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Abstract Decorrelation theory has recently been proposed in order to address the security of block
ciphers and other cryptographic primitives over a �nite domain. We show here how to extend it to
in�nite domains, which can be used in the Message Authentication Code (MAC) case.
In 1994, Bellare, Kilian and Rogaway proved that CBC-MAC is secure when the input length is �xed.
This has been extended by Petrank and Racko� in 1997 with a variable length.
In this paper, we prove a result similar to Petrank and Racko�'s one by using decorrelation theory.
This leads to a slightly improved result and a more compact proof.
This result means to be a general proving technique for security, which can be compared to the approach
which was announced by Maurer at CRYPTO'99.

Decorrelation theory has recently been introduced. (See references [17] to [22].) Its �rst
aim was to address provable security in the area of block ciphers in order to prove their secu-
rity against di�erential [7] and linear cryptanalysis [10]. As a matter of fact, these techniques
have also been used in order to prove Luby-Racko� [9]-like pseudorandomness results in a
way similar to Patarin's \coeÆcient H method" [14,15]. All previous cases however address
random functions over a �nite domain, which is not appropriate for MACs.

The CBC-MAC construction is well known in order to make Message Authentication
Codes from a block cipher in Cipher Block Chaining mode. Namely, if C is a permutation
de�ned on a block space f0; 1gm, for a message x = (m1; : : : ; m`) 2 (f0; 1gm)` we de�ne

MAC(x) = C(C(: : : C(m1) +m2 : : :) +m`):

In 1994, Bellare, Kilian and Rogaway proved that if C is a uniformly distributed random
permutation, then for any integer ` and any distinguisher between MAC and a truly random
function which is limited to d queries, the advantage is less than 3d2`22�m [6]. This shows
that no adaptive attack can forge a new valid (x;MAC(x)) pair with a relevant probability
unless the total number of known blocks d` is within the order of 2

m
2 . This however holds

when all messages have the �xed length `. If the attacker is allowed to use messages with
di�erent length, it is easy to notice that for any message m and any block a the MAC of x
concatenated with a�MAC(x) is

MAC(x; a�MAC(x)) = C(a)

which does not depend on x and allows to forge a new authenticated message by replacement
of x.

In 1997, Petrank and Racko� addressed the case of DMAC de�ned by

MAC(x) = C2(C1(C1(: : : C1(m1) +m2 : : :) +m`))

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(see [16]). This type of construction does not mean any originality since it is already suggested
by several standards [2,3,4]. Its security was however formally proved in [16] for the �rst time.

If we replace C2 by C2 Æ C
�1
1 we can obviously remove the last C1 application. We can

thus consider the MAC de�ned by

MAC(x) = C2(C1(: : : C1(m1) +m2 : : :) +m`)

which we call the \encrypted CBC-MAC" in the sequel. In this paper we give a security
proof which is di�erent from [16] and with a slightly improved reduction. Our proof also
happens to be more compact (it is less than 2-page long), thanks to use of the decorrelation
theory tools. Our approach is also more general and can be applied to other schemes. In this
way it can be compared to the information theoretic general approach which was announced
by Maurer at CRYPTO'99 [12].

1 Prerequisite

1.1 De�nitions and Notations

First of all, for any random function F from a set M1 to a set M2 and any integer d we
associate the \d-wise distribution matrix" which is denoted [F ]d, de�ned in the matrix set

RMd
1
�Md

2 by
[F ]d(x1;:::;xd);(y1;:::;yd) = Pr[F (x1) = y1; : : : ; F (xd) = yd]:

Given a metric structure D in RMd
1
�Md

2 we can de�ne the distance between the matrices
associated to two random functions F and G. This is the \d-wise decorrelation distance".
If G is a random function uniformly distributed in the set of all functions from M1 to M2

(we let F � denote such a function), this distance is called the \d-wise decorrelation bias
of function F" and denoted DecFd

D(F ). When F is a permutation (which will usually be
denoted C as for \Cipher") and G is a uniformly distributed permutation (denoted C�) it is
called the \d-wise decorrelation bias of permutation F" and denoted DecPd

D(F ). In previous
results we used the metric structures de�ned by the norms denoted jj:jj2 (see [18]), jjj:jjj1,
jj:jja, jj:jjs (see [21]). These four norms are matrix norms, which means that they are norms
on RMd

1
�Md

2 with the property that

jjA� Bjj � jjAjj:jjBjj:

This property leads to non-trivial inequalities which can shorten many treatments on the
security of conventional cryptography.

Given two random functions F and G from M1 to M2 we call \distinguisher between
F and G" any oracle Turing machine AO which can send M1-element queries to the oracle
O and receive M2-element responses, and which �nally outputs 0 or 1. In particular the
Turing machine can be probabilistic. In the following, the number of queries to the oracle
will be limited to d. The distributions on F and G induces a distribution on AF and AG,
thus we can compute the probability that these probabilistic Turing machines output 1. The
advantage for distinguishing F from G is

AdvA(F;G) = Pr
h
AF ! 1

i
� Pr

h
AG ! 1

i
:
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For any class of distinguishers Cl we will denote

AdvCl(F;G) = max
A2Cl

AdvA(F;G):

We notice that if A is a distinguisher, we can always de�ne a complementary distinguisher
�A = 1�A which gives the opposite output. There is no need for investigating the minimum
advantage when the class is closed under the complement (which is the case of the above
class) since

Adv �A(F;G) = �AdvA(F;G):

We consider the class Clda of all (adaptive) distinguishers limited to d queries.

1.2 Properties

The d-wise distribution matrices have the property that if F and G are independent random
functions, F fromM2 to M3 and G fromM1 to M2, then

[F ÆG]d = [G]d � [F ]d:

Thus, if we are using a matrix norm jj:jj, we obtain

DecFd
jj:jj(F ÆG) � DecFd

jj:jj(F ):DecF
d
jj:jj(G):

and the same for permutations.
The jj:jja norm de�ned in [21] has the quite interesting property that it characterizes the

best advantage of a distinguisher in Clda.

Lemma 1 ([21]). For any random functions F and G we have

jj[F ]d � [G]djja = 2:AdvClda(F;G):

In this paper, we will use the jj:jja norm only and omit it in the notations.
Finally we recall the following lemma.

Lemma 2 ([21]). Let d be an integer, F1; : : : ; Fr be r random function oracles, and C1; : : : ; Cs

be s random permutation oracles. We let 
 be a deterministic oracle Turing machine which
can access to the previous oracles and an input tape x. It de�nes a random function G(x) =

(F1; : : : ; Fr; C1; : : : ; Cs)(x). We assume that 
 is such that the number of queries to Fi

is limited to some integer ai, and the number of queries to Cj is limited to bj in total for
any i = 1; : : : ; r and any j = 1; : : : ; s. We let the F �

i (resp. C�
j ) be independent uniformly

distributed random functions (resp. permutations) on the same range than Fi (resp. Cj) and
we let G� = 
(F �

1 ; : : : ; F
�
r ; C

�
1 ; : : : ; C

�
s ). We have

DecFd(G) �
rX

i=1

DecFaid(Fi) +
sX

j=1

DecPbjd(Cj) + DecFd(G�):

This lemma actually separates the problem of studying the decorrelation bias of a construc-
tion scheme into the problem of studying the decorrelation biases of its internal functions Fi

and Cj and studying the decorrelation bias of an idealized version G�.
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1.3 The CoeÆcient H Method

Patarin introduced the \coeÆcient H method" which enables to make pseudorandomness
proofs more systematic. In the decorrelation theory setting, this method can be formalized
by the following lemma.

Lemma 3. Let d be an integer. Let F be a random function from a set M1 to a set M2.
We let X be the subset of Md

1 of all (x1; : : : ; xd) with pairwise di�erent entries. We let F �

be a uniformly distributed random function from M1 to M2. We assume there exist a subset
Y � Md

2 and two positive numbers �1 and �2 such that

{ jYj(#M2)
�d � 1� �1

{ 8x 2 X 8y 2 Y [F ]dx;y � (1� �2)(#M2)
�d.

Then we have DecFd(F ) � 2�1 + 2�2.

This lemma intuitively means that if [F ]dx;y is close to [F �]dx;y for all x and almost all y,
then the decorrelation bias of F is small. Although this lemma is quite straightforward with
techniques inspired by Patarin [14,15] and Maurer [11], it is formally proved in [22].

As an illustration, Lemma 3 can be used in order to prove the famous Luby-Racko�
Theorem easily as shown in Appendix.

Theorem 4 (Luby-Racko� 1986 [9]). Let F �
1 ; F

�
2 ; F

�
3 be three independent random func-

tions on f0; 1g
m
2 with uniform distribution. We have

DecFd(	(F �
1 ; F

�
2 ; F

�
3 ))� 2d2:2�

m
2

DecPd(	(F �
1 ; F

�
2 ; F

�
3 ))� 2d2:2�

m
2 :

The results hold for Feistel schemes de�ned from any (quasi)group operation.1

2 Decorrelation Biases of Functions over an In�nite Domain

In order to de�ne decorrelation biases of MACs, we need to address the problem of having
in�nite sets. Let for instance F be a random function de�ned from M�

1 to M2 (M�
1 is

the set of all �nite sequences with entries inM1). We de�ne the [F ]q1;:::;qd matrix with rows
de�ned onMq1

1 �: : :�M
qd
1 and columns de�ned onMd

2. Next we de�ne DecF
q1;:::;qd(F ) as the

distance between [F ]q1;:::;qd and [F �]q1;:::;qd, where F � has a uniform distribution. Additionally,
we can de�ne

DecFd;q(F ) = max
q1+:::+qd=q

DecFq1;:::;qd(F ):

We can easily check that all previous results remain valid for these de�nitions, namely:

{ The best advantage of a distinguisher limited to d (adaptively) chosen queries with a
total length of q blocks between F and F � is 1

2
DecFd;q(F ).

1 Here 	(F �

1 ; F
�

2 ; F
�

3 ) is the standard notation for a Feistel cipher with three rounds and round functions F �

1 ; F
�

2 ; F
�

3 .
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{ As in Lemma 2, if G = 
(F1; : : : ; Fr; F
0
1; : : : ; F

0
s) uses functions Fi and F 0

j on �xed input
length, but with occurrence numbers of ai` and bj respectively where ` is the length of
the input of G, we have

DecFd;q(G) �
rX

i=1

DecFaiq(Fi) +
sX

j=1

DecFbjd(F 0
j) + DecFd;q(G�):

We can use permutations Ci and C 0
j as well and have DecP instead of DecF, or even

mixtures of functions and permutations.

{ Lemma 3 still holds with DecFd;q instead of DecFd and X equal to the set of (x1; : : : ; xd)
with total length q.

3 Security of MAC

Message Authentication Codes (MAC) are functions which map any binary string onto a
�xed length value2 with a secret key. In this paper, we consider functions de�ned on the
set (f0; 1gm)� of �nite sequences of m-bit integers.3 For instance, given a block cipher EncK
which is a permutation on f0; 1gm de�ned from a secret key K, we consider the CBC-MAC
construction de�ned by

MACK(m1; : : : ; m`) = EncK(EncK(: : :EncK(m1) +m2 : : :) +m`):

Since the secret key K is unknown by the opponent and chosen at random by the legitimate
user, we can consider equivalently C = EncK as a random permutation with a given publicly
known distribution, and the MAC itself as a random function.

The purpose of MACs is to authenticate messages. Namely, the legitimate authenticator
provides MAC(x) is order to authenticate a message x. Saying that a MAC is (d; q; p)-secure
means that for any opponent who can use the legitimate authenticator as an oracle for at
most d� 1 chosen messages x1; : : : ; xd�1 and issue an (xd; c) pair such that xd 6= xi for any i
and that the total length of x1; : : : ; xd is of q m-bit blocks, the probability that c = MAC(xd)
is less than p. This is the security against adaptive existential forgery attacks.

We notice that if MAC is such that DecFd;q(MAC) = �, then it is a (d; q; 2�m+ �
2
)-secure

MAC. Namely, for any opponent we can make a distinguisher who just query the forged
xd and check whether the output is c or not. Since the advantage must be less than �

2
, the

probability of success of the opponent must be less than �
2
plus the probability of success

against a truly random function, which is 2�m. Hence we use DecFd;q(MAC) upper bounds
as security evidences.

For instance, we can consider the Bellare-Kilian-Rogaway result which works with a �xed
input length `.

2 More precisely, the MAC is the output of the function, but will improperly call the function a MAC.
3 Note that arbitrary bit strings do not always have an integral number of blocks. For this we must use a padding
scheme like the Merkle-Damg�ard [8,13] one in order to transform an arbitrary string into a string with an integral
number of blocks. In this paper we prove the security for padded messages which induces the security for the whole
scheme with the padding scheme.
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Theorem 5 (Bellare-Kilian-Rogaway 1994 [6]). For any �xed integer `, we consider
the function MAC de�ned on ` m-bit blocks from a uniformly distributed random function
F � as follows.

MAC(m1; : : : ; m`) = F �(F �(: : : F �(m1) +m2 : : :) +m`):

For any d we have DecFd(MAC) � 6d2`22�m. The result holds for any (quasi)group addition.

Here is another result which is quite similar to the An-Bellare result [5].

Theorem 6 ([22]). Let F1 and F2 be two independent random functions from f0; 1gb+m to
f0; 1gb. For any ` and any (m1; : : : ; m`) 2 (f0; 1gm)` we de�ne

MAC(m1; : : : ; m`) = F2(F1(: : : F1(F1(0; m1); m2) : : : ; m`); `)

where 0 means a b-bit zero string, and ` means an m-bit string which represents the ` value.
Considering distinguishers limited to d queries and a total length of qm bits we have

DecFd;q � DecFq(F1) + DecFd(F2) + q(q � 1)2�m:

Finally, here is the Petrank-Racko� [16] result.

Theorem 7 (Petrank-Racko� [16]). Let C1 and C2 be two independent random permuta-
tions on f0; 1gm with the same distribution C. For any ` and any (m1; : : : ; m`) 2 (f0; 1gm)`

we de�ne

MAC(m1; : : : ; m`) = C2(C1(C1(: : : C1(C1(m1) +m2) : : :+m`�1) +m`)):

Considering adaptive distinguishers limited to d queries and a total length of qm bits we have

DecFd;q(MAC) � 2DecPq(C) + 4q22�m:

The result holds for any (quasi)group addition.

4 Encrypted CBC-MAC

Here is our main result.

Theorem 8. Let C1 and C2 be two independent random permutations on f0; 1gm. For any
` and any (m1; : : : ; m`) 2 (f0; 1gm)` we de�ne

MAC(m1; : : : ; m`) = C2(C1(: : : C1(C1(m1) +m2) : : :+m`�1) +m`):

Considering adaptive distinguishers limited to d queries and a total length of qm bits we have

DecFd;q(MAC)� DecPq�d(C1) + DecPd(C2)

+d(d� 1)2�m + q(q + 1)(1 + q2�m)2�m:

The result holds for any (quasi)group addition.
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This result is slightly better than Theorem 7.

Proof. Lemma 2 reduces to the case where C1 and C2 are independent uniformly distributed
random permutations.

Using Lemma 3, let Y be the set of all y = (y1; : : : ; yd) with di�erent yis. We thus have

�1 = 1�
2md

2m(2m � 1) : : : (2m � d+ 1)
�

d(d� 1)

2
2�m:

Now for any collection of xi = (mi;1; : : : ; mi;qi) we let

Ui;j = C1(: : : C1(C1(mi;1) +mi;2) : : :+mi;j�1) +mj:

We consider the event E that all Ui;qi are pairwise di�erent. We have

[MAC]q1;:::;qdx;y � Pr[MAC(xi) = yi; i = 1; : : : ; d and E]

= Pr[MAC(xi) = yi; i = 1; : : : ; d=E] Pr[E]

=
1

2m(2m � 1) : : : (2m � d+ 1)
Pr[E]

� 2�md(1� Pr[ �E])

therefore we can take �2 = Pr[ �E] = Pr[9i < r;Ui;qi = Ur;qr ].

The remaining part of the proof consists of upper bounding �2 by
q(q+1)

2
(1 + q2�m)2�m

and applying Lemma 3.
We call a collision an event Ui;j = Ur;s. This collision is trivial if (mi;1; : : : ; mi;j) =

(mr;1; : : : ; mr;s) and non-trivial otherwise. Let Inv be the event that C1(Ui;j) = 0 for some
i; j, and let Coll be the event that we have a non-trivial collision. We can easily show that the
�E event is included in Inv[Coll: if Ui;qi = Ur;qr , then eithermi;qi 6= mr;qr and it is a non-trivial
collision, or it reduces to Ui;qi�1 = Ur;qr�1 and we can iterate... Thus �2 � Pr[Inv] + Pr[Coll].

The probability that any adaptive attack against C1 �nds a preimage of 0 after q � d
queries is obviously less than q

2m�q
. Thus Pr[Inv] � q

2m�q
.

We let U be the set of all Ui;j-indices, which means the set of all (i; j) such that 1 � i � d
and 1 � j � qi. For A � U we let c(A) be

c(A) = f(i; j); 9(r; s) 2 A i = r and j � sg:

Thus c(A) is the set the indices of all Ui;j which are required in order to compute all Ur;s

values for (r; s) 2 A. We de�ne an ordering on 2U by

A � B () c(A) � c(B):

We let I be the set of all indices pairs of potential non-trivial collisions Ui;j = Ur;s, namely
the set of all pairs f(i; j); (r; s)g of U -elements such that (mi;1; : : : ; mi;j) 6= (mr;1; : : : ; mr;s).
For f(i; j); (r; s)g 2 I we let Colli;j;r;s be the event of the collision Ui;j = Ur;s (which is nec-
essarily non-trivial since f(i; j); (r; s)g 2 I), and we let MinColli;j;r;s be the complementary
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in Colli;j;r;s of the union of all Colli0;j0;r0;s0 for f(i
0; j 0); (r0; s0)g 2 I and f(i0; j 0); (r0; s0)g <

f(i; j); (r; s)g. We easily notice that

Coll =
[

f(i;j);(r;s)g2I

MinColli;j;r;s:

We have at most q(q�1)
2

terms in I. Hence

Pr[Coll] �
q(q � 1)

2
max

f(i;j);(r;s)g2I
Pr[MinColli;j;r;s]:

For f(i; j); (r; s)g 2 I, let us consider the MinColli;j;r;s event. We assume without loss of
generality that s � j. Since we have no previous collision we must have mi;j 6= mr;s. Further-
more we must have Ui;j�1 6= Ur;s�1 because C1 is a permutation (otherwise C1(Ui;j�1) +mi;j

cannot be equal to C1(Ur;s�1) +mr;s) and j > 1, and we need to consider the event

C1(Ui;j�1) +mi;j = Ur;s:

If we have a collision Ui;j�1 = Ui0;j0 with (i; j�1) 6= (i0; j 0) and (i0; j 0) 2 c(i; j; r; s), it must be
trivial (otherwise the initial collision is not minimal) which means j 0 = j � 1 and i0 = r 6= i
and (mi;1; : : : ; mi;j�1) = (mr;1; : : : ; mr;j�1). If s < j we have Ui;j = Ur;s and Ur;s = Ui;s thus
Ui;j = Ui;s which is non-trivial, which contradicts the minimality of the initial collision. Thus
we must have s = j, but the trivial collision Ui;j�1 = Ur;j�1 then contradicts Ui;j�1 6= Ur;s�1.
Therefore Ui;j�1 is equal to no Ui0;j0 for (i

0; j 0) 2 c(i; j; r; s)\f(i; j � 1)g. This implies that
the marginal distribution of C1(Ui;j�1) with the knowledge of all previous Ui0;j0 is uniform
among a set of at least 2m � q + 1 elements. Hence Pr[MinColli;j;r;s] �

1
2m�q

.
Finally we obtain

�2 �
q

2m � q
+
q(q � 1)

2
�

1

2m � q
�

q(q + 1)

2
(1 + q2�m)2�m:

Applying Lemma 3 now completes the proof. ut

5 Extensions

In our result we notice that since d � q, the bound is small until q reaches the order
of 2

m
2 . This result is tight since usual collision attacks can break our construction within

this complexity. Actually, we can query 2
m
2 two-block messages until we get a collision

MAC(m1; m2) = MAC(m0
1; m

0
2) then query c = MAC(m1; m2; m3) and output a forged au-

thenticated message ((m0
1; m

0
2; m3); c). We have d = 2

m
2 +2 and q = 2:2

m
2 +6 and p � 1�e�1.

We may think that since we have an m-bit MAC and a security of 2
m
2 uses we have an

eÆciency loss in term of storage. We can improve this construction by shrinking the MAC
on m

2
bits as suggested in most of standards. More precisely, let F be a random function

from f0; 1gm to f0; 1gb. We can de�ne

MAC(m1; : : : ; m`) = F (C(: : : C(C(m1) +m2) : : :+m`�1) +m`)
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and we have

DecFd;q(MAC) � DecPq(C) + DecFd(F ) + q(q + 1)(1 + q2�m)2�m:

(In the proof, we take Y equal to the full set so that �1 = 0.)
If we now want to shorten the two keys, we can replace the independent C and F random

functions by dependent ones. Let jj[C; F ]q � [C�; F �]qjja denote the decorrelation distance
between the (x; y) 7! (C(x); F (y)) and the (x; y) 7! (C�(x); F �(y)) functions where C� and
F � are two independent uniformly distributed permutation and function. This is half of the
best advantage for distinguishing them from q queries. It already includes DecPq(C) and
DecFd(F ). So, even if C and F are dependent, we still have

DecFd;q(MAC) � jj[C; F ]q � [C�; F �]qjja + q(q + 1)(1 + q2�m)2�m:

As an example we can use C = DESK and F = Trunc ÆDESK+c for a given constant c,
and where Trunc truncates a 64-bit string onto its �rst half and DES is the Data Encryption
Standard [1]. We get a MAC on b = 32 bits with a single 56-bit key and block of m = 64
bits. We obtain

DecFd;q(MAC) � jj[C; F ]q � [C�; F �]qjja + q(q + 1)(1 + q2�64)2�64:

So, let f(�) be the sum of the best advantages for distinguishing

{ DES from C�

{ Trunc ÆDES from F �

{ (DESK;Trunc ÆDESK+c) from (DESK1
;Trunc ÆDESK2

)

within a total number of query blocks less than q = �232 (which is a limit of 32�GB of

queries). The advantage of any distinguisher is less than f(�)+�2

2
thus the probability of success

of any adaptive existential forgery attack is less than 2�32 + f(�)+�2

2
. Let us conjecture that

f
�

1
10

�
� 2�7. If we authenticate less than 3GB, the probability of success of the best attack

is less than 1%.
The Advanced Encryption Standard will soon provide better security with m = 128.

6 Conclusion

We have shown that the regular CBC-MAC construction provides a secure MAC when the
output is encrypted. The security analysis suggests that if m is the block length of the
underlying block cipher, then we should not use the MAC construction on more than 2

m
2

blocks in total.
In order to �t to the security, we can even reduce the MAC length down to m

2
bits, and

shorten the key with extra security hypothesis. This enables to prove the security of existing
standards.

These results are quite similar than the Petrank-Racko� ones. Our technique based on
decorrelation theory is however quite systematic and can be applied to most of current MAC
constructions with compact proofs.

Finally, we believe that these techniques will contribute to making systematic proof
analysis of cryptographic schemes and ultimately lead to some automatic security validation
procedures.
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A Proof of Theorem 4

Following the Feistel scheme F = 	(F �
1 ; F

�
2 ; F

�
3 ), we let

xi = (z0i ; z
1
i )
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z2i = z0i + F �
1 (z

1
i )

yi = (z4i ; z
3
i )

We let E be the event z3i = z1i + F �
2 (z

2
i ) and z4i = z2i + F �

3 (z
3
i ) for i = 1; : : : ; d. We thus have

[F ]dx;y = Pr[E]. We now de�ne

Y =
n
(y1; : : : ; yd); 8i < j z3i 6= z3j

o
:

We can easily check that Y ful�ll the requirements of Lemma 3. Firstly we have

jYj �

 
1�

d(d� 1)

2
2�

m
2

!
2md

thus we let �1 =
d(d�1)

2
2�

m
2 . Second, for y 2 Y and any x (with pairwise di�erent entries),

we need to consider [F ]dx;y. Let E
2 be the event that all z2i s are pairwise di�erent over the

distribution of F �
1 . We have

[F ]dx;y � Pr[E=E2] Pr[E2]:

For computing Pr[E=E2] we know that z3i s are pairwise di�erent, as for the z2i s. Hence

Pr[E=E2] = 2�md. It is then straightforward that Pr[E2] � 1 � d(d�1)
2

2�
m
2 which is 1 �

�2. We thus obtain from Lemma 3 that DecFd(F ) � 2d(d � 1)2�
m
2 . From Lemma 3 it is

straightforward that DecFd(C�) � d(d � 1)2�m. We thus obtain DecPd(F ) � 2d22�
m
2 for

d � 21+
m
2 . Since DecF is always less than 2, it also holds for larger d. ut
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