
Implementing e-Transactions with Asynchronous Replication

Svend Frølund1 Rachid Guerraoui2
1 Hewlett-Packard Laboratories, 1501 Page Mill Rd, Palo Alto

2 Swiss Federal Institute of Technology, CH 1015, Lausanne

Abstract

An e-Transaction is one that executes exactly-once despite failures. This paper describes
a distributed protocol that implements the abstraction of e-Transactions in three-tier architec-
tures. Three-tier architectures are typically Internet-oriented architectures, where the end-user
interacts with front-end clients (e.g., browsers) that invoke middle-tier application servers (e.g.,
web servers) to access back-end databases. We implement the e-Transaction abstraction using
an asynchronous replication scheme that preserves the three-tier nature of the architecture and
introduces a very acceptable overhead with respect to unreliable solutions.

1 Introduction

Until very recently, three-tier architectures were at the leading edge of development. Only a few
tools supported them, and only a small number of production-level applications implemented them.
Three-tier applications are now becoming mainstream. They match the logical decomposition of
applications (presentation, logic, and data) with their software and hardware structuring (PCs,
workstations, and clusters). Clients are diskless (e.g., browsers), application servers are stateless,
but contain the core logic of the application (e.g., web servers), and back-end databases contain
the state of the applications. Basically, the client submits a request to some application server,
on behalf of an end-user. The application server processes the client’s request, stores the resulting
state in a back-end database, and returns a result to the client. This simple interaction scheme is
at the heart of the so-called e-Business game today.

Motivation. The partitioning of an application into several tiers provides for better modularity and
scalability. However, the multiplicity of the components and their interdependencies make it harder
to achieve any meaningful form of reliability. Current reliability solutions in three-tier architectures
are typically transactional [1, 2]. They ensure at-most-once request processing through some form
of “all-or-nothing” guarantee. The major limitation of those solutions is precisely the impossibility
for the client-side software to accurately distinguish the “all” from the “nothing” scenario. If a fail-
ure occurs at the middle or back-end tier during request processing, or a timeout period expires at
the client side, the end-user typically receives an exception notification. This does not convey what
had actually happened, and whether the actual request was indeed performed or not.1 In practice,
end-users typically retry the transaction, with the risk of executing it several times, e.g., having

1The transactional guarantee ensures that if the request was indeed performed, all its effects are made durable
(“all” scenario), and otherwise, all its effects are discarded (“nothing” scenario) [3].

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the user charged twice. In short, current transactional technology typically ensures at-most-once
request processing and, by retrying transactions, end-users typically obtain at-least-once guaran-
tees. Ensuring exactly-once transaction processing is hard. Basically, some transaction outcome
information should be made highly available, but it is not clear exactly which information should be
preserved, where it should be stored, and for how long. The motivation of our work is to define and
implement the abstraction of exactly-once-Transaction (e-Transaction) in a three-tier architecture.
Intuitively, this abstraction masks (physical) transaction aborts. It adds a liveness dimension to
transactional systems that also includes the client side, and frees the end-user from the burden of
having to resubmit transactions.

Protocol. This paper presents a distributed protocol that implements the e-Transaction abstraction.
We integrate a replication scheme that guarantees the e-Transaction liveness property with a trans-
actional scheme that ensures the traditional safety counterpart. This integration involves the client,
the application servers, and the database servers. To deal with the inherent non-determinism of the
interaction with third-party databases, we make use of write-once registers (wo-register). These are
consensus-like abstractions that capture the nice intuition of CD-ROMs - they can be written once
but read several times. Building on such abstractions leads to a modular protocol, and enables us
to reuse existing results on the solvability of consensus in distributed systems, e.g., [4].2 Indirectly,
we contribute to better understand how the safety aspect of transactions can be practically mixed
with the liveness feature of replication, and how a consensus abstraction can help achieve that mix.

Related work. Considerable work has been devoted to transaction execution on replicated data [3].
However, we know of no approach to replicate the actual “transaction processing-state” in order
to ensure the fault-tolerance of the transaction itself, i.e., that it eventually commits exactly-once.
Traditionally, it is assumed that a transaction that cannot access “enough” replicas is aborted [3],
but the issue of how to reliably determine the transaction’s outcome, and possibly retry it, is not
addressed. In fact, addressing this issue requires a careful use of some form of non-blocking trans-
action processing, with some highly available recovery information that reflects the “transaction-
processing state”. In [6], the problem of exactly-once message delivery was addressed for com-
munication channels. The author pointed out the importance of reliably storing some “message
recovery information”. In the context of exactly-once transaction processing, this recovery infor-
mation should represent the transaction-processing state. Several approaches were proposed in the
literature to store that state for recovery purposes, e.g., [7, 8, 9]. Nevertheless, those approaches
do not guarantee the high-availability of that state. Furthermore, they rely on disk storage at the
client or at some application server. Relying on the client’s disk is problematic if the client is a Java
applet that does not have the right to access the disk. Solutions based on disk storage at a specific
application server would make that server host dependent, and three-tier architectures are consid-
ered scalable precisely because they prevent any form of host dependence at the middle-tier [10].
Our e-Transaction protocol uses the very same replication scheme, both as a highly available stor-
age for the “transaction-processing state”, and as an effective way to retry transactions behind the
scenes. In contrast to most replication schemes we know about [11, 12, 13, 14], we assume stateless
servers that interact with third-party databases - replication schemes have usually been designed in
a client-server context: servers are stateful but do not interact with third-party entities. Another

2A wo-register can also be viewed as a distributed form of software counter [5].

2



characteristic of our replication scheme is its asynchronous nature: it tolerates unreliable failure
detection and may vary, at run-time, between some form of primary-backup [12] and some form of
active replication [11].

Practical considerations. Our e-Transaction protocol was designed with a very practical objective
in mind. In particular, we assume that the functionality of a database server is given: it is a state-
ful, autonomous resource that runs the XA interface [15] - the X/Open standard that database
vendors are supposed to comply with in distributed transaction-processing applications. We pre-
serve the three-tier nature of the applications by not relying on any disk access at the client site,
or any application server site. We do not make any assumption on the failure detection scheme
used by the client-side software to detect the crash of application servers, and we tolerate failure
suspicion mistakes among application servers. The overhead of our e-Transaction protocol is very
acceptable in a practical setting where application servers are run by the Orbix 2.3 Object Request
Broker [16], and database servers by the Oracle 8.0.3 database management system [17]. In terms
of the latency, as viewed by a client, our protocol introduces an overhead of about 16% over a
baseline protocol that does not offer any reliability guarantee.

Roadmap. The rest of the paper is organized as follows. Section 2 defines our system model. Section
3 describes the e-Transaction problem. Section 4 describes our protocol and the assumptions
underlying its correctness. Finally, Section 5 puts our contribution in perspective through some
final remarks. Appendix 1 describes the pseudo-code used to express our protocol, Appendix 2
discusses the protocol correctness, and Appendix 3 the performance of its implementation.

2 A Three-Tier Model

We consider a distributed system with a finite set of processes that communicate by message
passing. Processes fail by crashing. At any point in time, a process is either up or down. A crash
causes a transition from up to down, and a recovery causes the transition from down to up. The
crash of a process has no impact on its stable storage. When it is up, a process behaves according
to the algorithm that was assigned to it: processes do not behave maliciously.

In the following, we outline our representation of the three types of processes in a three-tier
application: clients, application servers, and database servers.

Clients

Client processes are denoted by c1, c2, . . . , ck (ci ∈ Client). We assume a domain, “Request”, of
request values, and we describe how requests in this domain are submitted to application servers.
Clients have an operation issue(), which is invoked with a request as parameter (e.g., on behalf
of an end-user). We say that the client issues a request when the operation issue() is invoked.
The issue() primitive is supposed to return a result value from the domain “Result”. When it
does so, we say that the client delivers the result (e.g., to the end-user). A result is a value in the
“Result” domain, and it represents information computed by the business logic, such as reservation
number and hotel name, that must be returned to the user. In practice, the request can be a vector
of values. In the case of a travel application for instance, the request typically indicates a travel
destination, the travel dates, together with some information about hotel category, the size of a

3



car to rent, etc. A corresponding result typically contains information about a flight reservation, a
hotel name and address, the name of a car company, etc.

After being issued by a client, a request is processed without further input from the client.
Furthermore, the client issues requests one-at-a-time and, although issued by the same client, two
consecutive requests are considered to be unrelated. Clients cannot communicate directly with
databases, only through application servers.

We assume that each request and each result are uniquely identified. Furthermore, we assume
that every result is uniquely associated with a transaction. When we say that a result is committed
(resp. aborted), we actually mean that the corresponding transaction is committed (resp. aborted).
For presentation simplicity we assume that a result and the corresponding transaction have the same
identifier, and we simply represent such indentifiers using integers.

Application Servers

Application server processes are denoted by a1, a2, . . . , am (ai ∈ AppServer). Application servers
are stateless in the sense that they do not maintain states accross request invocations: requests do
not have side-effects on the state of application servers, only on the database state. Thus, a request
cannot make any assumption about previous requests in terms of application-server state changes.
Having stateless application servers is an important aspect of three-tier applications. Stateless
servers do not have host affinity, which means that we can freely migrate them. Moreover, fail-over
is fast because we do not have to wait for a server to recover its state. We do not model the chained
invocation of application servers. In our model, a client invokes a single application server, and this
server does not invoke other application servers. Chained invocation does not present additional
challenges from a reliability standpoint because application servers are stateless. We ignore this
aspect in our model to simplify the discussion.

Application servers interact with the databases through transactions. For presentation simplic-
ity, we only explicitly model the commitment processing, not the business logic or SQL queries
performed by application servers. We use a function, called compute(), to abstract over the (tran-
sient) database manipulations performed by the business logic. In a travel example, compute()
would query the database to determine flight and car availabilities, and perform the appropriate
bookings. However, the compute() function does not commit the changes made to the database. It
simply returns a result. Since the commitment processing can fail, we may call compute() multiple
times for the same request. However, compute() is non-deterministic because its result depends on
the database state. We assume that each result returned by compute() is non-nil. In particular, we
model user-level aborts as regular result values. A user-level abort is a logical error condition that
occurs during the business logic processing, for example if there are no more seats on a requested
flight. Rather than model user-level aborts as special error values returned by compute(), we model
them as regular result values that the databases then can refuse to commit.

Every application server has access to a local failure detector module which provides it with
information about the crash of other application servers. Let a1 and a2 be any two application
servers. We say that server a2 suspects server a1 if the failure detector module of a2 suspects a1 to
have crashed. We abstract the suspicion information through a predicate suspect(). Let a1 and a2

be any two application servers. The execution of suspect(a1) by server a2 at t returns true if and
only if a2 suspects a1 at time t.

4



Database Servers

Database server processes are denoted by s1, s2, . . . , sn (si ∈ Server). Since we want our approach
to apply to off-the-shelf database systems, we view a database server as an XA [15] engine. In
particular, a database server is a “pure” server: it does not invoke other servers, it only responds
to invocations. We do not represent full XA functionality, we only represent the transaction com-
mitment aspects of XA (prepare() and commit()). We use two primitives, vote() and decide(), to
represent the transaction commitment functionality. The vote() primitive takes as a parameter a
result identifier, and returns a vote in the domain Vote = {yes, no}. Roughly speaking, a yes vote
means that the database server agrees to commit the result (i.e., the corresponding transaction).
The decide() primitive takes two parameters: a result identifier and an outcome in the domain
Outcome = {commit, abort}. The decide() primitive returns an outcome value such that: (a) if the
input value is abort, then the returned value is also abort; and (b) if the database server has voted
yes for that result, and the input value is commit, then the returned value is also commit. 3

3 The Exactly-Once Transaction Problem

Roughly speaking, providing the e-Transaction (exactly-once-Transaction) abstraction comes down
to ensure that whenever a client issues a request, then unless it crashes, there is a corresponding
result computed by an application server, the result is committed at every database server, and
then eventually delivered by the client. The servers might go through a sequence of aborted
intermediate results until one commits and the client delivers the corresponding result. Ensuring
database consistency requires that all database servers agree on the outcome of every result (abort or
commit). Client-side consistency requires that only a committed result is returned to the end-user.

In the following, we state the specification of the e-Transaction problem. More details on the
underlying intuition and the rationale behind the problem specification are given in [18]. For the
sake of presentation simplicity, but without loss of generality, we consider here only one client,
and assume that the client issues only one request. We assume the existence of some serializability
protocol [3]. We hence omit explicit identifiers to distinguish different clients and different requests,
together with identifiers that relate different results to the same request.

We define the e-Transaction problem with three categories of properties: termination, agree-
ment , and validity . Termination captures liveness guarantees by preventing blocking situations.
Agreement captures safety guarantees by ensuring the consistency of the client and the databases.
Validity restricts the space of possible results to exclude meaningless ones.

• Termination.

(T.1) If the client issues a request, then unless it crashes, it eventually delivers a result;
(T.2) If any database server votes for a result, then it eventually commits or aborts the result.

• Agreement.

(A.1) No result is delivered by the client unless it is committed by all database servers;
(A.2) No database server commits two different results;
(A.3) No two databases decide differently on the same result.

3In terms of XA, the vote() primitive corresponds to a prepare() operation while the decide() primitive is patterned
after the commit() operation.

5



• Validity.

(V.1) If the client delivers a result, then the result must have been computed by an application
server with, as a parameter, a request issued by the client;
(V.2) No database server commits a result unless all database servers have voted yes for that
result.

Termination ensures that a client does not remain indefinitely blocked (T.1). Intuitively, this
property provides at-least-once request processing guarantee to the end-user, and frees her from
the burden of having to retry requests. Termination also ensures that no database server remains
blocked forever waiting for the outcome of a result (T.2), i.e., no matter what happens to the
client. This non-blocking property is important because a database server that has voted yes for a
result might have locked some resources. These remain inaccessible until the result is committed
or aborted [3]. Agreement ensures the consistency of the result (A.1) and the databases (A.3). It
also guarantees at most-once request processing (A.2). The first part of Validity (V.1) excludes
trivial solutions to the problem where the client invents a result, or delivers a result without having
issued any request. The second part (V.2) conveys the classical constraint of transactional systems:
no result can be committed if at least some database server “refuses” to do so. Basically, and
as we point out in Section 5, the e-Transaction specification adds to the traditional termination
properties of distributed databases, properties that bridge the gap between databases and clients
on one hand, and between at-least-once and exactly-once on the other hand.

4 An Exactly-Once Transaction Protocol

Our protocol consists of several parts. One is executed at the client, one is executed at the applica-
tion servers, and one at the database servers (Figure 1). The client interacts with the application
servers, which themselves interact with database servers. The complete algorithms are given in
Figure 2, Figure 3, Figure 4, Figure 5, and Figure 6. We describe the pseudo-code used in those
algorithms in Appendix 1, and give their correctness proofs in Appendix 2.

Client Protocol

The client part of the protocol is encapsulated within the implementation of the issue() primitive
(Figure 2). This primitive is invoked with a request as an input parameter and is supposed to
eventually return a result. Basically, the client keeps retransmitting the request to the application
servers, until it receives back a committed result. The client might need to go through several tries
(intermediate results) before it gets a committed result. To optimize the failure-free scenario, the
client does not initially send the request to all application servers unless it does not receive a result
after a back-off period (line 7 in Figure 2).

Application Server Protocol

Application servers execute what we call an asynchronous replication protocol (Figure 5 and Fig-
ure 6). In a “nice” run, where no process crashes or is suspected to have crashed, the protocol
goes as follows. There is a default primary application server that is supposed to initially receive
the client’s request. The primary application server computes a result for the client’s request, and

6



orchestrates a distributed atomic commitment protocol among the database servers to commit or
abort that result. Then the application server informs the client of the outcome of the result. The
outcome might be commit or abort, according to the votes of the databases (Figure 1 (a) and (b)).

Any application server that suspects the crash of the primary becomes itself a primary and tries
to terminate the result (Figure 6). If the result was already committed, the new primary finishes
the commitment of that result and sends back the decision to the client (Figure 1 (c)). Otherwise,
the new primary aborts the result, and informs the client about the abort decision (Figure 1 d).

Some form of synchronization is needed because (1) the result computation is non-deterministic
and (2) several primaries might be performing at the same time - we do not assume reliable failure
detection -. We need to ensure that the application servers agree on the outcome of every result. We
factor out the synchronization complexity through a consensus abstraction, which we call write-once
registers (or simply wo-registers). A wo-register has two operations: read() and write(). Roughly
speaking, if several processes try to write a value in the register, only one value is written, and
once it is written, no other value can be written. A process can read that value by invoking the
operation read(). More precisely:

• Write() takes a parameter input and returns a parameter output. The returned parameter is
either input - the process has indeed written its value - or some other value already written
in the register.

• Read() returns a value written in the register or the initial value ⊥. If a value v was written
in the register, then, if a process keeps invoking the read() operation, then unless the process
crashes, eventually the value returned is the value v.

Intuitively, the semantics of a wo-register looks very much like that of a CD-ROM. In fact,
a wo-register is a simple extension of a so-called consensus object [19]. We simply assume here
the existence of wait-free wo-registers [19]. It is easy to see how one could obtain a wait-free
implementation of a wo-register from a consensus protocol executed among the application servers
(e.g., [4]): every application server would have a copy of the register. Basically, writing a value in
the wo-register comes down to proposing that value for the consensus protocol. To read a value, a
process simply returns the decision value received from the consensus protocol, if any, and returns
⊥ if no consensus has been triggered.

Database Server Protocol

Figure 3 illustrates the functionality of database servers. A database server is a pure server (not a
client of other servers): it waits for messages from application servers to either vote or decide on
results. The database server protocol has a parameter that indicates whether the protocol is called
initially or during recovery. The parameter is bound to the variable recovery, that is then used in
the body of the protocol to take special recovery actions (line 2 of Figure 3). During recovery, a
database server informs the application servers about its “coming back”.

Correctness Assumptions

We prove the correctness of our protocol in Appendix 2. The proofs are based on the following
assumptions. We will discuss the practicality of these assumptions in Section 5.

7



client

Transactional
manipulation

databases

prepare

yes

ackack

commit

result

appServers
a1

regA.write(a1)

regD.write(result,commit)

request
a2 a3

client

Transactional
manipulation

databases

prepare

ackack

appServers
a1

regA.write(a1)

request
a2 a3

abort

abort

regD.write(nil,abort)

no

client

Transactional
manipulation

databases

prepare

yes

appServers

a1

regA.write(a1)

regD.write(result,commit)

request
a2 a3

crash

suspect

a1 = regA.read()

client

Transactional
manipulation

databasesappServers

a1

regA.write(a1)

request
a2 a3

crash

suspect

a1 = regA.read()

Fail−over with abortFail−over with commit

ack

commit

result

(result,commit) = regD.write(nil,abort)

ack

(nil,abort) = regD.write(nil,abort)

abort

abort

(c) (d)

(a) Failure−free run with commit (b) Failure−free run with abort

Figure 1: Communication steps in various executions

8



Class ClientProtocol {
list of AppServer alist := theAppServers; /* list of all application servers */
AppServer a1 := thePrimary; /* the default primary */
TimeOut period := thePeriod; /* back-off period */

issue(Request request) {
AppServer ai; /* an application server */
Identifier j := 1; /* a result identifier */
Decision decision; /* a pair (result,outcome) */

begin
1 while true do
2 send [Request,request, j] to a1;
3 timeout := period; /* set the timeout period */
4 wait until (receive [Result,j, decision] from ai) or expires(timeout);
5 if expired(timeout) then
6 send [Request,request, j] to alist;
7 wait until (receive [Result,j, decision] from ai);
8 if (decision.outcome = commit) then
9 return(decision.result); /* delivers the result and exits */
10 else j := j + 1;

end
}

}

Figure 2: Client algorithm

9



Class DataServer {
list of AppServer alist := theAppServers; /* list of all application servers */

main(Bool recovery) {
Outcome outcome; /* outcome of a result: commit or abort */
AppServer ai; /* an application server */
Integer j; /* a result identifier */

begin
1 if (recovery) then /* distinguish recovery from the initial starting case */
2 send [Ready] to alist; /* recovery notification */
3 while (true) do
4 cobegin
5 ‖ wait until (receive [Prepare,j] from ai)
6 send [Vote,j,this.vote(j)] to ai;
7 ‖ wait until (receive [Decide,j, outcome] from ai);
8 this.terminate(j, outcome);
9 send [AckDecide,j] to ai;
10 coend

end
}

terminate(Integer j, Outcome outcome) {..} /* commit or abort a result */

vote(Integer j) {..} /* determine a vote for a result */

}

Figure 3: Database server algorithm

10



Class AppServerProtocol {
Client c; /* the client */
list of AppServer alist := theAppServers; /* list of all application servers */
list of DataServer dlist := theDataServers; /* list of all database servers */
array of Decision WORegister regD; /* array of decision WORegisters */
array of AppServer WORegister regA; /* array of application server WORegisters */

main(array of Decision WORegister rA, AppServer WORegister rD) {
begin

1 regA := rA;
2 regD := rD;
3 while (true) do
4 cobegin
5 ‖ this.compute(); /* computation thread */
6 ‖ this.clean(); /* cleanning thread */
7 coend

end
}

terminate(Integer j, Decision decision) {
1 begin
2 repeat
3 send [Decide,j, decision.outcome] to dlist;
4 wait until (for every dk ∈ dlist:
5 (receive [AckDecide,j] or [Ready] from dk));
6 until (received([AckDecide,j]) from every dk ∈ dlist)
7 send [Result,j, decision] to c;
8 end
9 }

prepare(Integer j) {
1 begin
2 send [Prepare,j] to dlist;
3 wait until (for every dk ∈ dlist:
4 (receive [Vote,j, votek] or [Ready] from dk));
5 if (for every dk ∈ dlist: (received([Vote,j,yes]) from dk)) then
6 return(commit);
7 else return(abort);
8 end

}

compute() {..}

clean() {..}

}

Figure 4: Application server algorithm

11



AppServerProtocol::compute() {
Request request; /* request from the client */
AppServer ai; /* an application server */
Decision decision := (nil,abort); /* a pair (outcome,result) */
Integer j; /* a result identifier */

begin
1 while (true) do
2 wait until (receive [Request,request, j] from c);
3 if (decision.outcome = commit) then
4 send [Result,j, decision] to c; /* the result is already committed */
5 else
6 ai := regA[j].write(this);
7 if (ai = this) then
8 decision.result := this.compute(request);
9 decision.outcome := this.prepare(j);
10 decision := regD[j].write(decision);
11 this.terminate(j, decision.outcome);

end
}

Figure 5: The computation thread

AppServerProtocol::clean() {
Decision decision := (nil,abort); /* a pair (outcome,result) */
AppServer ai; /* an application server */
list of Integer clist; /* list of “cleaned” results */
Integer j; /* a result identifier */

begin
1 while (true) do
2 for every ai ∈ alist /* cleanning all results initiated by ai */
3 if (suspect(ai)) then
4 j := 1;
5 while (regA[j].read() �=⊥) do
6 if (j /∈ clist) and (regA[j].read() = ai) then
7 decision := regD[j].write(nil,abort);
8 this.terminate(j, decision);
9 add j into clist;
10 j := j + 1;

end
}

Figure 6: The cleanning thread

12



We assume that a majority of application servers are correct: they are always up. The failure
detector among application servers is supposed to be eventually perfect in the sense of [4]. In other
words, we assume that the following properties are satisfied: (completeness) if any application
server crashes at time t, then there is a time t′ > t after which it is permanently suspected by
every application server; (accuracy) there is a time after which no correct application server is ever
suspected by any application server. We also assume that all database servers are good: (1) they
always recover after crashes, and eventually stop crashing, and (2) if an application server keeps
computing results, a result eventually commits.4

We assume that clients, application servers, and database servers, are all connected through
reliable channels. The guarantees provided by the reliable channel abstraction are captured by the
following properties: (termination) if a process pi sends message m to process pj, then unless pi

or pj crash, pj eventually delivers m; (integrity) every process receives a message at most once,
and only if the message was previously broadcasts by some process (messages are supposed to be
uniquely identified).

5 Concluding Remarks

On the specification of e-Transactions. Intuitively, the e-Transaction abstraction is very desir-
able. If a client issues a request “within” an e-Transaction, then, unless it crashes, the request
is executed exactly-once, and the client eventually delivers the corresponding result. If the client
crashes, the request is executed at-most-once and the database resources are eventually released.
As conveyed by our specification in Section 3, the properties underlying e-Transactions encompass
all players in a three-tier architecture: the client, the application servers, and the databases. Not
surprisingly, some of the properties are similar to those of non-blocking transaction termination [3].
In some sense, those properties ensure non-blocking at-most-once. Basically, the specification of
e-Transactions extend them to bridge the gap between at-most-once and exactly-once semantics.

On the asynchrony of the replication scheme. The heart of our e-Transaction protocol is the asyn-
chronous replication scheme performed among the application servers. Roughly speaking, with a
“patient” client and a reliable failure detector, our replication scheme tends to be similar to a pri-
mary backup scheme [12]: there is only one active primary at a time. With an “impatient” client,
or an unreliable failure detector, we may easily end up in the situation where all application servers
try to concurrently commit or abort a result. In this case, like in an active replication scheme [11],
there is no single primary and all application servers have equal rights. One of the characteristics
of our replication protocol is precisely that it may vary, at run-time, between those two extreme
schemes.

On the practicality of our protocol. Many of the assumptions we made are “only” needed to
ensure the termination properties of our protocol (Appendix 2). These include the assumption of
a majority of correct application servers, the assumption of an eventually perfect failure detector
among application servers, the assumption that every database server being eventually always up,

4The assumption that results eventually commit does not mean that there will eventually be a seat on a full flight.
It means that an application server will eventually stop trying to book a seat on a full flight, and instead compute a
result that can actually run to completion, for example a result that informs the user of the booking problem.

13



and the liveness properties of wo-registers and communication channels. In other words, if any
of these properties is violated, the protocol might block, but would not violate any agreement
nor validity property of our specification (Appendix 2). In practice, these termination-related
assumptions need only hold during the processing of a request. For example, we only need to assume
that, for each request, a majority of application servers remains up, and every database server will
eventually stay up long enough to successfully commit the result of that request.5 Furthermore, the
assumption of a majority of correct processes is only needed to keep the protocol simple: we do not
explicitly deal with application server recovery. Without the assumption of a majority of correct
processes, one might still ensure termination properties by making use of underlying building blocks
that explicitly handle recovery, as in [22, 23]. The assumption of reliable channels do not exclude
link failures, as long as we can assume that any link failure is eventually repaired. In practice, the
abstraction of reliable channels is implemented by retransmitting messages and tracking duplicates.

Finally, to simplify the presentation of our protocol, we did not consider garbage collection
issues. For example, we did not address the issue of cleanning the wo-register arrays. To integrate
a garbage collector task, one needs to state that the at-most-once guarantee is only ensured if the
client does not retransmit requests after some known period of time. Being able to state this kind
of guarantees would require a timed model, e.g., along the lines of [24].

On the failure detection schemes. It is important to notice that our protocol makes use of three
failure detection schemes in our architecture, and this is actually not surprising given the nature of
three-tier systems. (1) Among application servers, we assume a failure detector that is eventually
perfect in the sense of [4]. As we pointed out, failure suspicions do however not lead to any incon-
sistency. (2) The application servers rely on a simple notification scheme to tell when a database
server has crashed and recovered. In practice, application servers would detect database crashes
because the database connection breaks when the database server crashes. Application servers
would receive an exception (or error status) when trying to manipulate the database. This can be
implemented without requiring the database servers to know the identity of the application servers.
(3) Clients use a simple timeout mechanisms to re-submit requests. This design decision reflects
our expectation that clients can communicate with servers across the Internet, which basically gives
rise to unpredictible failure detection.

On the practicality of our implementation Our current implementation was built using off-the-shelf
technologies: the Orbix 2.3 Object Request Broker [16] and the Oracle 8.0.3 database management
system [17]. Our prototype was however aimed exclusively for testing purposes. In terms of the
latency, as viewed by a client, our protocol introduces an overhead of about 16% over a baseline
protocol that does not offer any reliability guarantee (see Appendix 3). This overhead corresponds
to the steady-state, failure and suspicion free executions. These are the executions that are the
most likely to occur in practice, and for which protocols are usually optimized. Nevertheless, for a
complete evaluation of the practicality of our protocol, one obviously needs to consider the actual

5Ensuring the recovery of every database server (within a reasonable time delay) is typically achieved by running
databases in clusters of machines [20, 21]. With a cluster, we can ensure that databases always recover within a
reasonable delay, but we must still assume that the system reaches a “steady state” where database servers stay up
long enough so that we can guarantee the progress of the request processing. In an asynchronous system however,
with no explicit notion of time, the notion of long enough is impossible to characterize, and is simply replaced with
the term always.

14



response-time of the protocol in the case of various failure alternatives. This should go through
the use of underlying consensus protocols that are also optimized in the case of failures and failure
suspicions, e.g., [25, 23].

References

[1] D. Chappell, “How microsoft transaction server changes the com programming model,” Mi-
crosoft Systems Journal, January 1998.

[2] Object Management Group, CORBA Services—Transaction Service, 1.1 ed., November 1997.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in
Database Systems. Reading, Mass.: Addison-Wesley, 1987.

[4] T. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed systems,” Jour-
nal of the ACM, vol. 43, no. 2, pp. 225–267, 1996.

[5] J. H. Slye and E. N. Elnozahy, “Supporting nondeterministic execution in fault-tolerant sys-
tems,” in Proceedings of the IEEE International Symposium on Fault-Tolerant Computing,
June 1996.

[6] B. W. Lampson, “Reliable messages and connection establishment,” in Distributed Systems
(S. Mullender, ed.), Addison-Wesley, 1993.

[7] P. Bernstein, M. Hsu, and B. Mann, “Implementing recoverable requests using queues,” in
Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data,
May 1990.

[8] D. Lomet and G. Weikum, “Efficient transparent application recovery in client-server infor-
mation systems,” in Proceedings of SIGMOD’98, 1998.

[9] M. C. Little and S. K. Shrivastava, “Integrating the object transaction service with the web,” in
Proceedings of the Second International Workshop on Enterprise Distributed Object Computing
(EDOC), IEEE, 1998.

[10] S. Frolund and R. Guerraoui, “Corba fault-tolerance: why it does not add up,” in Proceedings
of the IEEE Workshop on Future Trends of Distributed Systems, December 1999.

[11] F. B. Schneider, “Replication management using the state machine approach,” in Distributed
Systems (S. Mullender, ed.), Addison-Wesley, 1993.

[12] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “The primary-backup approach,”
in Distributed Systems (S. Mullender, ed.), Addison-Wesley, 1993.

[13] D. Powell, D. Seaton, G. Bonn, P. Verissimo, and F. Waeselynk, “The delta-4 approach to
dependability in open distributed computing systems,” in International Symposium on Fault-
Tolerant Computing Systems, IEEE, June 1988.

[14] X. Défago, A. Schiper, and N. Sergent, “Semi-passive replication,” in Proceedings of the IEEE
Symposium on Reliable Distributed Systems, October 1998.

15



[15] x/Open Company Ltd, Distributed Transaction Processing: The XA Specification, 1991.
XO/SNAP/91/050.

[16] IONA Technologies Ltd, Orbix 2.2 Programming Guide, 1997.

[17] Oracle Corporation, Oracle8 Application Developer’s Guide. Chapter 18, Oracle XA, Relase
8.0, A58241-01.

[18] S. Frolund and R. Guerraoui, “Exactly-once-transactions,” Tech. Rep. HPL-1999-105, Hewlett-
Packard Laboratories, September 1999.

[19] M. Herlihy, “Wait-free synchronization,” ACM Transactions on Programming Languages and
Systems, vol. 13, pp. 123–149, January 1991.

[20] P. S. Weygant, Clusters for High-Availability: A Primer of HP-UX Solutions. Prentice-Hall,
Hewlett-Packard Professional Books., 1996.

[21] W. Vogels, D. Dumitriu, K. Birman, R. Gamache, M. Massa, R. Short, J. Vert, J. Barrera, and
J. Gray, “The design and architecture of the microsoft cluster service—a practical approach
to high-availability and scalability,” in Proceedings of the International Symposium on Fault-
Tolerant Computing Systems, June 1998.

[22] M. Aguilera, W. Chen, and S. Toueg, “Failure detection and consensus in the crash-recovery
model,” in Proceedings of the International Workshop on Distributed Algorithms, Springer-
Verlag (LNCS), April 1998.

[23] R. Boichat, S. Frolund, and R. Guerraoui, “Lazy consensus,” Tech. Rep. EPFL-1999, Swiss
Federal Institute of Technology, November 1999.

[24] C. Fetzer and F. Cristian, “The timed asynchronous model,” Tech. Rep. CS97-519, UCSD,
September 1997.

[25] M. Hurfin and M. Raynal, “A simple and fast asynchronous consensus protocol based on a
weak failure detector,” Distributed Computing, vol. 12, no. 4, 1999.

16



Appendix 1. The Pseudo-Code

We describe below the semantics the pseudo-code we use to describe our algoritms in Figure 2,
Figure 3, Figure 4, Figure 5, and Figure 6.

A channel is specified by two primitives: send and receive. For example, the statement “send
[Request,request] to pj” captures the action of sending the message [Request,request] to process
pj. A message [Request,request] is of type “Request” and contains the value request. We assume
that messages are uniquely identified. If the destination of a message is a list of processes, a send
operation multi-casts the message to all processes in the list (we make no assumptions about the
indivisibility of such operations).

In many cases, servers acknowledge receipt of messages. We assume that the receiver of an ac-
knowledgment message can correlate it with the message being acknowledged. This can be achieved
by appropriate tagging of acknowledgment messages. However, to simplify the presentation, we do
not describe this tagging and correlation in our protocol.

The statement “receive [Deliver,result] from a” captures the action of waiting for a message
of type “Deliver”. When such a message arrives, the variable result is assigned to the contents
of the message, and the variable a is assigned to the sender’s identity. We also use the receive
primitive without a “from” part if we do not need to assign the sender’s identity to a variable.

As a convenient notation, we introduce the predicate received(). Let pi and pj denote any two
processes and plist a list of processes. Then, the execution by process pi of “received([AckDecide])
from pj” is true if pi has received a message of the form [AckDecide] from pj. Similarly, the
execution by process pi of “received([AckDecide]) from plist” evaluates to true if pi has received
[AckDecide] from every process in plist.

Besides message passing, we also use various synchronization primitives. We use “wait until”
statements to wait for a collection of events to occur. Events can be the reception of messages and
detection of failures. We use and and or combinators to specify these event sets. Moreover, we can
bound the waiting time with timeouts. We use the statement set-timeout-to to set the expiration
time of a timer, and the statement on-timeout describes the actions to take if and when the timer
expires.

Traditional control structures, such as branches and loops, are used with their usual semantics.
In addition, we also use cobegin and coend to capture concurrent executions. The cobegin
statement terminates when any of the contained activities terminates. We use “=” to compare
values for equality and “:=” for assignment.

Finally, we abstract the suspicion information through a predicate suspect(). The execution of
suspect(a1) by application server a2 at t returns true if and only if a2 suspects a1 at time t.

Appendix 2. Protocol Correctness

In the following, we show that the protocol composed of the algorithms described in Figure 2, Fig-
ure 3, Figure 4, Figure 5, and Figure 6, solves the e-Transaction problem, as specified in Section 3.
The correctness of the protocol is based on the assumptions we made in Section 4.

17



Termination properties

Lemma 1. No correct primary application server remains blocked forever in one of the wait
statements of Figure 4.

Proof (Sketch). Assume by contradiction that some correct application server ai remains
blocked forever in one of the wait statements of Figure 4 (line 4 of function terminate() or line 3
of function prepare()). By the algorithm of Figure 4, this means that ai has sent a message of type
“Decide” or “Prepare” to all database servers, and ai blocked forever waiting for a message of type
“AckDecide”, “Vote”, or “Ready”, from some database server dk. There are two cases to consider.
Either (1) dk does not crash after ai has sent its message, or (2) dk has crashed after ai has sent its
message. In case (1), by the termination property of reliable channels and the algorithm of Figure 3,
dj receives ai’s message and sends back its “AckDecide” or “Vote” message. By the termination
property of reliable channels, ai eventually receives dj’s message: a contradiction. In case (2), by
the assumption that all database servers are good, dj eventually recovers, sends message “Ready”
to ai and does never crash again. By the termination property of reliable channels, ai eventually
receives dj ’s message: a contradiction. ✷

Lemma 2 (Termination T.2). If a database server votes for a result, it eventually commits or
aborts that result.

Proof (Sketch). Let dk be any database server that votes for a result j. By the algorithm of
Figure 4 and the integrity property of communication channels, some application server ai must
have sent a “Vote” message to dk in the context of the prepare() function in Figure 4. This
function can only be called in the context of the compute() function in Figure 5. By the algorithm
of Figure 5, ai must have stored its identity in regA[j]. If ai is correct, then by the algorithm of
Figure 5 and the properties of wo-registers, ai eventually calls the terminate() function of Figure 4,
with j as an argument. By the algorithm of the terminate() function, ai eventually sends a “Decide”
message about j to dk. As we assume ai to be correct, then by the termination properties of the
communication channels, dk eventually receives the “Decide” message for result j and commits or
aborts that result. Assume ai crashes. By the assumption that a majority of application servers are
correct, there is an application server ak that keeps indefinitely executing the algorithm of Figure 6.
By Lemma 1 and the properties of wo-registers, process ak keeps forever executing the while loop
of Figure 6. By the completeness property of the failure detector, there is a time after which ak

permanently suspects ai. By the algorithm of Figure 6, and the properties of the wo-register, ak

eventually reads ai in regA[j] and calls the terminate() function of Figure 4, with j as an argument.
By the algorithm of the terminate() function, ak eventually sends a “Decide” message about j to dk.
As we assume ak to be correct, then by the termination properties of the communication channels,
dk eventually receives the “Decide” message for result j and commits or aborts that result. ✷

Lemma 3 (Termination T.1). If the client issues a request, then unless it crashes, the client
eventually delivers a result.

Proof (Sketch). Assume by contradiction that the client issues a request, never crashes and
never delivers a result. Let t1 be the time after which all faulty application servers have crashed. By
the accuracy property of the failure detector, there is a time t2 after which no correct application
server is ever suspected by any application server. By the algorithm of Figure 5 and the properties

18



of wo-registers, only one application server executes a given result. By Lemma T.2, there is a time
t3 after which all results executed by faulty processes are terminated. Let t = max(t1, t2, t3). After
time t, no application server terminates a result in the context of a cleanning thread, i.e., Figure 6.

Let i and j be any two results that are initiated by the client c. Assume i < j. By the
algorithm of Figure 2, result j is not started unless result i was terminated. Consider result i.
As we assume that the client issues a request, never crashes and never delivers a result, then by
the algorithm of Figure 2, the client keeps sending “Request” messages to application servers. By
the assumption of a majority of correct application servers, eventually, some application server
computes a result in the context of j and some database server dk will vote for j. By Lemma 2
above, j will be terminated. Client c will thus receive a “Decide” message about j. Hence, the client
keeps undefinitely initiating new results and sending “Request” messages to application servers.

As a consequence, there is a time after which all results are executed sequentially, every result is
executed by a single application server and at least some application server keeps executing results.
By the assumption that all database servers are good, eventually some result is committed. By the
algorithm of Figure 6, the client eventually receives and delivers a result: a contradiction. ✷

Agreement properties

Lemma 4 (Agreement A.1). No result is delivered by the client unless it is committed by all
database servers.

Proof (Sketch). Assume the client delivers a result. By the algorithm of Figure 2, the corre-
sponding outcome must be commit. By the integrity property of the communication channels, the
client must have received the result and the outcome from some application server as part of the
terminate() function of Figure 4. By the algorithm of that function, this can only be done if all
databases have committed the result. ✷

Lemma 5 (Agreement A.2). No database server commits two different results.

Proof (Sketch). Assume by contradiction that some database server dk commits two differ-
ent results j and j′. By the algorithm of Figure 3, and the integrity property of the commu-
nication channels, dk must have received [Decide,j,commit] from some application server ai and
[Decide,j′,commit] from some application server a′i. These messages can only be sent as as part of
the terminate() function of Figure 4. By the algorithms of Figure 5, and Figure 6, this can only be
done if the values of regD[j] and regD[j′] are both commit.

Assume without loss of generality that j < j′. By the algorithm of Figure 2, the client must
have initiated result j′ after j. Also by the algorithm of Figure 2, the outcome of result j, as viewed
by the client, must have been abort. By the integrity property of the communication channels, some
application server ap must have sent message [Result,j,(result,abort)] to the client, as part of the
terminate() function of Figure 4. By the algorithms of Figure 5 and Figure 6, this can only be
done if the value of regD[j] is abort at some time t. Hence, there is a time t at which the value of
regD[j] is abort and a time t at which the the value of regD[j] is commit: a contradiction, given
the properties of wo-registers. ✷

Lemma 6 (Agreement A.3). No two database servers disagree on the outcome of a result.

19



Proof (Sketch). Assume that some database server dk commits a result j. Assume by contra-
diction that some database server d′k aborts j. By the algorithm of Figure 3, and the integrity
property of the communication channels, dk must have received [Decide,j,abort] from some appli-
cation server ai, whereas dk must have received [Decide,j,commit] from some application server a′i.
By the algorithms of Figure 5 and Figure 6, this can only be done if the value of regD[j] is abort
at some time t and commit at some time t′: a contradiction, given the properties of wo-registers. ✷

Validity properties

Lemma 7 (Validity V.1). If the client delivers a result, then the result must have been computed
by an application server with, as a parameter, a request issued by the client.

Proof. By the algorithm of Figure 2, a client does not deliver a result r until the result was
received from an application server (line 4 in Figure 2). Also by the algorithm of Figure 2, the
outcome of result j, as viewed by the client, must have been commit. By the integrity property of the
communication channels, some application server ap must have sent message [Result,j,(r,commit)]
to the client, as part of the terminate() function of Figure 4. By the algorithms of Figure 5 and
Figure 6, this can only be done if the value of some regD[j] is commit at some time t. By the
properties of wo-registers, some application server ai must have written commit in regD[j]. This
can only be performed in the context of the algorithm of Figure 5, and only if ai computes result
out of some request received from the client. By the integrity property of the communication
channels and the algorithm of Figure 2, the client must have issued that request. ✷

Lemma 8 (Validity V.2). No database server commits a result unless all database servers have
voted yes for that result.

Proof. Assume that some database server dk commits a result j. By the algorithm of Fig-
ure 3, and the integrity property of the communication channels, dk must have received message
[Decide,j,commit] from some application server ai. By the algorithms of Figure 5, and Figure 6, this
can only be done if the value of regD[j] is commit at some time t. By the properties of wo-registers,
some application server a′i must have written commit in regD[j]. This can only be performed in
the context of the algorithm of Figure 5, and only if the prepare() function returns commit. By the
algorithm of the prepare() function of Figure 4, application server a′i must have received yes votes
from all databases. By the integrity property of the communication channels and the algorithm of
Figure 3, all database servers must have voted yes for result j. ✷

Appendix 3. Performance Measures

In the following, we contrast the performance of our protocol with that of alternative approaches
that address similar issues.

Overview

Basically, we compare the performance of our protocol with those of a baseline protocol where no
reliability is ensured (Figure 7 a), a traditional 2PC protocol that ensures at-most-once request

20



client

commit

ack

Baseline protocol

Transactional
manipulation

client

log−start

Transactional
manipulation

prepare

yes

log−outcome
commit

ack

Two Phase Commit

databases

(a) (b)

(c)

databases

client

Transactional
manipulation

databases

prepare

yes

commit

ackack

ack

ack

start

outcome

result

result

result

Primary back−up replication Asynchronous replication

appServer backup

appServer appServer

request request

request

(d)

client

Transactional
manipulation

databases

prepare

yes

ackack

commit

result

appServers
a1

regA.write(a1)

regD.write(result,commit)

request
a2 a3

Figure 7: Communication steps in failure-free executions

21



processing (Figure 7 b), and a primary-backup replication scheme we adapted in [18] to imple-
ment e-Transactions (Figure 7 c). The primary-backup scheme requires a perfect failure detection
mechanism among the application servers (a false suspicion might lead to an inconsistency).

We focus here simply on“nice” runs where no process crashes or is suspected to have crashed.
In terms of latency, we show that our protocol introduces an overhead of about 16% over the
baseline unreliable protocol (that does not offer any guarantee). This overhead is actually lower
than the overhead of a 2PC protocol, which we show is around 23% in our environment. This
might look surprising at first glance because our protocol also ensures a non-blocking property of
databases besides the exactly-once guarantee (2PC is blocking [3], and ensures only at-most-once
request delivery). However, in contrast to 2PC, our protocol does not induce any forced disk IO. We
use the same replication scheme to ensure client’s outcome determination as we use to guarantee
non-blocking.

Analytic measures

Figure 7 depicts the communication steps of the various protocols. Since our protocol requires
a majority of correct application processes, we consider here the case where a single application
server crash is tolerated. In that case, three application servers are required. In our primary-backup
scheme, a single backup is enough.

We assume here an implementation of a wo-register using an optimized consensus protocol along
the lines of [4]. Basically, in a “nice” run, it takes only a round trip message for the first primary
to write into the register (the first consensus coordinator is the default primary application server).

In terms of the latency, as viewed by the client, our protocol introduces the same number of
communication steps than a primary-backup scheme, but more than a 2PC protocol or an unreliable
baseline protocol. The 2PC introduces however eager disk accesses.

Experimental measures

We quantify here the performance of our protocol in a practical setting. Our implementation uses
off-the-shelf middleware components: Orbix 2.3 Object Request Broker [16] and Oracle 8.0.3 [17].

The actual data manipulation by the application server is the same in all protocols: the applica-
tion server executes some SQL statements to update a bank account on a single database, and ends
the transaction. The client and servers execute on HP C180 PA-RISC workstations, running HP-
UX 10.20. The machines are connected by a 10 Mbit/Sec. production ethernet, but we obtained
the measurements in the late evening when it is lightly loaded. We measured the end-to-end latency
as seen by clients. For each protocol, we executed multiple identical transactions to quantify the
variation in response time. We computed the 90% confidence interval for the mean response time.
In all cases, the width of this interval was found to be less than 10 %. In this test, a single back-end
database (running on a cluster) is involved. This configuration is, we believe, representative of
current three-tier architectures where a single database is typically involved.

To implement the 2PC, we used the local disk file of the coordinator application server, which
is the traditional approach taken by most transaction processing monitors. The application server
logs information about the transaction before it is started and after the outcome has been deter-
mined. Logging is a synchronous operation, the application server waits for the logging operation
to complete before it continues the protocol execution.

22



protocol baseline AR 2PC
start 3.4 3.5 3.5
end 3.4 3.5 3.4

commit 18.6 18.8 17.5
prepare 0 19.0 21.2
SQL 187.0 193.2 190.6

log-start 0 4.5 12.5
log-outcome 0 4.7 12.7

other 5.0 5.1 5.1
total 217.4 252.3 266.5

cost of reliability 0% +16% +23%

Figure 8: Comparing the latency of the protocols (milliseconds)

The resulting measurements are summarized in Figure 8. We measured the response time for
three protocols. We did not measure the response time for the primary-backup scheme, (Figure 7 c)
because the response-time components are the same as our protocol (Figure 7 a). In addition to
the client-side elapsed time, we also allocated portions of this time to specific software components
that service requests.

The “other” category in Figure 8 is the amount of time which is unaccounted for after allocating
the response time to the listed components. Since the listed component times are all measured at
the application server, the “other” category includes the communication cost of the client-server
interaction. A round-trip Orbix RPC without parameters takes about 3-5 milliseconds in our
environment, so the client-server communication accounts for most of the time in the “other”
category.

The numbers in Figure 8 show that we save about 25 milliseconds by eliminating the forced-log
IOs of a 2PC. In the 2PC, to maintain the log, the application server writes a start record before
sending out prepare messages (this is based on a “presumed nothing” two-phase commit). When
it knows the outcome, and the outcome is commit, it will write a commit record. Writing the start
and commit records are eager IO operations.

23


