed in
[ASS+98]) becomes difficult.

Reflection-based filters There are indeed ways to cir-
cumvent these problems, for instance by using reflec-
tion [KdRB91] to implement libraries of filters. We have
implemented such filter objects which permit the sorting of
message objects by calling methods specified by the appli-
cation on those objects and comparing the results to pre-
defined values, in a way similar to approaches chosen in
object-oriented data management systems, e.g., [SO95] (see
Figure 4).

With reflection however, a reference to a method is ob-
tained at runtime. This implies a dynamic lookup, which
is very costly. Moreover, it is summed with the overhead
of the dynamic invocation itself, which results in an im-
portant latency. Figure 5 shows the cost of such dynamic
interaction by comparing the evaluation of basic filters en-
capsulating method calls with a varying number of argu-
ments (between 0 and 9 JAVA objects) using (1) dynamic
invocations with dynamic method lookup, (2) dynamic in-
vocations without method lookup (assuming that all objects
are of the same type, and thus the lookup is made once and
for all), and (3) static invocations. These tests were made on
a SUN ULTRA 60 (SOLARIS 2.6, 256 Mb RAM, 9 Gb hard-
disk) with JAVA 1.2 (native threads). Note that these results
were obtained without any Just In Time (JIT) compiler. The
speedup factor observed for static invocations when using
a JIT compiler was over three (!), while the speedup in the
case of dynamic evaluation was, as expected, insignificant.

Method1(Args1) Result

ComparisonInvocation1

Method2(Args2)

Invocation2

...msg TRUE/FALSE

Delivery?

Figure 4. Content-Based Filtering With Reflection

The next sections show how a type-based scheme en-
forces a seamless integration of the publish/subscribe mid-
dleware with the language, and how performance can be
improved when combining with content-based subscription
facilities.

3 Type-Based Publish/Subscribe

This section introduces type-based publish/subscribe, a
new approach to classifying messages in a many-to-many
publish/subscribe interaction environment. The discussion
is made in a general context, but is illustrated through the
type system of the JAVA programming language. We will



Figure 5. Cost of Dynamism in Content-Based Filtering

describe our concrete implementation of the idea in Sec-
tions 4 and 5.

3.1 Overview

Roughly spoken, our type-based publish/subscribe
scheme consists in using the type scheme of an “ordi-
nary” programming language without explicitly introducing
a topic hierarchy, nor any other specific notion of message
kind. A subscriber advertises its interest in a type T, which
means that it will receive all messages of type T.

This idea has been mainly driven by the observation that
in practice messages regrouped in a topic usually are of the
same type because they are somehow related, i.e., they no-
tify the same kind of event. This design choice furthermore
enables the straightforward interpretation of messages be-
longing to a same topic, which is not obvious since most
topic-based systems only offer weakly typed interfaces. In-
troducing a key in the form of a topic seems superfluous to
regroup message objects that already express an affiliation
through an implicit attribute – their type. This awkward
situation can be avoided by simply matching the notion of
event kind with that of an event type. Figure 6 shows a
comparison of topics and types, based on the case of a type
Talk used to advertise talks to collaborators of the DSC.4

3.2 Fundamentals

Type-based publish/subscribe is a static classification
scheme based on types. Therebey we implicitly assume that
the considered type system is static. In order to describe
our notion of type-based subscribing more precisely, we es-
tablish a general model of a static type system which can
be extended to capture different concrete languages. This

4Remember that DSC stands for the Department of Communication
Systems of the Swiss Federal Institute of Technology (EPFL).

will help us shed light on a specific characteristic of the
JAVA type system with respect to type-based subscribing.

Subtyping. Just like topics can have subtopics, types can
have subtypes, but subtyping is not handled the same way in
every language. In strongly typed object-oriented languages
like C++ [ES92] or Eiffel [Mey92] for instance, the inher-
itance hierarchy determines the conformance (subtype) re-
lation. In such type schemes, the notions of type (abstract
type, type definition, interface, signature) and class (con-
crete type, type implementation) are identical. Thus, sub-
scribing to a type means subscribing to all instances of the
indistinguishable class and its inheriting subclasses.

As already claimed in [CHC90] however, inheritance
and subtyping should be clearly separated. To achieve this,
type definitions must be separated from type implementa-
tions. Several solutions have appeared to augment existing
programming languages that lack this separation, e.g, by
introducing signatures for C++ [BR97]. We continue this
study with separation of these two aspects in mind. The
idea is neither to make any statement on what features a
modern programming language should have, nor to engage
a language-wise discussion of the semantics of type-based
publish/subscribe. A model based on separation of types
is simply more general, in that it can be applied to certain
languages lacking such separation.

A simple model. To ease our following discussions, we
introduce a simple formalism. In our context, we are
mainly interested in the relationships between types and
classes. Therefore we model the environment Γ as a pair
(Types, Classes), without introducing variables.

The relation of subtyping is denoted by ≤. In other
terms, if T2 is a subtype of T1, then T2 ≤ T1, and T ≤ T .
The relation of inheritance is denoted ⊆, i.e., if a class C1

inherits from C2, then C1 ⊆ C2. Γ � C ⊆ C means that
C is declared in Γ. With ≤, the same can be expressed for
types. A class C which implements a type T leads to the no-
tation C � T. � will later also be used for single methods.
The rules are summarized in Figure 7, but require certain
clarifications:

Implementation transitivity: Since subtyping is not driven
by inheritance, we can have the situation where T1 ≤ T2,
C1 � T1, and C2 � T2, but C1 �⊆ C2. One could also
argue that a class only implements a type (and its super-
types) if it explicitly declares so, contradicting IMT1 and
IMT2. In our context, we will however assume imple-
mentation transitivity.

Multiple inheritance: Multiple inheritance is difficult to
handle, and its usefulness is often questioned [SCC+93].
For languages lacking separation of type definition and



“Traditional” Topic-Based Publish/Subscribe Type-Based Publish/Subscribe
Generic
Message g

public class Message {
public final String topic;

public final Object content;

...

}

(none required)

Message m public class Talk {...} public class Talk {...}
Criterion topic of m is /DSC/Talk m is of type Talk
Argument String topic = "/DSC/Talk" Class tClass = Class.forName("Talk")

Evaluation g.topic.equals("/DSC/Talk") m instanceof Talk

tClass.isInstance(m)

Deliver m = g.content m

Figure 6. Topic-Based vs. Type-Based Publish/Subscribe

implementation, it can be used to achieve multiple sub-
typing. In our case, we use only multiple subtyping, but
a rule for multiple inheritance can be added to capture
languages such as C++.

The notion of widening is not used in this context. Instead,
we use � as a base for the notion of conformance: the ob-
jects which are of type T are instances of classes which con-
form to T . The set formed by these classes is denoted Ξ(T ),
and the instances of these classes are also said to conform to
T . For the following illustration on the JAVA type system, it
is important to mention that this set spans all classes which
implement type T via transitivity, i.e., IMT1 and/or IMT2
(ΞS in Figure 7), or directly (ΞD). Directly means that there
is no subtype T0 of T (T0 �= T ) which they implement.

Separating dissemination and subscription. In com-
mon class-based object-oriented programming languages,
an object is an instance of exactly one class, but can conform
to more than one type. A message object should be dissem-
inated by a single channel, and thus classes are mapped to
dissemination channels. The class relationship ⊆ defines
the set of channels and their hierarchy. The type hierarchy
given by the subtype relationship ≤ of the language, on the
other hand, is used for subscribing.

Conformance, here reflected by �, is the glue between
types and classes. It is the main concern of the type-based
middleware, which takes care of mapping a subscription to
a type T to the channels associated to the classes that cor-
respond to T . In topic-based systems, the same hierarchy
defines the granularity of both subscription and dissemina-
tion, and these two aspects are hence not separated.

Subscribing to types. Now we can precisely define the
notion of type-based subscribing. By default, subscribing
to a type T triggers subscriptions to all of T ’s subtypes.
Accordingly, we define subs(T ) as the action of subscrib-
ing to type T , and recv(C) as receiving all published in-

stances (message objects) of class C.5 Inspired by CC, we
can delineate the semantics of a subscription to a type more
formally:

Subscription

Γ � subs(T ) ⇒ Γ � ∀ C ∈ Ξ(T ) : recv(C) (S)

As shown by certain topic-based systems, subscribing
to a node in a hierarchy without receiving messages cor-
responding to child nodes can be very useful. We therefore
additionally define a notion of subscribing to a type without
subtypes, represented by an action subt():

Subscription without Subtypes

Γ � subt(T ) ⇒ Γ � ∀ C ∈ ΞD(T ) : recv(C) (WS)

Until now, our formalism does not include any informa-
tion about how types, resp. classes are declared. The dec-
laration semantics make the whole difference between dis-
tinct languages. We illustrate the case of JAVA.

3.3 Illustration with JAVA

We have chosen JAVA as our implementation language
mostly because it is well adapted for distribution and be-
cause it enables the definition of types without implementa-
tion.

JAVA type system. The goal of this section is not to for-
mally analyze the JAVA type system, as this has been done
in [Sym97, DEK99]. The idea here is to show the relation-
ship to Γ introduced before, and thus explain how we have
matched type-based subscription to JAVA types. For that
purpose, we consider the JAVA type system without native
types (byte, int, etc.), since we are mainly interested in
application-defined types.

5To simplify, we assume reliable channels: a published message object
is received exactly once by every correct subscribers.



Subtyping Transitivity

Γ � T1 ≤ T2 Γ � T2 ≤ T3

Γ � T1 ≤ T3
(ST)

Inheritance Transitivity

Γ � C1 ⊆ C2 Γ � C2 ⊆ C3

Γ � C1 ⊆ C3
(INT)

Implementation Transitivity

Γ � T1 ≤ T2 Γ � C � T1

Γ � C � T2
(IMT1)

Γ � C1 ⊆ C2 Γ � C2 � T

Γ � C1 � T
(IMT2)

Multiple Subtyping

Γ � T ≤ {T1, ..., Tn}
∀ i ∈ [1, n] Γ � T ≤ Ti

(MS)

Class Conformance

Γ � Ξ(T ) = {C | C � T } (CC)

Conformance via Subtyping

Γ � ΞS(T ) = {C | ∃T0 �= T : T0 ≤ T, C � T0} (SC)

Direct Conformance

Γ � ΞD(T ) = {C | C � T ∧ � ∃ T0 �= T : T0 ≤ T, C � T0} (DC)

Figure 7. Subtyping, Inheritance and Conformance

We introduce an environment ΓJ characterized by the
sets of types, as well as interfaces and classes defining those
types, as we will depict in the following. All rules given for
Γ apply to ΓJ = (Types, Classes, Interfaces). Figure 8
shows a formal specification of type and class declarations
in ΓJ :

Explicit declaration: A type can be explicitly declared by
declaring an interface I. The type declared by I is de-
noted TI (ETD). Furthermore, if I extends another in-
terface I0, then TI is a subtype of TI0 , but TI �= TI0

(ESD).

Implicit declaration: Defining a class C implicitly declares
a type, noted TC , and at the same time gives the class
C which implements it (ITD). If C implements an inter-
face I, then TC is a subtype of TI , and thus according
to IMT1, C � TI . If C implements a single interface I,
and does not provide any public method m that does
not implement a corresponding method declared s in I,
then C does not define a new type. In that case TC = TI ,
and C represents a pure class, as shown by PCD. In all
other cases TC is a new type.

JAVA enforces single inheritance, which implies that a
class hence never inherits from more than one superclass. 6

Multiple subtyping in JAVA is illustrated by ESD and ISD2
in that interfaces or classes can subtype several superinter-
faces.

Subscribing to JAVA types. Like in common class-based
object-oriented languages, a JAVA object is an instance of

6Like Smalltalk [GR83], JAVA presents a singly-rooted class hierarchy:
except the root class Object, every JAVA class subsclasses exactly one
superclass. If no inherited class is specified, Object is assumed.

exactly one class. Every JAVA class is thus mapped to a
dissemination channel, but since a JAVA class can implicitly
define a new type, subscriptions must be possible to classes
as well as to interfaces. We discuss here the semantics of
subscribing to JAVA types, which are formally presented in
Figure 9.

Subscribing to an interface I: This triggers the subscrip-
tion to all objects that conform to TI . Subscribing
without subtypes translates to subscribing to all classes
in ΞD(TI), which includes all pure classes for type
TI (IWS). A subscription with subtypes also involves
non-pure classes for TI , i.e., classes implementing TI

(1) through transitivity or (2) directly but by adding at
least one new method (IS). These classes correspond to
ΞS(TI).

Subscribing to a class C: If C is a pure class, then subscrib-
ing to C is equivalent to subscribing to the interface I

implemented by C (PCS, resp. PCWS). This triggers
subscriptions to all pure classes (if any) of I, and these
classes do not extend C. If C is not a pure class, the sub-
scription includes only C (CS), unless subtypes are de-
sired, in which case every class which inherits from C is
included (CWS).

In JAVA, a pure class can be identified as such thanks to
the introspection capabilities of the language. Through the
functionalities in java.lang.Class, one can learn about
the interfaces implemented by a class, as well as the number
of public methods of those interfaces and the class itself.



Explicit Type Declaration

ΓJ = Γ′
J ; interface I ...; Γ′′

J

ΓJ � TI ≤ TI
(ETD)

Explicit Subtype Declaration

ΓJ = Γ′
J ; interface I extends I1, ..., In; Γ′′

J

ΓJ � TI ≤ {TI1 , ...TIn}
(ESD)

Implicit Type Declaration

ΓJ = Γ′
J ; class C ...; Γ′′

J

ΓJ � TC ≤ TC ΓJ � C ⊆ C ΓJ � C � TC
(ITD)

Implicit Subtype Declaration

ΓJ = Γ′
J ; class C extends C′ ...; Γ′′

J

ΓJ � TC ≤ TC′ ΓJ � C ⊆ C′ (ISD1)

ΓJ = Γ′
J ; class C ... implements I1, ..., In; Γ′′

J

ΓJ � TC ≤ {TI1 , ...TIn}
(ISD2)

Pure Class Declaration

ΓJ = Γ′
J ; class C implements I {MTC}; Γ′′

J

∀m ∈ MTC ∃s ∈ STI m � s

ΓJ � TC = TI
(PCD)

Figure 8. Type Declarations in JAVA

4 Type-Based Publish/Subscribe with DACs

This section first recalls our notion of DISTRIBUTED

ASYNCHRONOUS COLLECTIONS [EGS00], programming
abstractions for publish/subscribe interaction. In a sec-
ond step, the use of DACs to express type-based pub-
lish/subscribe in JAVA is illustrated.

4.1 Background: DACs

We recall briefly the main characteristics of DACs. More
details can be found in [EGS00].

DACs as object containers. Just like any collection, a
DAC is an abstraction of a container object that represents a
group of objects. It can be seen as a means to store, retrieve
and manipulate objects that form a natural group, like a mail
folder or a file directory. Unlike a conventional collection, a
DAC is a distributed collection whose operations might be
invoked from various nodes of a network, in a way similar
to a shared memory. DACs differ fundamentally from the

Interface Subscription

ΓJ � subsJ(I) ⇒ ΓJ � subs(TI) (IS)

Interface Subscription without Subtypes

ΓJ � subtJ(I) ⇒ ΓJ � subt(TI) (IWS)

Class Subscription

ΓJ � subsJ(C) ⇒ ΓJ � subs(TC) (CS)

Class Subscription without Subtypes

ΓJ � subtJ(C) ⇒ ΓJ � subt(TC) (CWS)

Pure Class Subscription

ΓJ � subsJ(C) ∧ ∃I ∈ Interfaces(ΓJ)
TI = TC ⇒ ΓJ � subs(TI)

(PCS)

Pure Class Subscription without Subtypes

ΓJ � subtJ(C) ∧ ∃I ∈ Interfaces(ΓJ)
TI = TC ⇒ ΓJ � subt(TI)

(PCWS)

Figure 9. Subscribing to JAVA Types

distributed collections described in [Obj99], by being asyn-
chronous and essentially distributed, i.e., DACs can be seen
as ubiquitous entities.7 Participating processes act with a
DAC through a local proxy, which is viewed as a local col-
lection and hides the distribution of the DAC. DACs are not
centralized on a single host, in order to guarantee their avail-
ability despite certain failures.

The asynchronous flavor of DACs. A synchronous in-
vocation of a distant object can involve a considerable la-
tency, hardly comparable with that of a local one. In con-
trast, asynchronous interaction is enforced with our collec-
tions. By calling an operation of a DAC, one expresses an
interest in future notifications. According to the terminol-
ogy adopted in the observer design pattern [GHJV95], the
DAC is the subject and its client is the observer.8

A client expresses its interest in objects of a DAC by reg-
istering a callback object, through which the client will be
notified of objects “pushed” into the DAC. Such a callback
object implements the Notifiable interface. Figure 10

7The distributed collections presented in [Obj99] are centralized col-
lections that can be remotely accessed through RMI.

8In the observer design pattern, the subject is usually itself a publisher,
and as a consequence, the event types are known and typed interaction can
take place. In contrast, our DACs represent a generic event dissemination
service based on the publish/subscribe paradigm, i.e., DACs are neutral
mediators between anonymous publishers and subscribers.



shows the variant for topic-based publish/subscribe.

public interface Notifiable {

public void notify(Object msg,
String topicName);

}

Figure 10. Notifiable Interface

Topic-based publish/subscribe with DACs. Expressing
ones interest in receiving information of a certain kind can
be viewed as subscribing to information of that kind. By
viewing event notifications as objects, a DAC can be seen
as an entity representing related event notifications. Clearly,
if a collection is a set of somehow related objects, a DAC
can be seen as a set of related “events”. When considering
the classical topic-based approach to publish/subscribe, a
DAC can be pictured both as an extension of a conventional
collection and also as a representation for a topic.

In the sense of publish/subscribe, inserting an object into
a DAC (add(), Figure 12) comes to publishing that ob-
ject for the topic represented by the DAC.9 Every DAC
can thus be viewed as a publish/subscribe engine of its
own. Subscribing to a topic equals subscribing to the DAC
representing that topic, and can be expressed by register-
ing a callback object through a method call reflecting spe-
cific semantics (contains() and containsAll() meth-
ods with Notifiable argument). When combined with fil-
ters for content-based subscribing, an object implementing
the Condition interface given in Figure 11 must be regis-
tered. Such an object can be either (1) implemented by the
application or (2) an instance of one of the various general
purpose filters we supply. These are similar to the predicate
objects used in [Obj99].

public interface Condition {

public boolean conforms(Object msg,
String topicName);

}

Figure 11. Condition Interface

4.2 Representing Types with DACs

Just as topics are represented by DACs for specific
topics, type-based publish/subscribe can be expressed by
DACs for specific types.

9The application is responsible for providing serializable objects in the
sense of JAVA .

public interface DAC
extends java.util.Collection

{
public Object get();
public boolean contains(Object message);
public boolean add(Object message);
...
public boolean contains(Notifiable n);
public boolean containsAll(Notifiable n);
...
public boolean contains(Notifiable n,

Condition c);
public boolean containsAll(Notifiable n,

Condition c);
...
public void clear(Notifiable n);
...

}

Figure 12. Interface DAC (Excerpt)

Subscribing with typed DACs. Subscribing to a collec-
tion of events which are of a given type T , implicitly means
that the events of interest are those which conform to type
T . By registering a callback object, the application can be
notified of the occurrence of events that conform to type T.
The DAC triggers subscriptions to all channels correspond-
ing to the classes in Ξ, resp. ΞD.

In the case of JAVA, as explained in the previous section,
a DAC must be able to represent a class or an inter-

face. A JAVA type can be reified by an object, thanks to the
reflective properties inherent to the language. A type is rep-
resented by an object of class java.lang.Class, and will
thus be used as the key to distinguish types. In a simplified
way, the underlying system can be pictured as maintaining
a hierarchy of channels and their associated class objects.
The DAC multiplexes the subscription to all channels rep-
resenting classes which conform to T .

Publishing with typed DACs. In the same way, the appli-
cation might publish objects of any type that conforms to T
through a DAC that represents type T . Before a published
object can be effectively disseminated by a DAC, the chan-
nel representing the class of the object must be determined
first.

The determination of the precise channel also has to take
place in the context of topic-based publishing, and we will
show in 6, that JAVA offers the possibility of implementing
this more efficiently with type-based publish/subscribe.

Strong typing with DACs. With type-based pub-
lish/subscribe, the message objects which are related and
form a sort of topic conform to a same type. Compile-
time type checking is therefore possible and should be en-



forced to reduce the number of explicit type checks and
casts, and potential runtime errors. As a consequence, the
interface offered by DACs for a given JAVA type T should
offer methods where parameters representing message ob-
jects are of type T. The next section focuses on how to ob-
tain such typed interaction in a very convenient manner by
using genericity.

5 Pizza Delivery

A DAC representing a type offers an interface relying on
that type. Generating typed interfaces and classes for every
type is not the most convenient way of achieving this. The
approach we have chosen with DACs is based on genericity,
also known as parametric polymorphism.

5.1 Genericity

Our approach to realizing type-based publish/subscribe
relies on genericity. In fact, a typed DAC for type T can be
viewed as an instance of a generic class with a type param-
eter instantiated with T .

Such generic classes or types are integrated in
certain languages like C++ (template, [ES92]) or
Ada (generic, [Ada95]), while languages like JAVA or
Oberon [Rei91] are designed to support subtypes directly,
and to support generics by the idiom of replacing vari-
able types by the top of the type hierarchy. For languages
lacking such generic types and methods, adequate exten-
sions have been widely studied. In the case of JAVA,
several solutions have appeared like PIZZA [OW97], its
follow-up GJ [BOSW98], NEXTGEN [CS98] and others
[AFM97, MBL97, TT99].

Interestingly, the usefulness of such parametric types has
been often demonstrated on collections.10 It seems thus
very promising to apply genericity to our DISTRIBUTED

ASYNCHRONOUS COLLECTIONS as well.

5.2 Typed DACs with GJ

We have based our realization of type-based pub-
lish/subscribe on an existing solution, namely GJ. GJ has
been chosen for several reasons: it is freely available, ma-
ture, has reaped much recognization from SUN, and enables
the reuse of non-generic legacy code (retrofitting).

How GJ works. GJ enables the use of the origi-
nal JAVA virtual machine, and comes as an extended
JAVA compiler, yet fully compatible with the SUN release.

10Even in the case of C++, a good proof of the advantages of parametric
types is given by the widely used STL collection framework [SL95].

Roughly spoken, GJ translates generic constructs to non-
generic ones. GJ proceeds by erasing all type parameters,
mapping type variables to their bounds, and inserting casts
into the compiled class code. No specific classes or inter-
faces are thus created, as in the case of [CS98]. Type con-
versions do not take place in a generically defined class,
but in the objects which invoke instances of that class, as
schematically outlined in Figure 13.

Type Erasing with GJ

Cast UntypedTyped

Invoking Object

Generic DAC

Figure 13. Interaction with a Generic DAC

Generic DACs. GJ presents certain limitations, which are
detailed in [BOSW98]. For our application purpose how-
ever, these were not decisive. An immediate consequence
of the use of GJ is that the generic GDAC interface can not
subtype the java.util.Collection interface anymore,
as visible in Figure 14. This is due to conflicts between
original methods and the type-erased generic variants (e.g.,
add()).

Note that the notify() method of the generic GNoti-
fiable callback interface does not require two parameters
anymore. The same remark can be made for the generic
GCondition interface in Figure 14. In the context of topic-
based publish/subscribe, the second argument is used to de-
note the topic to which the message belongs, since the topic
is viewed as an external property of the message object. In
the case of type-based publish/subscribe however, the key
is given implicitly by the type of the message object.

5.3 Programming with Generic DACs

We illustrate the convenience of distributed program-
ming with generic DACs through the simple talk notifica-
tion example introduced in Section 2, which we will extend
in order to show further benefits of our type-based approach
over a topic-based schemes.

The scenario. The Swiss Federal Institute of Technology
(EPFL) also has a computer science department (DI). Like
the DSC, the DI sometimes organizes talks, and talks held
in either one of the departments are usually interesting for



public interface GNotifiable<T> {

public void notify(T msg);
}

public interface GCondition<T> {

public boolean conforms(T msg);
}

public interface GDAC<T>

{
public T get();
public boolean contains(T message);
public boolean add(T message);
...
public boolean contains(GNotifiable<T> n);
public boolean containsAll(GNotifiable<T> n);
...
public boolean contains(GNotifiable<T> n,

GCondition<T> c);
public boolean containsAll(GNotifiable<T> n,

GCondition<T> c);
...
public void clear(GNotifiable<T> n);
...

}

Figure 14. Generic Interfaces

researchers of both departments. Instead of thus having a
separate topic to advertise upcoming talks of each depart-
ment (/DSC/Talk and /DI/Talk), forcing collaborators to
subscribe to all, one could imagine having a single topic.
Should it be subtopic of /DSC or /DI?

This situation can not be expressed conveniently with
common topic-based naming schemes. With an extended
naming scheme, the topic advertising talks of both DI and
DSC could be denoted (()DSC, ()DI)Talk. Such a notation
enables the resolution of the supertopics, but gives a some-
what cryptic representation of relationships.

As illustrated by Figure 15, type-based publish/subscribe
allows the expression of such multiple specialization in a
natural and convenient manner provided that the language
enforces multiple subtyping.

The application. Figure 15 also shows the correspond-
ing callback class that just prints the content of the received
notifications. Figure 16 shows how to subscribe to talk no-
tifications and to advertise new talks.

The constructor of the GDASet class requires an argu-
ment, which denotes the type (either by name or by Class

object), with which the DAC will be used. Although it
seems redundant to the type parameter, it is necessary. Since

types are erased with GJ, there is no possibility for a gener-
ically defined class to determine at runtime for what type
it is effectively being used, as long as it does not get hold
of an instance. In the case of a generic collection, the type
of the contained elements would only be learnt once an el-
ement is pushed into the collection. The DAC proxy used
by a pure subscriber would have no way of determining to
what dissemination channel(s) it must “connect”, since no
element would ever be inserted locally. The inconvenience
of the constructor argument can thus be seen as the cost in-
curred due to distribution.

We are currently exploring the feasibility of our ap-
proach with alternative generic JAVA compilers. The ap-
proach chosen in [SA98] for instance provides a generic
class with information about its type parameters at runtime.

public interface DSC {...}

public interface DI {...}

public class Talk
implements java.io.Serializable, DSC, DI

{
private String speaker;
private String descr;
public String getSpeaker() { return speaker; }
public String getDescr() { return descr; }
public Talk(String speaker, String descr) {
this.speaker = speaker; this.descr = descr; }

}

public class TalkNotifiable
implements GNotifiable<Talk>

{
public void notify(Talk msg)
{ System.out.println(msg.getSpeaker());

System.out.println(msg.getDescr()); }
}

Figure 15. Application Message and Callback Classes

GDAC<Talk> talkDAC = new GDASet<Talk>("Talk");
talkDAC.contains(new TalkNotifiable());
...
Talk myTalk = new Talk("Patrick Eugster",

"Type-Based Pub/Sub");
talkDAC.add(myTalk);
...

Figure 16. Type-Based Publish/Subscribe with Generic

DACs



6 Evaluation

This section evaluates the benefits of type-based pub-
lish/subscribe over its direct rivals. The goal is not to give a
quantitative performance evaluation of DACs, but to give
qualitative values, showing the benefit of our type-based
publish/subscribe, especially in combination with content-
based filters. For that purpose, we compare between DACs
for type-based and topic-based [EGS00] publish/subscribe
respectively.

6.1 Testbed

Our measurements were made with the JVM 1.2, en-
abled JIT and native threads. We have chosen the same
classification of messages for all measurements, first real-
ized by explicitly defining a topic, and second by using the
type of the messages as an implicit classification.

Messages. The message objects transmitted in our exam-
ple scenario were of a specifically created class encapsu-
lating an integer attribute. In the tests using content-based
filters, the value v of the integer attribute was chosen arbi-
trarily out of a set v ∈ [1, n], where every value had the
same probability pv = 1/n of being chosen.

Network. Three interconnected local networks were cho-
sen for the measurements. A single publisher was notifying
events from a first network (SUN ULTRA 60, SOLARIS 2.6,
256 Mb RAM, 9 Gb harddisk) to subscribers equally dis-
tributed over two remaining networks; the first one consist-
ing of all together 60 SUN SUPERSPARC 20 stations (model
502: 2 CPU, 64 Mb RAM, 1Gb harddisk and SOLARIS

2.6), and the second one consisting of 60 SUN ULTRA 10
(SOLARIS 2.6, 256 Mb RAM, 9 Gb harddisk) stations. The
individual stations and the different networks where com-
municating via FAST ETHERNET.

6.2 Topic-Based vs Type-Based Publish/Subscribe
with DACs

In a first step we compare the performances of pure type-
based and topic-based publish/subscribe. The difference is
little, and slightly in favor of type-based publish/subscribe.

Preliminary: type inclusion vs topic inclusion. Check-
ing an object for its conformance to a type is a well-studied
problem in object-oriented languages and can be realized
very efficiently, as conveyed by [VHK97]. This observation
is very much in favor of using the type system of the lan-
guage to classify messages, instead of adding attributes to
message objects.

In JAVA, checking an object for conformance to a type
appears to be less costly than querying one of the object’s
attributes through a method call and comparing it to a given
value.11 Figure 17 compares the latency of classifying mes-
sage objects by evaluating their topic with the latency re-
sulting from checking the same message objects for their
conformance to a type. These tests have been made on a
SUN ULTRA 60 (SOLARIS 2.6, 256 Mb RAM, 9 Gb hard-
disk) with JAVA 1.2 (native threads).

Figure 17. Checking the Affiliation of a Message Object

Casts and channel lookups. The casts that are inserted
by GJ do not penalize generic DACs. In fact, with topic-
based publish/subscribe based on DACs, the casts must be
made as well, but are explicitly inserted in the client code
by the application developer (e.g., in the Notifiable ob-
ject).

Figure 18(a) compares the publishing of messages with
type-based and topic-based publish/subscribe. The differ-
ence in throughput results from the faster classification of
published messages thanks to efficient type inclusion tests.
This difference is independent of the number of subscribers,
since the channel lookup is done exactly once for every pub-
lished message. The difference in terms of throughput de-
creases thus with an increasing number of subscribers. Note
however that the scenario shown in the figure is based on a
single channel (corresponding to a single topic, resp. mes-
sage type), and thus the lookup was very fast. With an in-
creasing number of channels, the difference in terms of la-
tency becomes more important.

6.3 Adding Filters

As previouly explained, static schemes like the one
introduced with type-based publish/subscribe can be im-
plemented efficiently, but offer little expressiveness. On

11instanceof operator vs startsWith() method in
java.lang.String.



(a) Topic-Based vs Type-Based Publishing (b) Throughput with Matching Rate of 50%

Figure 18. Cost of Publishing Messages and Cost of Content-Based Matching

the other hand, the content-based approach enables finer
grained subscription criteria, but implementations suffer
from the cost claimed by the introduced dynamicity. It is
hence not possible to say which style is more convenient.
Our DACs combine the two, by enabling the application of
a content-based filter to a (sub)hierarchy of topics or types.

A simple example. In our running example on talk noti-
fications, some researchers might only be interested in talks
concerning certain subjects, like “Java” or “Multicast”, or
given by certain speakers.

Figure 19 shows how to restrict the talks to the ones
given by a specific person. The filter class Equals used
here compares the return value of a method with a prede-
fined value in the sense of the JAVA equals()method. The
second constructor argument corresponds to the parameter
list for the method call, which is empty in this case.

GDAC<Talk> talkDAC = new GDASet<Talk>("Talk");
Condition myEquals =
new Equals("getSpeaker", null,

"Patrick Eugster");
Notifiable<Talk> notifiable =
new TalkNotifiable();

talkDAC.containsAll(notifiable, myEquals);

Figure 19. Defining a Simple Condition

Filters and dynamism. The filters we provide as a li-
brary, like the Equals class, cover a broad spectrum of
possible application requirements, and programmers can
extend these by following certain guidelines. We have
initially designed our filter objects for general use, i.e.,
pure content-based publish/subscribe. The application

can define a method to filter message objects either (1)
directly through the corresponding method object (class
java.lang.reflect.Method), or (2) by the method
name and signature, as shown in Figure 19. In the first case,
the type of the message objects is known, since in JAVA a
Method object is bound to a type. This already gives the
possibility to generate static code, and to avoid costly dy-
namic method invocations.

However, for most application programmers reflection is
not straightforward to use, and it is much easier to initial-
ize a filter with a method name and the desired arguments,
as shown in Figure 19. In this case, the type of the mes-
sage objects is unknown, unless the filter is applied to a
generic DAC for type T , in which case the type of the mes-
sage objects, T , is given implicitly. This enables the entire
circumvention of any dynamic code by generating and com-
piling static filter code at runtime. Figure 20 outlines how
the condition myEquals in Figure 19 can be used to gener-
ate a static condition. As we will show in the following, the
speedup increases significantly.

We have also applied runtime compilation to enforce
static type checks in JAVA (instanceof operator instead
of the more costly dynamic isInstance() counterpart in
java.lang.Class) for the determination of the dissemi-
nation channel. The cost of dynamic compilation can usu-
ally be neglected, since subscriptions/unsubscriptions are
rare compared to the high number of application messages.

Matching rate of 50% Figure 18(b) compares the re-
spective throughputs of (1) topic-based publish/subscribe
combined with dynamic filters and (2) type-based pub-
lish/subscribe with static filters generated at runtime. In this
case, filters evaluated true in 50% of the cases (the value of
the integer carried by a message was arbitrarily chosen be-
tween 1 and 2). The difference in terms of latency is no



Dynamic Filter Resulting Static Filter
Message Object Object o Talk t

Required Result String rResult = "Patrick Eugster" String rResult = "Patrick Eugster"

Method Arguments null (none)
Method Class c = o.getClass()

Method m = c.getMethod("getSpeaker", null)

(“getSpeaker”)

Invocation Object result = m.invoke(o, null) Object result = t.getSpeaker()

Delivery Decision result.equals(rResult) result.equals(rResult)

Figure 20. Dynamic and Static Filters

longer constant but increases significantly with the num-
ber of subscribers. This reflects in the throughput, which
is roughly three times higher in the case of static filters with
type-based publish/subscribe.

Matching rate of 25% The same tests were made with a
satisfaction of the subscriber requirements for 25% of the
messages and are reported in Figure 21(a). In this case the
speedup factor reaches roughly four.

Dependency. Finally, Figure 21(b) shows the dependency
between the matching rate of subscriber criteria and the ben-
efit of type-based publish/subscribe, by varying the num-
ber of different possible values carried by the messages and
keeping the number of subscribers constant (100). With a
decreasing matching rate, the advantage of using type-based
publish/subscribe becomes visible. This is due to the fact
that matching is actually very expensive, also compared to
the effective sending of messages (in our case datagrams
over UDP sockets). On the other hand, with high matching
rates, the use of a finer static classification without filters
can bring even better results.

Throughput decreases rather linearly with an increasing
number of subscribers. Scalability can be improved by us-
ing intermediate repeaters.12 In our case, we have omit-
ted them to emphasize differences between different pub-
lish/subscribe styles with less than 1000 subscribers.

7 Discussion

This section discusses several issues related to generic
DACs. Limitations of generic DACs are discussing focus-
ing on distribution and the JAVA language and type system.

7.1 Subscribing to Nested JAVA Types

JAVA supports nested types,13 which means that a type
can be declared within another. There are four different

12These are also called event servers [Car98], routing daemons [TIB99]
or message brokers [ASS+98].

13According to [Mad99], we will avoid the term inner class.

ways of declaring nested types in JAVA. We discuss here
which nested types can be used to parameterize DACs.

Anonymous Classes: These are classes that have no name.
They combine the syntax for class definition with the syn-
tax for object instantiation. Such classes cannot be ref-
erenced and can thus not be used with GJ, i.e., generic
DACs can not be parameterized with anonymous classes.

Local Classes: A local class is defined within a block
of JAVA code, and is visible only within that block.
It can therefore not be defined as public. Conse-
quently, generic DACs can not be parameterized with lo-
cal classes.

Static Member Classes/Interfaces: A class (or interface) of
this kind behaves much like a top-level class (or inter-
face), except that it is declared within another class or in-
terface. A static member class can access static fields
and methods of the containing class. Such classes can be
used in conjunction with generic DACs, as long as they
are public and of course serializable.

Member Classes: This last kind of nested class is much like
the previous one, except that an instance is associated
with an instance of the class in which the member class
is declared. All fields and methods of that associated in-
stance are thus accessible as well. DACs can be parame-
terized with such member classes, provided that these are
public and serializable. Note that the containing class
must be serializable as well, since the associated instance
of the containing class must be transferred with the mem-
ber class instance in order to always be accessible to the
latter one.

7.2 Exploiting Multiple Subtyping

As explained in [BW98], JAVA uses name equivalence
of types, which means that two types are compatible only
if declared so. If two different types have the same parents
in their type hierarchy, instances of one type can not be as-
signed to variables of the other’s type. A type scheme which
allows this is said to enforce structural equivalence of types.
Both equivalences have their advantages and drawbacks,



(a) Matching Rate of 25% (b) Summary

Figure 21. Throughput with Content-Based Matching (cont’d)

and the issue here is not to discuss which one is better than
the other. Nevertheless, it would be interesting to restrict
a subscription to classes which implement more than one
type T1, ..., Tn), without having to explicitly introduce a
new type. According to MS,

Γ � subsp(T1, ..., Tn) ⇒
Γ � ∀ T ≤ {T1, ..., Tn} : subsp(T )

In that case, the subscriber only receives a subset of the
messages it would receive when subscribing to the subtypes
of only one of the Ti.

Figure 22 shows an example expressed with the syntax
of [BW98]. Instead of subscribing to several classes of talk
notifications, the application can delineate more easily that
it is interested in all talks of interest for both DI and DSC
only (whether the deparment of electricity (DE) or others
are also addressed or not). [BW98] is based on a specialized
compiler, contradicting the use of GJ. [LBR96] is another
approach based on a modified JVM.

7.3 Using Topics for Types

Most industrial strength solutions currently provide a
form of topic-based publish/subscribe. We show how the
strong resemblance between topics and types can be ex-
ploited for the realization of a type-based publish/subscribe
system by reusing (parts of) an architecture developed for a
topic-based one. With JAVA, the class inheritance hierarchy
can be straightforwardly mapped to a topic name hierarchy.
A class DSC can be mapped to a topic /DSC, and if a class
Talk extends DSC, then Talk can be mapped to a subtopic
/DSC/Talk. This mapping is possible, thanks to the two fol-
lowing properties of JAVA :

public interface DSC {...}

public interface DI {...}

public interface DE {...}
...

abstract interface DIandDSC extends DSC, DI;
...
GDAC<DIandDSC> talkDAC =

new GDAC<DIandDSC>("DIandDSC");
DIandDSC t = talkDAC.get();
...

Figure 22. Exploiting Multiple Subtyping for Precise Sub-

scribing

Unique Class Names: The naming conventions of
JAVA stipulate that class names are unique [GJS96]. This
gives an even stronger guarantee than actually required
to ensure that no two distinct classes can be mapped to
the same topic. In fact, it is sufficient if the URL-based
name obtained by following the inheritance path of a
class is unique. In other terms, two classes could very
well have the same name, but would have to produce
at least one different class in their inheritance path.
Otherwise two participants can introduce incompatible
homonymous types, leading to runtime errors.

Single Inheritance: In fact, with a traditional topic scheme,
a topic is subtopic of at most one supertopic. A single
inheritance scheme can be mapped in a straightforward
way to such a topic hierarchy, but the expressing of mul-
tiple inheritance requires some modifications to a URL-
like naming scheme (cf. Section 5).



7.4 Generic DACs in Perspective

Typed distributed interaction, as promoted by our
generic DACs, is also encountered in current middleware
solutions based on derivatives of the remote procedure
call, where an interface description is precompiled in or-
der to generate typed stubs and skeletons. We compare
here our generic DACs with such method-based middle-
ware, whereas the next section compares our generic DACs
to typed event-based middleware.

Separating compilation. As an example,
CORBA [OMG98a] relies on an IDL compiler, which
is used to map IDL descriptions to language-specific
constructs. We have first pursued a similar approach
by generating typed DAC interfaces and classes with a
specific precompiler for every message type T used by an
application.

The development of an application based on this
approach must however follow an exact order. After
completing the message class, the typed DAC classes
and interface can be generated. Typed DAC classes can
best be pictured as typed wrappers, which invoke untyped
constructs underneath. They mainly take care of type casts,
as outlined in Figure 23. Finally, the application code can
be compiled.

With CORBA, the precompilation phase is especially
required because interfaces are described in a specific lan-
guage. With JAVA RMI [Sun99a] typed stubs and skeletons
are generated through the rmic compiler beforehand,
although interfaces are described in JAVA. The application
does not explicitly deal with its specific stubs and skeletons,
and the separated compilation, first for remote interfaces
and then for the application code, is not a necessity but
promotes separation of concerns. In CORBA, separation
aims primarily at enforcing interoperability.

Typed Wrapper

Cast UntypedTyped

Invoking Object

Wrapped DAC

Figure 23. Generating Typed DACs

Stubs, skeletons and DACs. With a remote method in-
vocation à la CORBA, stubs and skeletons are mainly re-

quired to transparently marshal and unmarshal requests, re-
spectively. The former are located on the client side, and
offer an interface that corresponds to the remote server ob-
ject. In the general case, a server object is bound to a single
skeleton, but every object bearing a reference to a server ob-
ject has its own local stub.

DACs act both as stubs and as skeletons as shown in Fig-
ure 24. In fact, this symmetric proxy model is more ade-
quate in our context since the DAC is not bound to a single
consumer or producer. In the case of push-style interaction,
a consumer implements a Notifiable interface, through
which it is invoked. In the case of generic DACs, typed in-
terfaces and classes do not really exist. Casts are inserted in
the client code by GJ, and generic DACs can thus be viewed
as virtually typed proxies.

Remote Procedure Call with CORBA

Publish/Subscribe with DACs

DAC DAC

Stub Skeleton

Node 1

Node 1

Node 2

Node 2

Figure 24. DACs vs. Stubs/Skeletons

8 Related Work

Recently, the need for large scale event notification
mechanisms has been recognized. Much effort has there-
fore been invested in this domain, and a multitude of ap-
proaches have emerged from academic as well as industrial
efforts. We present here the main characteristics of specifi-
cations which make use of typed events, by giving the appli-
cation substantial freedom in defining its own event types,
instead of using message types defined as part of the mes-
saging API.

CORBA EVENT SERVICE. The OMG has speci-
fied a CORBA service for publish/subscribe oriented
communication, known as the CORBA EVENT SER-
VICE [OMG98b]. The specification is aimed to be general



enough to not preclude sub-specifications and various im-
plementations that would match the needs of specific appli-
cations. According to the general service specified, a con-
sumer interacts with an event channel expressing thereby an
interest in receiving all the events from the channel. In other
words, a filtering of events is done according to the channel
names, which basically correspond to topic names. Further-
more, typed events can be used. The application can pro-
vide a specific interface, which defines its own operations
through which it will be called, either to pull information
or to be pushed. Because the event service supports one-
way interaction, all operation parameters in the former case
must be tagged out, and in the latter case in. Typed proxies
are generated based on the application’s interface, which in
practice requires a specific compiler.14 For many users the
specification for typed interaction is difficult to understand,
and implementors find it hard to deal with [OMG00]. Most
implementations therefore only provide untyped events.

CORBA NOTIFICATION SERVICE. The deficiencies of
the CORBA EVENT SERVICE, such as the difficulties with
typed events described above as well as missing support for
QoS and realtime requirements, were apparent soon after
commercial implementations became available [SV97]. Af-
ter the emergence of extended and proprietary approaches
aimed at fixing the shortcomings of the event service (e.g.,
[HLS97]), the OMG has issued a request for proposal for
an augmented specification, the CORBA NOTIFICATION

SERVICE [OMG98c]. A notification channel is an event
channel with additional functionalities. Notions like pri-
ority and reliability are explicitly dealt with, and a new
form of typed events, called structured events is introduced.
Structured events can be seen as semi-typed events. They
provide a general type of messages, which manifest at-
tributes like event type and event name. They are roughly
composed of an event header and an event body. Both parts
consist of a fixed part (a fixed header, resp. a body car-
rying an any), and a variable part. The variable parts are
structured as name-value pairs, to which applications map
their specific needs. These structured events however only
partly solve the problem of typing, because the specification
only mentions a set of standardized and domain-specific
mappings, while most applications will require their own
mappings. Furthermore, in the context of content-based fil-
tering, the name-value pairs are seen as the attributes of
the message and are directly accessed through filter ob-
jects. Constraints are described as strings following a com-
plex subscription grammar called DEFAULT FILTER CON-
STRAINT LANGUAGE, which extends the OMG’s TRADER

CONSTRAINT LANGUAGE.

14COM+ EVENTS [Obe00] supports the same typed model, but only
for push-style interaction. EventClass objects are a form of typed
proxies, which must be provided by the application.

JAVA MESSAGE SERVICE. The JAVA MESSAGE SER-
VICE (JMS) [HBS98] is a specification from SUN. Its
goal is to offer a unified JAVA API around common mes-
saging engines. Commonalities and differences of topic-
and.content-based publish/subscribe have been realized and
integrated. In contrast to the CORBA EVENT and NOTI-
FICATION SERVICES, message queuing (point-to-point in-
teraction) is supported as integral part of JMS. Neverthe-
less, since it aims at wrapping existing solutions, the sup-
port for content-based subscription is done in a way similar
to the scheme encountered with the CORBA NOTIFICA-
TION SERVICE. Properties are explicitly attached to mes-
sages, and are in practice faithful copies of the message at-
tributes. Subscription patterns (message selectors) based on
these properties, are expressed through strings following a
specific grammar. The JMS API defines five types of mes-
sages with different payloads: text, bytes, stream, map and
object messages. The last one can be used to transport any
serializable JAVA object, but type casts are left to the appli-
cation.

JINI DISTRIBUTED EVENT SPECIFICATION. The JINI

DISTRIBUTED EVENT SPECIFICATION [AOS+99] is
straightforwardly based on the observer design pattern.
Registration of a RemoteEventListener with an event
generator indicates the kind of events that is of interest,
while a notification indicates an occurrence of that kind of
event. Such notifications are instances of a type Remo-

teEvent [Sun99c], which is subtyped to express specific
events. Unlike with generic DACs, the interpretation of the
concrete event type is thus left to the application, including
type casts.

JAVASPACE JAVASPACE is a more general approach
[Sun99b, FHA99] to publish/subscribe notification. In-
spired by LINDA’s TUPLE SPACE [Gel85], a JAVASPACE

is for example a container of objects that might be shared
among various suppliers and consumers. The JAVASPACE

type is described by a set of operations among which a
read operation to get a copy of an object from a JAVAS-
PACE, and a notify operation aimed at alerting some poten-
tial consumer object about the presence of some specific
object in the JAVASPACE. With a JAVASPACE one can thus
build a publish/subscribe communication scheme in which
the JAVASPACE plays the role of the event channel aimed at
broadcasting event notifications to a set of subscriber ob-
jects. Custom events can be generated by subtyping the
Event type [Sun99d]. To specify the type of events a sub-
scriber S is interested in, S must always provide a template
object ot when subscribing to a JAVASPACE. A necessary
condition for o, an object notifying an event, to be deliv-
ered to S is that o conforms to the type of ot. Furthermore,
the attributes of o and ot are compared byte-wise, and null



plays the role of wildcard. Type checking is hence not en-
forced at compilation and explicit type casts are necessary
inside the application code.

The specifications which offer type-safe interaction re-
quire explicit proxy generation. Furthermore, these ap-
proaches use the types of the consumers as classification
scheme, and events are not reified. In other terms, the event
type is seen as a composition of both the event information
type and the event consumer type. Other approaches force
the application to explicitly apply type casts on received
events. In contrast, generic DACs use an event classifica-
tion scheme purely based on the types of the effective event
notifications; the message objects. By relying on paramet-
ric polymorphism, generic DACs moreover make type casts
obsolete and circumvent any middleware-specific precom-
pilation. Nevetheless, it would be interesting to see how
one could implement services that comply with the above-
described specifications using generic DACs.

9 Conclusions

The two paradigms of object-orientation and messaging
have often been presented as contradictory [Koe99]. This
is due to the way these aspects are handled in current mid-
dleware. With so-called method-based (also called object-
oriented) middleware like CORBA [OMG98a] or JAVA

RMI [Sun99a], remote objects interact via remote method
invocation and distribution is often viewed as an implemen-
tation issue. This approach has been conducted by the legiti-
mate desire to provide distribution transparency, i.e., hiding
all aspects related to distribution under traditional central-
ized constructs.

As argued in [WWWK94, Lea97, Gue99] however, dis-
tribution transparency is a myth that is both misleading and
dangerous. Distributed interactions are inherently unreli-
able and often introduce a significant latency that is hardly
comparable to that of a local interaction.

With message-oriented middleware based on the pub-
lish/subscribe paradigm, the application becomes aware of
distribution again, but the ugly aspects are often hidden
behind abstractions like topics or channels. Such abstrac-
tions lead to classification schemes which are static and
offer only little expressiveness. The content-based pub-
lish/subscribe style removes certain limitations of topic-
based publish/subscribe, but presents other shortcomings:
it is not only difficult to implement efficiently, but is
also hard to express without violating encapsulation and
without using a complicated subscription language (e.g.,
[Car98, SA97, BCM+99, OMG00, HBS98]).

Our type-based publish/subscribe variant marries the two
worlds of object- and message-orientation, by considering
messages as first class objects. In this way, one can avoid
artificial classification schemes, e.g. based on topics. Mes-

sage objects are classified according to their type and no
additional property is attached to them. Consumers spec-
ify their interests by subscribing to types of message ob-
jects they wish to receive. This subscription scheme pro-
vides for a seamless integration of the programming lan-
guage and the middleware platform. When combined with
content-based filtering furthermore, the knowledge of the
type enables the generation of static filters from dynamic
application requirements expressed with filter objects from
a library. Such an approach circumvents any unwieldy sub-
scription language, preserves encapsulation, and can be im-
plemented very efficiently.

Our implementation of type-based publish/subscribe
combines two recent developments: it builds upon our
work on DISTRIBUTED ASYNCHRONOUS COLLECTIONS

(DACs) [EGS00], abstractions which alleviate any artifi-
cial distinction between different publish/subscribe styles,
and merges it with the latest advancements on genericity
in the Java language [BOSW98]. We have implemented
generic DACs both on UDP and on top of the VISIBRO-
KER CORBA EVENT SERVICE [Vis98].

The language characteristics we have chosen as a dis-
cussion base are very much driven by our implementation
choice – JAVA. We are currently working on a more general
analysis of the semantics of “subscribing to a type” with the
goal to illustrate key concepts in different programming lan-
guages. We intend to reuse these results to enforce language
interoperability by defining a specific event description lan-
guage based on CORBA IDL along with mappings for a
variety of common programming languages.

Acknowledgments

We would like to thank Martin Odersky for always being
at our disposal for questions concerning generic types in
general and its application to JAVA in particular, as well as
practical issues concerning GJ.

References

[Ada95] International Organization for Standardiza-
tion. Ada 95 Reference Manual - The Lan-
guage - The Standard Libraries, January
1995. ANSI/ISO/IEC-8652:1995.

[AEM99] M. Altherr, M. Erzberger, and S. Maffeis.
iBus - a software bus middleware for the Java



platform. In International Workshop on Reli-
able Middleware Systems, pages 43–53, Oc-
tober 1999.

[AFM97] O. Agesen, S.N. Freund, and J.C. Mitchell.
Adding type parameterization to the Java lan-
guage. In Proceedings of the 12th ACM Con-
ference on Object-Oriented Programming
Systems, Languages and Applications (OOP-
SLA’97), pages 49–65, October 1997.

[AOS+99] K. Arnold, B. O’Sullivan, R.W. Scheifler,
J. Waldo, and J. Wollrath. The Jini Specifi-
cation. Addison-Wesley, June 1999.

[ASS+98] M.K. Aguilera, R.E. Strom, D.C. Sturman,
M. Astley, and T.D. Chandra. Matching
events in a content-based subscription sys-
tem. In Proceedings of the 18th ACM Sympo-
sium on Principles of Distributed Computing
(PODC’99), November 1998.

[BCM+99] G. Banavar, T. Chandra, B. Muhkerjes, J. Na-
garajarao, R.E. Strom, and D.C. Sturman. An
efficient multicast protocol for content-based
publish-subscribe systems. In Proceedings
of the 19th IEEE International Conference
on Distributed Computing Systems (ICDCS
’99), 1999.

[Bir93] K.P. Birman. The process group approach to
reliable distributed computing. Communica-
tions of the ACM, 36(12):36–53, December
1993.

[BJ87] K.P. Birman and T.A Joseph. Reliable com-
munication in presence of failures. ACM
Transactions on Computer Systems, 5(1):47–
76, February 1987.

[BOSW98] G. Bracha, M. Odersky, D. Stoutamire, and
Ph. Wadler. Making the future safe for the
past: Adding genericity to the Java program-
ming language. In Proceedings of the 13th
ACM Conference on Object-Oriented Pro-
gramming Systems, Languages and Applica-
tions (OOPSLA’98), pages 183–200, October
1998.

[BR97] G. Baumgartner and V.F. Russo. Implement-
ing signatures for C++. ACM Transactions
on Programming Languages and Systems
(TOPLAS), 19(1):153–187, January 1997.

[BW98] M. Buchi and W. Weck. Compound types
for Java. In Proceedings of the 13th ACM

Conference on Object-Oriented Program-
ming Systems, Languages and Applications
(OOPSLA’98), pages 362–373, October 18–
22 1998.

[BZ87] T. Bloom and S.B. Zdonik. Issues in the
design of object-oriented database program-
ming languages. In Proceedings of the 2nd
ACM Conference on Object-Oriented Pro-
gramming Systems, Languages and Applica-
tions (OOPSLA’87), pages 441–451, 1987.

[Car98] A. Carzaniga. Architectures for an Event
Notification Service Scalable to Wide-area
Networks. PhD thesis, Politecnico di Milano,
http://www.cs.colorado.edu/carzanig/papers/,
December 1998.

[CHC90] W.R. Cook, W.L. Hill, and P.S. Canning.
Inheritance is not subtyping. In Confer-
ence Record of the 17th ACM SIGPLAN-
SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’90), pages
125–135, 1990.

[Cor99] Talarian Corporation. Everything You need
to know about Middleware: Mission-Critical
Interprocess Communication (White Paper).
http://www.talarian.com/, 1999.

[CS98] C. Cartwright and G. Steele. Compati-
ble genericity with run-time types for the
Java programming language. In Proceed-
ings of the 13th ACM Conference on Object-
Oriented Programming Systems, Languages
and Applications (OOPSLA’98), pages 201–
215, October 1998.

[Dee94] S. Deering. Internet multicasting. In ARPA
HPCC 94 Symposium. Advanced Research
Projects Agency Computing Systems Tech-
nology Office, March 1994.

[DEK99] S. Drossopoulou, S. Eisenbach, and S. Khur-
shid. Is the Java type system sound? The-
ory and Practice of Object Systems, 5(1):3–
24, 1999.

[EGS00] P. Eugster, R. Guerraoui, and J. Sventek.
Distributed Asynchronous Collections: Ab-
stractions for publish/subscribe interaction.
In Proceedings of the 14th European Con-
ference on Object-Oriented Programming
(ECOOP’2000), June 2000.



[ES92] M.A. Ellis and B. Stroustrup. The Annotated
C++ Reference Manual. Addison-Wesley,
1992.

[FHA99] E. Freeman, S. Hupfer, and K. Arnold.
JavaSpaces Principles, Patterns, and Prac-
tice. Addison-Wesley, June 1999.

[Gel85] D. Gelernter. Generative communication in
Linda. ACM Transactions on Programming
Languages and Systems (TOPLAS), 7:80–
112, January 1985.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns, Elements of Reusable
Object-Oriented Software. Addison-Wesley,
1995.

[GJS96] J. Gosling, B. Joy, and G. Steele. The Java
language specification. Technical report, Sun
Microsystems Inc., 1996.

[GR83] A.J. Goldberg and A.D. Robson.
SMALLTALK-80: The Language and its
Implementation. Addison-Wesley, 1983.

[Gue99] R. Guerraoui. What object-oriented dis-
tributed programming does not have to be,
and what it may be. Informatik, 2, April
1999.

[HBS98] M. Happner, R. Burridge, and R. Sharma.
Java Message Service. Technical report, Sun
Microsystems Inc., October 1998.

[HLS97] T. Harrison, D. Levine, and D.C. Schmidt.
The design and performance of a real-time
CORBA event service. In Proceedings of the
12th ACM Conference on Object-Oriented
Programming Systems, Languages and Ap-
plications (OOPSLA’97), pages 184–200,
October 1997.

[KdRB91] G. Kiczales, J. des Rivières, and D.G. Bo-
brow. The Art of the Metaobject Protocol.
MIT Press, 1991.

[KKT96] S. K. Kasera, J. Kurose, and D. Towsley.
Scalable reliable multicast using multiple
multicast groups. Technical Report UM-
CS-1996-073, University of Massachusetts,
Amherst, Computer Science, October 1996.

[KLM+97] G. Kiczales, J. Lamping, A. Menhdhekar,
Ch. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming.

In Proceedings of the 11th European Con-
ference on Object-Oriented Programming
(ECOOP’97), pages 220–242. June 1997.

[Koe99] P. Koenig. Messages vs. objects for appli-
cation integration. Distributed Computing,
2(3):44–45, April 1999.

[LBR96] K. Läufer, G. Baumgartner, and V.F. Russo.
Safe structural conformance for java. Tech-
nical Report CSD-TR-96-077, Dep. of Com-
puter Sciences, Purdue University and West
Lafayette, IN, December 1996.

[Lea97] D. Lea. Design for open systems in
Java. In 2nd International Conference
on Coordination Models and Languages,
http://gee.cs.oswego.edu/dl/coord/, 1997.

[Mad99] O.L. Madsen. Semantic analysis of vir-
tual classes and nested classes. In Proceed-
ings of the 14th ACM Conference on Object-
Oriented Programming Systems, Languages
and Applications (OOPSLA’99), pages 114–
131, November 1999.

[MBL97] A.C. Myers, J.A. Bank, and B. Liskov. Pa-
rameterized types for Java. In Conference
Record of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming
Languages (POPL’97), pages 132–145, New
York, NY, January 1997.

[Mey92] B. Meyer. Eiffel: The Language. Object-
Oriented Series. Prentice-Hall, 1992.

[Mic99] Microsoft. DCOM Technical Overview
(White Paper), 1999.

[OAA+00] L. Opyrchal, M. Astley, J. Auerbach, G. Ba-
navar, R. Strom, and D. Sturman. Exploit-
ing IP Multicast in content-based publish-
subscribe systems. In Proceedings of
the IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware
2000), April 2000.

[Obe00] R.J. Oberg. Understanding & Programming
COM+. Prentice Hall, 2000.

[Obj99] ObjectSpace. JGL -
Generic Collection Library.
http://www.objectspace.com/products/jgl/,
1999.

[OMG98a] OMG. The Common Object Request Broker:
Architecture and Specification. OMG, Febru-
ary 1998.



[OMG98b] OMG. CORBAservices: Common Object
Services Specification, Chapter 4: Event Ser-
vice. OMG, December 1998.

[OMG98c] OMG. Notification Service - Joint revised
submission. OMG, January 1998.

[OMG00] OMG. Notification Service Standalone Doc-
ument. OMG, June 2000.

[OPSS93] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen.
The information bus - an architecture for ex-
tensible distributed systems. In 14th ACM
Symposium on Operating System Principles,
pages 58–68, December 1993.

[OW97] M. Odersky and Ph. Wadler. Pizza into Java:
Translating theory into practice. In Con-
ference Record of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’97), pages
146–159, Paris, France, 15–17 January 1997.

[Pow96] D. Powell. Group communications. Com-
munications of the ACM, 39(4):50–97, April
1996.

[Rei91] M. Reiser. The Oberon System. ACM Press,
1991.

[RW97] D. Rosenblum and A. Wolf. A design frame-
work for internet-scale event observation and
notification. In 6th European Software Engi-
neering Conference/ACM SIGSOFT 5th Sym-
posium on the Foundations of Software Engi-
neering, September 1997.

[SA97] B. Segall and D. Arnold. Elvin has left
the building: A publish/subscribe notifica-
tion service with quenching. In Proceed-
ings of the Australian UNIX and Open Sys-
tems User Group Conference (AUUG’97),
http://www.dtsc.edu.au/, September 1997.

[SA98] J.H. Solorzano and S. Alagic. Parametric
polymorphism for Java: A reflective solution.
In Proceedings of the 13th ACM Conference
on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’98),
pages 216–225, October 1998.

[SCC+93] Y.-P. Shan, T. Cargill, B. Cox, W. Cook,
M. Loomis, and A. Snyder. Is multiple inheri-
tance essential to OOP? (Panel). In Proceed-
ings of the 8th ACM Conference on Object-
Oriented Programming Systems, Languages
and Applications (OOPSLA’93), pages 363–
363, September 1993.

[Ske98] D. Skeen. Vitria’s Publish-Subscribe Ar-
chitecture: Publish-Subscribe Overview.
http://www.vitria.com, 1998.

[SL95] A. Stepanov and M. Lee. The Standard
Template Library. Technical report, Silicon
Graphics Inc., October 1995.

[SO95] D.D. Straube and M.T. Özsu. Query op-
timization and execution plan generation in
object-oriented data management systems.
IEEE Transactions on Knowledge and Data
Engineering, 7(2), April 1995.

[SSLB97] P. Sanjoy, K. Sabnai, J.C. Lin, and S. Bhat-
tacharyya. Reliable multicast transport pro-
tocol (RMTP). IEEE Journal on Selected
Areas in Communications, 15(3):407–421,
April 1997.

[Sun99a] Sun. Java Remote Method Invocation - Dis-
tributed Computing for Java (White Paper),
1999.

[Sun99b] Sun. JavaSpaces specification. Technical
report, Sun Microsystems Inc., November
1999.

[Sun99c] Sun. Jini distributed event specification.
Technical report, Sun Microsystems Inc.,
November 1999.

[Sun99d] Sun. Jini Entry specification. Technical
report, Sun Microsystems Inc., November
1999.

[SV97] D. Schmidt and S. Vinoski. Overcoming
drawbacks in the OMG Event Service. SIGS
C++ Report magazine, 10, June 1997.

[Sym97] D. Syme. Proving Java type soundness. Tech-
nical Report 427, University of Cambridge
Computer Laboratory, June 1997.

[TIB99] TIBCO. TIB/Rendezvous White Paper.
http://www.rv.tibco.com/whitepaper.html,
1999.

[TOHS99] P. Tarr, H. Ossher, W. Harrison, and S.M.
Sutton. N degrees of separation: Multi-
dimensional separation of concerns. In Pro-
ceedings of the 21st International Confer-
ence on Software Engineering, pages 107–
119, 1999.

[TT99] K.K. Thorup and M. Torgersen. Unifying
genericity: Combining the benefits of vir-
tual types and parameterized classes. In



Proceedings of the 13th European Con-
ference on Object-Oriented Programming
(ECOOP’99), pages 186–204. June 1999.

[VHK97] J. Vitek, R.N. Horspool, and A. Krall. Ef-
ficient type inclusion tests. In Proceed-
ings of the 12th ACM Conference on Object-
Oriented Programming Systems, Languages
and Applications (OOPSLA’97), pages 142–
157, October 1997.

[Vis98] Visigenic. Naming and Event Services Pro-
grammer’s Guide 3.2. Visigenic Software,
Inc., Feb 1998.

[WWWK94] J. Waldo, G. Wyant, A. Wollrath, and
S. Kendall. A note on distributed comput-
ing. Technical report, Sun Microsystems Inc.,
November 1994.


