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Abstract

A three-tier application is organized as three layers. Front end clients (e.g., browsers) with

which human user interact; middle-tier servers (e.g., web servers) that contain the core busi-

ness logic of the application; and back-end database servers against which application servers

perform transactions. Although three-tier applications are nowadays mainstream, they usually

fail to provide su�cient reliability guarantees to the end users. Usually, ad-hoc replication and

transactional techniques are developed for speci�c parts of the application, but these techniques

are not combined to provide some global notion of reliability.

The aim of this paper is precisely to de�ne a desirable, yet realistic, speci�cation of end-to-

end reliability in three-tier applications. We present the speci�cation in the form of a problem

called Transactional Exactly-Once which encompasses both safety and liveness properties in such

environments. We also describe a practical protocol that solves the problem and we discuss its

implementation and performances in a practical setting.
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1 Introduction

A typical application, distributed or not, usually includes elements that handle presentation, logic,

and data. A text editor that runs on a standalone PC o�ers a good example of these three

application elements. Its user interface handles the user's keyboard input; its logic can then process

the words, sentences, and paragraphs. It can store the results of the editing to a �le, which then

becomes persistent data. A three-tier application is one where the logical decomposition of the

application is reected both at the software and hardware level. A three-tier application has front-

end clients (e.g., browsers), middle-tier application servers (web servers), and back-end database

servers. Clients interact with users, and they send requests to application servers on behalf of

users. Each request is sent to a single application server. The application server invoked by a client

starts a transaction that captures the business logic of the application. The application servers

may update multiple database servers within this transaction.

Until very recently, three-tier applications were at the leading edge of development. Today,

they are mainstream. In particular, Web-based electronic-commerce applications typically follow

the three-tier pattern. Consider for example a Web-based application to make travel arrangements.

We will use this travel-booking example throughout the paper to ground the discussions. A user �lls

out a form through a browser (the client-tier) and then pushes a submit button. A web server (the

middle-tier application server) receives that request and computes a result by interacting through

a transaction with one or more database servers (the back-end tier). If no failure occurs, the user

eventually receives that result.

Although three-tier applications are becoming nowadays mainstream, they usually fail to pro-

vide su�cient reliability guarantees to end users [1]. In practice, they typically provide at-most-

once request-processing semantics. If an application server or database server fails during request

processing, the user typically receives an error noti�cation. The transactional properties of the

server-database interaction guarantees that the permanent e�ect of the request is atomic. That

is, either all or nothing happened to the persistent data. Actually, the user would like to have all
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happened. In fact, she cannot even tell if all or nothing in fact happened.1 By manual request

re-submission, the user can achieve at-least-once semantics. Intuitively, we would like to provide

exactly-once request-processing semantics to end users. This would mask system failures and elim-

inate the need for manual request re-submission. However, the notion of \exactly-once" is not very

precise as an end-to-end guarantee|it is primarily associated with the side-e�ect on the persistent

data in databases. For example, we need to clarify the circumstances under which we can guarantee

that the side-e�ect eventually happens. What if the client crashes immediately after the end user

has pushed the submit button, but before the client can submit the request to a server or store it in

stable storage ? We have to be more precise and specify how the exactly-once side-e�ect guarantee

relates to the submission of requests, and reception of replies, by a client that may crash.

In this paper we give a formal de�nition of a practical end-to-end reliability guarantee with

exactly-once avor. We describe the guarantee as a distributed systems problem, called Transac-

tional Exactly-Once. Essentially, the Transactional Exactly-Once problem requires that we mask

failures in middle and back-end tiers. This objective is very sensible in practice. If we consider

the travel application example, it means that if a user submits a travel request through a browser,

then, unless the user's machine (i.e., the client) crashes, the application ensures that the request

will be processed exactly-once and a result will eventually be received by the end-user. If the user's

machine crashes, she can assume at-most-once semantics and it is up to her to �gure out what

indeed has happened. Moreover, the crash of one client does not a�ect the reliability of other

clients: Transactional Exactly-Once prevents a crashed client from blocking the database for other

clients.

Unlike existing reliability concepts for three-tier systems, Transactional Exactly-Once includes

all the players (clients, application servers, and database servers) in a single speci�cation of relia-

bility. Existing approaches focus on speci�c parts of the overall reliability guarantee. A transac-

tional system [2, 3] typically orchestrates the interactions between the application servers and the

1Thus, besides the tedium of manual request re-submission, the user may not even know if re-submission is a safe
action and does not lead to duplication of transactional updates.
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databases. It provides all-or-nothing (at-most-once) guarantees for this interaction, and does not

capture the actual liveness guarantee that an end-user expects (i.e., exactly-once). Similarly, group

communication mechanisms [4, 5, 6, 7] are typically de�ned with a group of replicated application

servers in mind. They capture the interactions between a client and a group of replicated servers,

but they do not address the safety of the interaction with third-party (non-deterministic) databases.

It is not trivial to combine the liveness properties of replicated services with the safety properties

of transaction systems. The liveness of replicated services is concerned with the request-result

interaction with clients. It does not address the liveness of actions that a service performs against

third parties. Similarly, the safety properties of a transaction system only guarantees that either

all or nothing happens, it does not guarantee that a third-party retry logic knows if all or nothing

happened.

Transactional Exactly-Once addresses end-to-end reliability, and contains strong elements of

both safety and liveness. The speci�cation can be used as a metric to evaluate the correctness of

reliability protocols for three-tier applications [8, 1], and help better understand how transactional

and group communication mechanisms should complement each other in this context.

We show that our speci�cation is realistic by describing a protocol that satis�es the speci�cation.

We designed our protocol with a very practical objective in mind: its implementation integrates

with existing o�-the-shelf technologies. In particular, we assume that the functionality of a database

server is given: it is a stateful, autonomous resource that runs the XA interface [9] (the X/Open

standard that database vendors are supposed to comply with in distributed, transaction-processing

applications). Moreover, we assume that the client can be an applet that does not have access to

client's disk, and therefore cannot serve as a traditional participant or coordinator in a distributed

commit protocol. We discuss the implementation of our protocol and we point out its scalability

features.

The rest of the paper is organized as follows. Next section presents a general model of a three-

tier architecture. Section 3 presents the speci�cation of Transactional Exactly-Once. Section 4

describes a protocol that satis�es the speci�cation and proves its correctness. Section 5 presents
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the performances of an implementation of our protocol in a practical setting. Section 6 contrasts

our speci�cation and our protocol with related work. Finally, Section 7 concludes the papers by

pointing out some open questions.

2 A Three-Tier Model

We consider a distributed system with a �nite set of processes that communicate by message

passing. Processes fail by crashing. At any point in time, a process is either up or down. A crash

causes a transition from up to down, and a recovery causes the transition from down to up. The

crash of a process has no impact on its stable storage. When it is up, a process behaves according to

the algorithm that was assigned to it: processes do not behave maliciously. We say that a process is

correct if eventually it is always up 2. We assume that communication is reliable: that is, messages

are not duplicated and a message m sent by a process pi to a process pj is eventually received by

pj, if both pi and pj stay up after m is sent by pi.
3

In the following, we outline our representation of the three types of processes in a three-tier

application.

2.1 Clients

We model clients as processes, denoted by c1; c2; : : : ck (ci 2 Client). We do not model the client-to-

user interaction. We assume a domain, \Request", of request values, and we describe how requests

in this domain are submitted to application servers. Clients have an operation issue(), which is

invoked with a request as parameter. We say that the client issues a request when it invokes

the operation issue(). The issue() primitive is supposed to return a result value from the domain

\Result". When it does so, we say that the client delivers the result. We assume that each request

and each result are uniquely identi�ed and a client only delivers a result if it has issued a request.

2The period of interest of this de�nition is the duration of a request processing protocol.
3This assumption does not exclude link failures, as long as we can assume that any link failure is eventually

repaired. In practice, the abstraction of reliable channels is implemented by retransmitting messages.
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In practice, the request can be a vector of values. In the case of a travel application, the request

typically indicates a travel destination, the travel dates, together with some information about

hotel category, the size of a car to rent, etc. A corresponding result typically contains information

about a ight reservation, a hotel name and address, the name of a car company, etc.

2.2 Application Servers

The application servers are processes, denoted by a1; a2; : : : ; am (ai 2 AppServer). Application

servers are stateless in the sense that they do not maintain states accross request invocations:

requests do not have side-e�ects on their states, only on the database state. Thus, a request cannot

make any assumption about previous requests in terms of application-server state changes. Having

stateless application servers means that we can replicate them without synchronizing state updates.

We do not model the chained invocation of application servers. In our model, a client invokes a single

application server, and this server does not invoke other application servers. Chained invocation

does not present additional challenges from a reliability standpoint because application servers are

stateless. We ignore this aspect in our model to simplify the discussion.

In terms of transactions, we only explicitly model the commitment processing, not the business

logic or SQL queries performed by application servers. We use a function, called compute(), to

abstract over the (transient) database manipulations performed by the business logic. For example,

in our travel example, compute() would query the database to determine ight and car availabilities,

and perform the appropriate bookings. However, the compute() function does not commit the

changes made to the database. Instead, it returns a result, which application servers can use to

commit the transaction. This allows us to explicitly model the commit processing without modeling

the SQL processing. A result is a value in the \Result" domain, and it represents two aspects

of transaction processing: (1) information computed by the business logic, such as reservation

number and hotel name, that must be returned to the user, and (2) a transaction identi�er that an

application server can use to commit the updates performed against the database within compute().

Since the commitment processing can fail, we may call compute() multiple times for the same
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request. However, compute() is non-deterministic because its result depends on the database state.

We assume that each result returned by compute() is non-nil and can be used for commit processing.

In particular, we model user-level aborts as regular result values. A user-level abort is a logical

error condition that occurs during the business logic processing, for example if there are no more

seats on a requested ight. Rather than model user-level aborts as special error values returned by

compute(), we model them as regular result values that the databases then can refuse to commit.

2.3 Database Servers

We represent database servers as processes, denoted by s1; s2; : : : ; sn (si 2 Server). Since we want

our approach to apply to o�-the-shelf database systems, we view a database server as an XA [9]

engine. In particular, a database server is a \pure" server: it does not invoke other servers, it

only responds to invocations. We do not represent full XA functionality, we only represent the

transaction commitment aspects of XA (prepare and commit). We use two primitives, vote() and

decide(), to represent the transaction commitment functionality:

� The vote() primitive takes as a parameter a result value computed by an application server,

and returns a vote. A vote is a value in the domain Vote = fyes; nog. If the function returns

yes, we say that the database server accepts the result. Roughly speaking, a yes vote means

that the database server agrees to commit the result.4

� The decide() primitive takes two parameters: a result and an outcome. An outcome is a value

in the domain Outcome = fcommit; abortg. The decide() primitive returns an outcome value

such that: (a) if the input outcome value is abort, then the returned value is also abort; and

(b) if the database server has accepted a result, and the input outcome value is commit, then

the returned value is also commit. If the returned outcome value is abort (resp. commit), we

say the database server aborts (resp. commits) the result.5

4In terms of XA, the vote() primitive corresponds to a prepare operation. The results play also the role of
transaction identi�ers.

5The decide() primitive is patterned after the commit operation in the XA interface.
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3 The Transactional Exactly-Once Problem

Roughly speaking, Transactional Exactly-Once requires that, whenever a client issues a request,

then unless it crashes, there is a corresponding result computed by an application server, the result

is committed at every database server, and eventually delivered by the client. The servers might

go through a sequence of aborted results until a good result is committed and the client delivers

it. Ensuring database consistency requires that all database servers agree on the outcome of every

result, either they all abort the result or they all commit that result. Client-side consistency requires

that a result is only returned to the client if it has been committed by all database servers.

In the following, we �rst give an intuitive view of the Transactional Exactly-Once Problem, and

then we give a formal speci�cation of the problem.

3.1 Intuition

Consider our canonical online travel-booking application. A user �lls out a form about a travel

request, indicating the travel destination, the travel dates, together with additional preference

information about airline, hotel category, and type of vehicle to rent at the destination. After

completing the form, the user pushes a submit button, and a request is sent to an application

server. The application server queries one or more databases within a transaction to ful�ll the

travel request. Or, in our terminology, the application server computes a result for the request.

The result is typically composed of several partial results, (1) one for the ight reservation, (2)

one for the hotel reservation (e.g., a hotel name and address) and (3) another one for renting a

car (e.g., the name of a car company). Each of these partial results corresponds to an update of

a database server, e.g., s1, s2, and s3, and the result can only be delivered by the client if every

database server commits the result.

Since database servers might be temporarily down, or just unable to commit an update due to

some execution problem (e.g., deadlock) or a logical problem (e.g., no more seats in a ight), the

database servers might need several tries (several intermediate results) before reaching a commit
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decision about a valid result to be returned to a client. It is important that if any server aborts a

result, all servers abort that result before proceeding to the next try. To see why this is important,

assume that the user is planning a trip to Paris. Paris has two international airports: Roissy and

Orly. If the �rst try fails to book a seat in a ight to Roissy, it is important to also cancel the

reservation of a car from that airport. This should be ensured no matter how many failures occur

in the system. It is possible that the second try will succeed in �nding a seat in a ight to Orly, and

the car should then be reserved there. Since the user might probably be unhappy to be charged

twice (even if she ends up with two tickets), it is important to guarantee that no database server

commits more than one result (for the same request).

The desired guarantee has a notion of exactly-once: we want to ensure that the user does not

get charged twice, but we also want to ensure that the user eventually gets a result, not just an

error noti�cation. Of course, the result may be that the ight is full, but at least the user then

knows what happened. The guarantee also has a notion of transactional consistency: we cannot

update the database servers independently since there may be some application-level dependencies

between the database updates. Booking a car and a ight relative to the same airport is an example

of such a dependency.

3.2 Speci�cation

For the sake of presentation simplicity, we consider here only one client and assume that the client

issues only one request. We hence omit explicit identi�ers to distinguish di�erent clients and

di�erent requests, together with identi�ers that relate di�erent results to the same request.

We de�ne the Transactional Exactly-Once problem with three categories of properties: Termi-

nation, Agreement , and Validity . Termination captures liveness guarantees by preventing blocking

situations, Agreement captures safety guarantees by ensuring the consistency of the client and the

databases, and Validity restricts the space of possible results to exclude meaningless ones.
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� Termination.

(T.1) If the client issues a request, then unless it crashes, it eventually delivers a result; (T.2)

If any database server votes for a result, then it eventually commits or aborts the result.

� Agreement.

(A.1) No result is delivered by the client unless it is committed by all database servers; (A.2)

No database server commits more than one result; (A.3) No two databases decide di�erently

on the same result;

� Validity.

(V.1) If the client issues a request and delivers a result, then the result has been computed

by an application server with the request as a parameter; (V.2) No database server commits

a result unless all database servers have voted yes for that result.

Termination ensures that (T.1) a client does not remain inde�nitely blocked. This provides

at-least-once request processing guarantee to the caller of the issue() primitive, and frees the caller

from the burden of having to retry requests. Termination also ensures that (T.2) no database server

remains blocked forever waiting for the outcome of a result, no matter what happens to the client.

This non-blocking property is also important because a database server that has voted yes for a

result might have locked some resources. These remain inaccessible until the result is committed

or aborted.6 The agreement property ensures the consistency of the result (A.1) and the databases

(A.3). It also guarantees at most-once request processing (A.2). The latter property does not

prevent a database server from committing (resp. aborting) more than once the same result, which

is acceptable by most distributed database systems we know about. The �rst part of Validity (V.1)

excludes trivial solutions to the problem where the client invents a result. The second part (V.2)

conveys the classical constraint of transactional systems, that no result can be committed if at least

some database server refuses to do so. It is important to notice that Transactional Exactly-Once

6Subproperty T.2 corresponds to the termination property of non-blocking atomic commitment protocols [10].
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function issue(Request request)
Result result; /* expected result */
AppServer a1 := thePrimary; /* the default primary */
list of AppServer alist := theAppServers; /* list of all application servers */
TimeOut period := thePeriod; /* back-o� period */

1 send [Request,request] to a1;

2 while (true) do

3 set-timeout-to period;

4 wait until (receive [Deliver,result]);

5 return(result); /* delivers the result and exits */

6 on-timeout

7 send [Request,request] to alist;

Figure 1: Client protocol

expresses safety and liveness requirement on the databases, even if the client or any application

server crash, e.g., the crash of a client does not prevent other clients from accessing the databases,

nor does it lead to any inconsistency among databases.

4 A Transactional Exactly-Once Protocol

In the following, we describe a protocol that solves the Transactional Exactly-Once problem. Our

protocol consists of a set of sequential algorithms. We �rst give an overview of the protocol, then

we describe the protocol in more detail and give the pseudo-code of its component algorithms. We

describe the algorithms in Figure 1, Figure 2, Figure 3, and Figure 4.

4.1 Overview

Our Transactional Exactly-Once protocol consists of several parts. One is executed at the client,

one is executed at the application servers, and one at the database servers. The client interacts

with the application servers, which themselves interact with database servers. Basically, the client

retransmits the request to the application servers until it receives back a result (Clients do not

have access to stable storage). The application servers execute a variant of a primary-backup
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replication protocol [11]7. The primary application server computes a result for the client's request

and orchestrates a distributed atomic commitment protocol among the database servers to commit

or abort that result. The primary application server stores crucial information (the result and the

outcome of the voting phase of the commitment protocol) at the backups. If the primary fails, one

of the backups takes over. The database server responds to messages sent by application servers

by sending back votes or decision acknowledgments.

4.2 Assumptions

After being issued by a client, a request is processed without further input from the client. Fur-

thermore, the client issues requests one-at-a-time and, although issued by the same client, two

consecutive requests are considered to be unrelated. Clients cannot communicate directly with

databases, only through application servers. We assume that at least one application server is

always up. This assumption is needed here to keep the protocol relatively simple: we do not deal

with application server recovery. Similarly, and for the same reason, we do not deal with client

recovery.

Every application server has access to a local failure detector module which provides it with

information about the crash of other application servers. Let a1 and a2 be any two application

servers. We say that server a2 suspects server a1 if the failure detector module of a2 suspects a1 to

have crashed. We abstract the suspicion information through a predicate suspect(). Let a1 and a2

be any two application servers. The execution of suspect(a1) by server a2 at t returns true if and

only if a2 suspects a1 at time t. Our protocol requires that an application server's failure detector

with respect to other application servers is perfect in the sense of [12]. In other words, we assume

that the following properties are satis�ed: Completeness: if any application server crashes at time

t, then there is a time t0 > t after which it is permanently suspected by every application server;

Accuracy: no application server is suspected unless it has crashed. Since we consider a a variant of

7Primary replication schemes do however typically not include an interaction with a third-party component, e.g.,
a database.
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a primary-backup replication scheme, the assumption of perfect failure detection is not surprising

to prevent concurrent primaries [11].

We do not assume perfect failure detection between clients and servers. Clients are free to

re-submit requests at any time, and they use a simple timeout mechanism to determine when to

re-submit a request. This design decision reects our expectation that clients can communicate

with servers across the Internet, and we do not want to assume perfect failure detection across the

Internet.

We assume that all database servers always recover after crashes, and eventually stop crashing.

In practice, this assumption needs only hold during the processing of a request. For example,

in practice, we only need to assume that for each request, every database server will eventually

stay up long enough to successfully commit the result of that request. Ensuring the recovery of

every database server (within a reasonable time delay) is typically achieved by running databases

in clusters of machines [13, 14]. With a cluster, we can ensure that databases always recover

(within a reasonable delay), but we must still assume that the system reaches a \steady state"

where database servers stay up long enough so that we can guarantee the progress of the request

processing. In an asynchronous system however, with no explicit notion of time, the notion of long

enough is impossible to characterize.

Furthermore, we assume that there is a time after which every result computed by an application

server is accepted by all database servers. In practice this means that there is a time after which

all transactions run to completion. If we take our canonical example of online travel arrangements,

our assumption does not mean that there will eventually be a seat on a full ight. It means that

an application server will eventually stop trying to book a seat on a full ight, and instead execute

a transaction that can actually run to completion, for example a transaction whose result informs

the user of the booking problem.

In many cases, servers will acknowledge receipt of messages. We assume that the receiver of

an acknowledgment message can correlate it with the message being acknowledged. This can be

achieved by appropriate tagging of acknowledgment messages. However, to simplify the presenta-
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function ServerProtocol(Bool recovery)
Result result; /* result from an application server */
Outcome outcome; /* outcome of a result: commit or abort */
AppServer ai; /* a primary */
list of Appserver alist := theAppServers; /* list of all application servers */

1 if (recovery) then /* distinguish recovery from the initial starting case */

2 send [Ready] to alist; /* recovery noti�cation */

3 while (true) do

4 cobegin

5 k wait until (receive [Result,result] from ai)

6 send [Vote,result,vote(result)] to ai;

7 k wait until (receive [Decide,result; outcome] from ai);

8 decide(result; outcome);

9 send [AckDecide,result; outcome] to ai;

10 coend

Figure 2: Database server protocol

tion, we do not describe this tagging and correlation in our protocol.

Finally, we assume a closed system: the only entities in the system are the client, the application

servers, and the database servers. Moreover, these entities behave according to their respective

protocols.

4.3 Pseudo-Code

We use send and receive primitives to represent message passing. For example, if p is a pro-

cess, the statement \send [Request,request] to p" captures the action of sending the message

[Request,request] to process p. A message [Request,request] is of type \Request" and contains the

value request. If the destination of a message is a list of processes, a send operation multi-casts

the message to all processes in the list (we make no assumptions about the indivisibility of such

operations).

The statement \receive [Deliver,result] from a" captures the action of waiting for a message

of type \Deliver". When such a message arrives, the variable result is assigned to the contents

of the message, and the variable a is assigned to the sender's identity. We also use the receive

primitive without a \from" part if we do not need to assign the sender's identity to a variable.
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As a convenient notation, we introduce the predicate received(). Let pi and pj denote any two

processes and plist a list of processes. Then, the execution by process pi of \received([AckDecide])

from pj" is true if pi has received a message of the form [AckDecide] from pj. Similarly, the

execution by process pi of \received([AckDecide]) from plist" evaluates to true if pi has received

[AckDecide] from every process in plist.

Besides message passing, we also use various synchronization primitives. We use \wait until"

statements to wait for a collection of events to occur. Events can be the reception of messages and

detection of failures. We use and and or combinators to specify these event sets. Moreover, we can

bound the waiting time with timeouts. We use the statement set-timeout-to to set the expiration

time of a timer, and the statement on-timeout describes the actions to take if and when the timer

expires.

Traditional control structures, such as branches and loops, are used with their usual semantics.

In addition, we also use cobegin and coend to capture concurrent executions. The cobegin

statement terminates when any of the contained activities terminates. We use \=" to compare

values for equality and \:=" for assignment.

In addition to the domains introduced in Section 2, we also use a domain called Bool, which

contains the Boolean values true and false. Furthermore, the domain Timeout contains values, such

as real numbers, that can be used to describe elapsed time.

4.4 Protocol Description

The client part of the protocol is encapsulated within the implementation of the issue() primitive

(Figure 1). This primitive is invoked with a request as an input parameter and is supposed to

eventually return a result. The client executes a retransmission protocol to ensure that, despite

crashes of some application servers, at least one server receives the request. To optimize the failure-

free scenario, the client does not send the request to all backups unless it does not receive a result

after a back-o� period.

The application servers execute a primary-backup scheme, which ensures that at least one
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function primaryProtocol(Result result,Outcome outcome)
Client c; /* the client */
Request request; /* request from the client */
AppServer ai; /* a member of blist */
list of AppServer blist := backups; /* list of the backups of the process executing this code

*/
Server sk; /* a database server */
list of Server slist := theServers; /* list of all database servers */

1 while (true) do

2 wait until (receive [Request,request] from c);

3 if (outcome = commit) then

4 send [Decide,result] to c;

5 else

6 result := compute(request);

7 send [Result,result] to blist;

8 wait until (for every ai 2 blist:

(receive [AckResult] from ai) or (suspect(ai)));

9 send [Result,result] to slist;

10 wait until (for every sk 2 slist:

(receive [Vote,result; votek] or [Ready] from sk));

11 if (for every sk 2 slist: (received([Vote,result,yes]) from sk)) then

12 outcome := commit;

13 send [Decide,result; outcome] to blist;

14 wait until (for every ai 2 blist:

(receive [AckDecide] from ai) or (suspect(ai)));

15 repeat

16 send [Decide,result; outcome] to slist;

17 wait until (for every sk 2 slist:

(receive [AckDecide] or [Ready] from sk));

18 until (received([AckDecide]) from slist);

19 if (outcome = commit) then

20 send [Decide,result] to c;

Figure 3: Primary application server protocol
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application server is available to compute a result and interact with the database servers: if a

primary crashes, a backup takes over. The replicas coordinate their activities in such a way that

at most one application server is primary at any time and hence at most one result is computed

at any given time (Figure 3 and Figure 4). None of the client or the application server protocols

contain explicit recovery procedures. This is not surprising since these entities are not supposed to

recover after crashes.

We say that an application server is primary (resp. backup) at time t, if the application server

is up at time t and it is executing the code of Figure 3 (resp. Figure 4) at t. The default primary

server is a1. In other words, unless it crashes, a1 executes the code of Figure 3. The parameters

passed to the function primaryProtocol captures the status of request processing when the current

primary became primary. The initial primary (a1) invokes the function with a status of (nil; abort).

Thus, when a1 executes the code in Figure 3, the initial value of result is nil and the initial value

of outcome is abort.

Every other application server ai starts by executing the code of Figure 4. If a1 crashes, then a2

is supposed to take over as the new primary, unless it itself crashes, in which case a3 becomes the

primary, etc. Roughly speaking, when ai is the primary, then it stores crucial protocol information

at all application servers ai+1; ai+2; : : : ; am (Figure 3). An application server ai does not become

primary unless all application servers a1; a2; : : : ; ai�1 have crashed, and ai makes sure that any

information it might have, is also shared by all backups that are still up. (Figure 4).

The primary application server orchestrates a distributed atomic commitment protocol to ensure

that all database servers agree on the outcome of every result. If the primary crashes, a backup

takes over and terminates the protocol.8

Figure 2 illustrates the functionality of database servers. A database server is a pure server (not

a client of other servers): it waits for messages from application servers to either vote or decide on

results.

8The resulting scheme can be viewed as a Two-Phase Commit protocol [10] with a replicated coordinator [15].
The coordinator does not store crucial information on disk, but rather uses the backup replicas as a stable storage.
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function backupProtocol()
Result result := nil; /* expected result */
Outcome outcome; /* outcome of a result: commit or abort */
AppServer ai; /* an application server */
list of AppServer plist := primaries; /* list of the primaries of the process executing this

code */
list of AppServer blist := backups; /* list of the backups of the process executing this code

*/
Server sk; /* a database server */
list of Server slist := theServers; /* list of all database servers */

1 while (true) do

2 cobegin

3 k wait until (receive [Result,result] from ai);

4 send [AckResult] to ai;

5 k wait until (receive [Decide,result; outcome] from ai);

6 send [AckDecide] to ai;

7 k wait until (for every ai 2 plist: (suspect(ai)));

8 if (result 6= nil) then

9 send [Decide,result; outcome] to blist;

10 wait until (for every ai 2 blist:

((receive [AckDecide] from ai) or (suspect(ai)));

11 repeat

12 send [Decide,result; outcome] to slist;

13 wait until (for every sk 2 slist:

(receive [AckDecide] or [Ready] from sk));

14 until (received([AckDecide]) from slist)

15 primaryProtocol(result; outcome); /* become primary */

16 coend

Figure 4: Backup application server protocol
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A database server executes the function ServerProtocol. The parameter passed to this function

indicates whether the function is called initially or during recovery. The parameter is bound to the

variable recovery that is then used in the body of ServerProtocol to take special recovery actions.

During recovery, a database server informs the application servers about its \coming back".9

5 Protocol Correctness

In the following, we show that the protocol composed of the algorithms described in Figure 1,

Figure 2, Figure 3, and Figure 4, solves the Transactional Exactly-once problem.

Lemma 1. No primary application server remains blocked forever in one of the wait statements

of line 8, 10, 14 and 17, in Figure 3.

Proof. Assume by contradiction that some primary application server aj remains blocked forever

in one of the wait statements of Figure 3. By the algorithm of Figure 3, there are two cases to

consider: (1. lines 8 and 14 in Figure 3) aj is blocked waiting either to receive a message of type

AckResult or AckDecide as a response to a message (of type Result or Decide) sent to a backup ai,

or to suspect ai; (2. lines 10 and 17 in Figure 3) aj is blocked waiting either to receive a message

of type Vote or AckDecide as a response to a message of type Result or Decide sent to a database

server sk, or to receive a message of type Ready from sk.

Consider case 1. If (1.1) ai has not crashed, then by the assumption of reliable channels and

the algorithm of Figure 4 (lines 4 and 6), ai sends back a message of type AckResult or AckDecide

and aj unblocks. If (1.2) ai crashes, then by the completeness property of the failure detector, aj

suspects ai, which unblocks aj. Both subcases 1.1 and 1.2 lead to a contradiction.

Consider case 2. If the database server sk has been up since aj sent its message (of type Result or

9This noti�cation is an abstract representation of a failure detection scheme where application servers can always
tell when a database server has crashed and recovered. Such a failure-detection scheme is a realistic assumption.
In practice, application servers would detect database crashes because the database connection breaks when the
database server crashes. Application servers would receive an exception (or error status) when trying to manipulate
the database. Furthermore, we can implement that failure-detection scheme without requiring the database servers
to know the identity of the application servers.
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Decide) and remains up, then by the assumption of reliable channels and the algorithm of Figure 2

(lines 6 and 9), sk sends back a message of type Vote or AckDecide to aj , which unblocks aj . If sk

has crashed since aj sent its message, then by the assumption that all database servers are correct,

and the algorithm of Figure 2 (line 2), sk eventually recovers and sends a message of type Ready

to aj , which unblocks aj. 2

Lemma 2. Let t be any time. (1) At most one application server is the primary application server

at t, and (2) there is a time t0 � t after which some application server remains primary forever.

Proof. Let t be any time. Consider property 1. Assume by contradiction that two di�erent

application servers, ai and aj, are primary at t, and assume that i < j. By the assumption that

the default primary is a1, aj initially executes the algorithm of Figure 4. By that algorithm, the

only possibility for aj to become primary is by suspecting ai (line 7 in Figure 4). By the accuracy

property of the failure detector, ai must have crashed by time t: a contradiction with the assumption

that ai is primary at time t (remember that an application server is said to be primary at time t

if, and only if, at time t, it is both up and executing the code of Figure 3).

Consider property 2. Assume that i is the smallest integer such that ai is always up. By

our assumption that at least one application server is always up, such an integer i does exist and

1 � i � m. We distinguish two cases: (2.1) i = 1 and (2.2) i > 1. In case 2.1, a1 is always up. By

the algorithm of Figure 3, a1 remains primary forever (it will remain within the in�nite loop, i.e.,

lines 1 to 20 in Figure 3).

Consider case 2.2. Per assumption, every ak, such that k < i, eventually crashes. By the

completeness property of the failure detector, ai eventually suspects every application server ak for

which k < i. If (2.2.1) result is nil, then ai directly becomes primary (line 15 in Figure 4) and,

by the algorithm of Figure 3, ai remains primary forever. If (2.2.2) result is not nil, then ai sends

[Result,result; outcome] to each of its backups aj (line 9 in Figure 4) and then waits either to receive

[AckDecide] from aj or to suspect aj (line 10 in Figure 4). By the completeness property of the

failure detector, the assumption of reliable channels, and the algorithm of Figure 4, ai eventually
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sends [Decide,result; outcome] to every database server (line 12 in Figure 4). By the assumption

that all database servers are correct, the assumption of reliable channels, and the algorithm of

Figure 2, eventually, ai receives [Decide,result; outcome] from every database server (line 14 in

Figure 4), and becomes primary. By the algorithm of Figure 3, ai remains primary forever. In both

subcases 2.2.1 and 2.2.2, there is a time t0 after which ai remains primary forever. 2

Lemma 3 (Termination T.1). If the client issues a request, then unless it crashes, the client

eventually delivers a result.

Proof. Assume by contradiction that the client issues a request, remains up forever, but never

delivers a result. Let t be the time after which the primary application server remains up forever, and

all database servers remain up forever and accept all results computed by the primary application

server. By Lemma 2 and our assumptions, time t does exist. As we assume (by contradiction) that

the client does not receive back a result, then by the algorithm of Figure 1, the client keeps sending

the request to all application servers (line 7 in Figure 1), and in particular, the client does so after

time t. By the assumption of reliable channels, the primary application server eventually receives

the request (line 2 in Figure 3). There are two cases to consider: (1) the value of outcome at the

primary is commit, or (2) the value of outcome at the primary is abort. In case 1, the primary

sends back a result to the client (line 4 in Figure 3), and by the assumption of reliable channels,

the client receives that result and delivers it: a contradiction.

Consider case 2. The primary computes a result and sends it to all its backups (lines 6 and 7 in

Figure 3). By Lemma 1, the primary cannot remain blocked waiting for an AckResult message from

some backup. Hence the primary sends the result to every database server (line 9 in Figure 3). By

the assumption of reliable channels and the assumption that all database servers remain up after

time t, every database server receives the result. By the algorithm of Figure 2 and the assumption

that, after time t, all database servers are up and accept every result, every database server sends

back a message [Vote,result,yes] to the primary (line 6 in Figure 2). Hence the primary eventually

assigns outcome to commit and sends message [Decide,result,commit] to all database servers. (lines
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12 and 13 in Figure 3). By Lemma 1, and the algorithm of Figure 3, the primary eventually exits

from the repeat loop of Figure 3 (line 15 to 19) and sends back a result to the client (line 20 in

Figure 3). By the assumption of reliable channels, the client eventually receives the result and

delivers it (lines 4 and 5 in Figure 1): a contradiction. 2

Lemma 4 (Termination T.2). If any database server votes for a result, then it eventually

commits or aborts the result.

Proof. Let sk be any database server that accepts a result r. To accept r, sk must have received

[Result,r] from a primary application server (lines 7 and 8 in Figure 2). We distinguish two cases:

(1) the primary remains up after it has sent [Result,r] to sk, or (2) the primary crashes after

sending that message to sk. Consider case 1. By Lemma 1 and the algorithm of Figure 3, the

primary eventually sends [Decide,r,commit] or [Decide,r,abort] to sk (line 16 in Figure 3), and, by

the assumption of reliable channels, sk eventually receives the message and commits or aborts r

accordingly (lines 7 and 8 in Figure 2).

Consider case 2. By the completeness property of the failure detector and the assumption

that at least one application server is always up, a backup aj eventually suspects the primary

and proceeds executing line 8 of Figure 4. Since sk has accepted r from a primary, then by the

algorithm of Figure 3 (lines 7 and 8), aj must have received r from the primary (and r 6= nil). By

the algorithm of Figure 4, and since r is not nil, aj sends either [Decide,r; outcome] to sk (line 12 in

Figure 4), By the assumption of reliable channels, sk eventually receives the message and commits

or aborts r accordingly (lines 7 and 8 in Figure 2). 2

Lemma 5 (Agreement A.1). No result is delivered by the client, unless the result is committed

by all database servers.

Proof. Consider property A.1 and assume the client delivers a result r. By the algorithm of

Figure 1 (line 4), the client must have received r from an application server. By the algorithms of

Figure 3 and Figure 4, only a primary application server can send a result to the client and it can
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only do so after receiving a request from the client. By the algorithm of Figure 3, when the primary

receives a request from the client, it can either (1. line 20 in Figure 3) send the result r to the

client after going through an interaction with the backups and the database servers (if it �nds out

that outcome is initially abort) or (2. line 4 in Figure 3) send the result to the client without going

through an interaction with the backups and the database servers (if outcome is initially commit)

Consider case 1. By the algorithm of Figure 3, the primary application server can only send

the result if all database servers have accepted the result and all have acknowledged receipt of

[Decide,r,commit], i.e., the primary must have received [AckDecide] from all database servers.

Hence, all database servers must have committed the result.

Consider case 2. Two subcases are possible: (2.1) the primary is the the one which computed

the result and assigned outcome to commit (in an earlier round of the while(true) loop of Figure 3),

or (2.2) the primary did not compute the result but was acting as a backup at the time when the

result was computed, i.e., the application server that computed the result has crashed since then.

In case 2.1, after computing the result, the primary must have sent message [Decide,r,commit] to all

database servers and must have received message [AckDecide] from all of them (line 18 in Figure 3)

before repeating again the loop. All database servers have thus committed the result. In case

2.2, by the algorithm of Figure 4, before becoming primary, the backup must have sent message

[Decide,r,commit] to all database servers and must have received message [AckDecide] from all of

them (line 4 in Figure 4). All database servers have thus committed the result r. 2

Lemma 6 (Agreement A.2). No database server commits more than one result.

Proof. Assume that database server sk commits a result r. By the algorithm of Figure 2, sk must

have received [Decide,r,commit] from an application server. Assume by contradiction that sk also

commits a result r0 6= r. By the algorithm of Figure 2, sk must have received another message,

[Decide,r0,commit], from an application server. We distinguish between two cases: (1) the messages

[Decide,r,commit] and [Decide,r0,commit] have been sent to sk by the same application server ai;

and (2) the messages [Decide,r,commit] and [Decide,r0,commit] have been sent to sk by di�erent
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application servers ai and aj (i 6= j).

Consider case 1, and assume that ai sends [Decide,r,commit] before [Decide,r0,commit] to sk. If

ai has sent [Decide,r,commit] while it was acting as a backup, then by the algorithm of Figure 4,

ai can only send [Decide,r0,commit] after becoming primary. This is impossible because by the

algorithms of Figure 3 and Figure 4, ai would have assigned outcome to commit (lines 12 and 15

in Figure 4) and would not send message [Decide,r0,commit] to sk (line 3 in Figure 3).

Consider case 2, assume i < j, and let t be the time at which ai has sent [Decide,r,commit] to

sk. Whether ai was acting as a primary or a backup at time t, by the algorithms of Figure 3 and

Figure 4, and the accuracy property of the failure detector, ai must have sent [Decide,r,commit] to aj

before time t (line 13 in Figure 3 and line 9 in Figure 4). Furthermore, before time t, ai waits either

to suspect aj or to receive an acknowledgment from aj that it has received [Decide,r,commit]. Either

(2.1) ai suspects aj by time t, or (2.2) not. In case (2.1), by the accuracy property of the failure

detector, aj must have crashed and aj cannot later send [Decide,r0,commit] to sk: a contradiction.

In case (2.2), by the algorithm of Figure 4, aj can neither send [Decide,r0,commit] to sk as a backup

nor as a primary: a contradiction. 2

Lemma 7 (Agreement A.3). No two database servers decide di�erently for the same result.

Proof. Assume that some database server sl commits a result r. Assume by contradiction

that some database server sk aborts r. By the algorithm of Figure 2, sk must have received

[Decide,r,abort] from an application server ai, whereas sl must have received [Decide,r,commit]

from an application server aj . We distinguish two cases: either (1) i = j or (2) i 6= j. Consider

case 1. By the algorithms of Figure 3 and Figure 4, if ai sends [Decide,r,abort] to database server

sk and [Decide,r0,commit] to a database server sl, then r 6= r0. In other words: sl cannot receive

message [Decide,r,commit] from ai: a contradiction.

Consider case 2. By Lemma 2 and the algorithms of Figure 3 and Figure 4, ai must have

started sending [Decide,r,abort] to all database servers and then crashed, and then later, aj must

have suspected ai and has sent [Decide,r,commit] to all database servers. By the algorithm of
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Figure 3, aj can only send [Decide,r; outcome] to sk if r 6= nil. This can only be possible if aj has

received [Decide,r] or [Decide,r,abort] from ai (line 3 or line 6 in Figure 4). By the algorithm of

Figure 4, the only message that aj can send to sl is [Decide,r,abort]: a contradiction. 2

Lemma 8 (Validity V.1). If the client issues a request and delivers a result, then the result has

been computed by an application server with the request as a parameter.

Proof. By the algorithm of Figure 1, a client does not deliver a result r until the result was received

from an application server (line 4 in Figure 1). By the algorithms of Figure 3 and Figure 4, only

a primary can send r to the client. Let ai be that primary. Either ai has itself computed r after

receiving a request from the client, or ai was backup (when the result was computed) and has

received r earlier from a primary aj (j < i). In the latter case, either aj has itself computed r after

receiving the request from the client, in which case, V.1 holds, or aj was backup and received r

earlier from a primary ak (k < j). Since the number of application servers is �nite, ultimately, by

the algorithm of Figure 3, some application server must have computed r with the client's request

as a parameter. 2

Lemma 9 (Validity V.2). No database server commits a result unless all database servers have

voted yes for that result.

Proof. By the algorithm of Figure 2, a database server sk can only commit a result r if it

has received a message of the form [Decide,r,commit] from an application server (lines 7 and 8 in

Figure 2). The database server sk can either receive this from a primary application server or from

a backup application server. By the algorithm of Figure 4, a backup can only send such a message if

it has received message [Decide,r,commit] from the primary (otherwise, r is nil and the backup does

not send any message). By the algorithm of Figure 3, a primary can only send a message [Decide,r]

(either to a backup or to a database server), if it has received [Vote,r,yes] from all database servers;

that is, if all database servers have accepted r. 2

Proposition 1. The algorithms of Figure 1, Figure 2, Figure 3 and Figure 4 solve the Trans-
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actional Exactly-Once problem.

Proof. Termination follows from Lemma 3 and Lemma 4, Agreement follows from Lemma 5,

Lemma 6, and Lemma 7, and Validity follows from Lemma 8 and lemma 9. 2

6 Performance

This section describes the performance of our Transactional Exactly-Once protocol (or simplyTEO)

in a practical setting. Our implementation uses o�-the-shelf middleware components: Orbix 2.3

Object Request Broker [16] and Oracle 8.0.3 [17].

A client communicates with a remote application server using Orbix. The application server has

a backup on a separate machine (also running Orbix) and communicates with a remote back-end

database. We use Oracle for the back-end database and we have the database server run in an

MC/ServiceGuard cluster of 2 machines [13].

We describe measurements from two performance tests:

1. A latency test that measures client response time. In this test, a single back-end database

(running on a cluster) is involved. This con�guration is, we believe, representative of cur-

rent three-tier architectures where a single database is typically involved. We compare the

performance of our protocol with the performance of two alternative protocols: (1) a base-

line protocol that does not address reliability at all, and (2) a traditional 2PC protocol that

guarantees only at-most-once semantics (all-or-nothing) [10].

2. A scalability test. This test measures the scalability of our protocol with respect to the

number of databases being manipulated.

The two tests quantify the fundamental cost of providing the Transactional Exactly-Once guar-

antee in three-tier applications. In terms of latency, we show that our protocol introduces an

overhead of 16% over a baseline unreliable protocol (that does not o�er any guarantee) (Section

6.1). That overhead is actually lower that the overhead of a 2PC protocol, which we show is around
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23% in our environment. This might look surprising at �rst glance because our protocol also ensures

a non-blocking property of databases besides the exactly-once guarantee (2PC is blocking [10] and

ensures at best at-most-once request delivery). However, in contrast to 2PC, our protocol does not

induce any forced disk IO. The very same primary-backup scheme used to ensure client's outcome

determination is also used to guarantee non-blocking. Our second test shows that this technique

also makes our protocol scalable (Section 6.2). We do not introduce any additional communication

overhead with respect to databases. As a consequence, the cost of our protocol is a linear function

of the number of databases (or transactional �les).

6.1 Testing Environment

Our implementation is built exclusively for testing purposes. Our aim was to quantify the perfor-

mance in a realistic setting, not to build a complete implementation of our protocol. In particular,

we consider the steady-state, failure-free performance, and we did not implement all the failure-

handling and re-try logic. We assume that none of the components of the three-tier architecture

fails, and we even exclude the case where the client time-outs the application server and retries its

request, i.e., we exclude performance failures as well. These are the executions that are the most

likely to occur in practice and for which protocols are usually optimized.

Our experiments quantify the contention-free performance of our protocol. The contention-free

performance is measured on a system where one request is processed at a time. Thus, there is no

contention for resources between requests. We measure the end-to-end response time as seen by the

client application software. Since we conduct our experiments in a contention-free environment,

our measurements do not include throughput numbers, or other multi-request metrics.

Our measurements are obtained from probes embedded in the test software. The probes col-

lect measurements during the experiments, and communiciate these measurements to a central

measurement collector after the experiment is complete. This minimizes the pertubation of the

system since there is no communication of measurements during the experiment itself. We execute

multiple requests for each experiment to quantify the variation in the measured response times.
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We consider each response time measurement an independent observation, and compute the 90 %

percent con�dence interval for the average response time. We only include the average response

times, but the 90 % con�dence interval was less than 10 % wide in all runs. 10

The application server object is a simple bank account with a deposit operation. The state

of this bank-account object is its current balance. The deposit operation is read-write: it reads

the current balance of the bank account and increases it with a certain amount. The client and

application servers run as separate operating system processes on separate machines. There is only

one backup server, which runs as a separate process: it executes on the same machine as the client.

The client and servers execute on HP C180 PA-RISC workstations, running HP-UX 10.20. The

machines are connected by a 10 Mbit/Sec. ethernet. The machines were lightly loaded during the

experiments, the standard UNIX daemons ran on them, but no other signi�cant applications were

running. The network is a production ethernet, but we obtained the measurements in the late

evening when it is lightly loaded.

6.2 The Latency Test

The application server communicates with the database using Oracle's implementation of SQL*net

and XA. The server uses XA directly to demarcate transactions (xa start and xa end), and uses

the Oracle Core Interface (OCI) to execute SQL statements that implement the business logic of

the bank account object. The database cluster machines are K-class PA-RISC servers, running

HP-UX 10.20.

We compare the performance of our protocol with those of a baseline unreliable protocol, and a

standard 2PC protocol. This comparison is made with a basic three-tier application that contains

a client, a server, and a database. Figure 5 depicts the communication steps of our protocol in the

failure-free case. We contrast these with the communication steps of a baseline unreliable protocol.

In both protocols, a client submits requests to a middle-tier application server. The application

10Statistically speaking, this means that there is a 90 % chance that the \real" average lies within 10 % of the
measured average.
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Figure 5: Communication steps in a failure-free execution

server processes a request by executing a transaction against a back-end database. The actual

data manipulation by the application server is the same in both protocols: the application server

starts a transaction, executes some SQL statements depending on the request type, and ends the

transaction. We illustrate the transactional manipulation as a box at the application server. In

the baseline protocol, the server activates this box immediately after recieving a request. After

executing the transactional manipulation, the server asks the database to commit the transaction,

and returns the result of the manipulation to the client. In our TEO protocol, the server performs

reliable request processing. This involves storing recovery information at a backup. (In the more

general TEO protocol we presented in Section 4, a set of backup servers are used.)

To implement the 2PC, we used the local disk �le of the coordinator application server, which

is the traditional approach taken by most transaction processing monitors. The application server
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protocol baseline TEO 2PC

start 3.4 3.5 3.5

end 3.4 3.5 3.4

commit 18.6 18.8 17.5

prepare 0 19.0 21.2

SQL 187.0 193.2 190.6

log-start 0 4.5 12.5

log-outcome 0 4.7 12.7

other 5.0 5.1 5.1

total 217.4 252.3 266.5

cost of reliability 0% +16% +23%

Figure 6: Comparing the latency of the protocols

logs information about the transaction before it is started and after the outcome has been deter-

mined. Logging is a synchronous operation, the application server waits for the logging operation

to complete before it continues the protocol execution.

The measurements in Figure 6, show the request processing response time for the TEO proto-

col, the baseline protocol, and the 2PC protocol. In addition to the client-side elapsed time, we

also allocate portions of this time to speci�c software components that service requests. Time is

measured in milliseconds. We measure the following response-time components:

� total : The total, end-to-end response time as seen by the client. This is the elapsed time from

submitting a request to receiving a result.

� start : The time it takes to start a transaction. This is the elapsed time it takes to execute

xa start by the application server. This includes time spent in the XA server-side library,

remote communication with the database, and executing the start operation at the database.

The information communicated to the database includes unique transaction identi�er (UUID).

In our version of XA, these are represented as 128 byte text strings.

� end : The time it takes to end a transaction. This is the elapsed time to execute xa end by

the server. The server communicates an XA UUID to the database.

30



� commit : The time it takes for the application server to execute commit against the database.

The server communicates an XA UUID to the database.

� prepare: The time it takes for the application server to execute prepare against the database.

The server communicates an XA UUID to the database.

� SQL: The time it takes to execute the SQL statements by the server. This includes construct-

ing the statements as datastructures and calling into the OCI library. It also includes remote

communication with the database and query processing by the database.

� log-start : The time it takes to log start information about a transaction. This information

includes a client-generated UUID, which in our system is represented as a 37 byte text string.

We use these to generate the XA UUIDs.

� log-outcome: The time it takes to log the outcome of a transaction. The logged information

includes a 37 byte UUID.

The \other" category in Figure 6 is the amount of time which is unaccounted for after allocating

the response time to the listed components. Since the listed component times are all measured at

the application server, the \other" category includes the communication cost of the client-server

interaction. A round-trip Orbix RPC without parameters takes about 3-5 milliseconds in our

environment, so the client-server communication accounts for most of the time in the \other"

category.

We computed the cost of reliability, which is the percentage increase in end-to-end response

time relative to the baseline protocol. When we use a backup server (i.e., in our TEO protocol),

this increase is about 16%, and when logging to a local disk �le (i.e., in the 2PC) the increase is

about 23%. The increase is due to the prepare operation against the database and the logging

operations. All the other component times are about the same.
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Figure 7: Response time as a function of the number of transactional �les
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6.3 The Scalability Test

The aim of this test was to measure the scalability of our protocol with respect to the number

of databases (or transactional �les) being manipulated. Since we did not have a large number of

Oracle databases to perform this test, we applied our protocol to transactional �les that support

the XA interface.

We implemented a transactional �le concept. We did not implement however concurrency con-

trol for the �le access, only all-or-nothing update semantics. Essentially, starting a transaction

creates a new copy of the �le. Ending a transaction closes the new �le, and a prepare operation

ushes the new �le to disk. A commit atomically replaces the old �le by the new �le. We imple-

mented the �les as CORBA objects, but for simplicity they all reside in the application server's

address space. Thus, we do not have remote communication with the transactional �les.

To quantify the scalability of our protocol, we measured the end-to-end response time with our

protocol as a function of the number of transactional �les being manipulated. We use a backup

server to log transaction information. The client and server run on separate machines, and the

backup server runs on the client machine. We use Orbix as the communication infrastructure.

We show the results of our scalability experiment in Figure 7. The server is single threaded, so

the �le operations are serialized. Thus, the best we could expect is a linear function of the number

of transactional �les, which is indeed what is depicted in the �gure. As we already pointed out,

this is not actually surprising because the TEO protocol does not introduce extra communication

overhead with respect to the back-end tier.

7 Related Work

The Transactional Exactly-Once problem has an agreement avor, and relates to the well-known

atomic commitment problem as described in [10]. Transactional Exactly-Once can best be viewed

as a sequence of inter-related instances of agreement problems. Furthermore, whereas atomic

commitment is speci�ed among a set of equally-weighted participants, and aims at reaching a
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commit or abort decision, Transactional Exactly-Once includes the processing of a result, and aims

at eventually reaching a commit decision among a set of participants with di�erent roles. For

example, clients participate in a light-weight way since they do not vote, but they still need to

obtain the result and outcome.

As we already mentionned, there are numerous mechanisms and solutions to deal with reliability

in three-tier applications. However, we know of no protocol description that matches a correctness

speci�cation, precisely because no such speci�cation has been proposed so far. In the following, we

compare the idea underlying our protocol with the approaches behind those solutions.

7.1 Transaction Monitors

Most commonly used reliability solutions in three-tier architectures are based on transaction pro-

cessing techniques. Transaction Monitors [18] or Object Transaction Services (such as OTS [2] or

MTS [19]) are typically used in such a way that the middle-tier server encapsulates the processing

of the request inside an atomic transaction and guarantees at-most-once semantics. As we pointed

out earlier in the paper, nothing prevents the situation where the client does not know whether the

request was indeed processed (unknown outcome) and the situation where the reply is lost (e.g., if

the middle-tier server crashes): as a consequence, by retrying requests in an arbitrary way, the end

user usually ends up with at-lest-once semantics.

The approach of [1] circumvents the issues of outcome determination and lost reply by encapsu-

lating, inside the same transaction, both the processing of the request and the storage of the reply.

This is achieved by including the client inside the transaction boundaries: in the speci�c case of [1],

the client is considered a recoverable resource that participates in a 2PC protocol. There are two

fundamental di�erences between [1] and our approach:

1. In [1], the transaction can only commit if the reply is saved in the client's stable storage.

Hence, if the client crashes and recovers, it can �nd the reply locally. In our case, a client

that crashes and recovers might need to go through the middle-tier server in order to retrieve
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the reply. Whereas [1] targets applications where the reply of a request is a document or

a cookie granting access to a newspaper site, we consider applications where the reply is

for example a record identifying a ight ticket reservation. As a consequence, our protocol

aleviates the need for having the client involved in the atomic commitment interaction and

the need for assuming local stable storage at the client side, i.e., our protocol is suited for

thin clients accessing middle-tier servers through light-weight browsers.

2. In [1], nothing prevents the situation where the transaction coordinator crashes and all par-

ticipants remain blocked. In our protocol, the very same replication scheme used to ensure

the high availability of the reply, is used to ensure non-blocking atomic commitment and

orchestrate transaction retries.

7.2 Persistent Queues

The approach described in [8] uses persistent queues to ensure exactly-once request processing in

client-server systems. The client submits a request to a server through a persistent client-queue.

The server gets the request from the queue, processes it, and stores the reply into a persistent

server-queue. The sequence < request processing - reply storage > is executed inside a transaction

which resolves the issues of outcome determination and lost reply . There are two fundamental

di�erences between our approach and [8]:

1. To ensure high-availability in [8], both the client-queue and the server-queue needs to be

replicated with the additionnal cost of the mechanisms needed to maintain their consistency.

Furthermore, the atomic commitment mechanism employed must be non-blocking.

2. In our approach, instead of having the client store the request in a persistent queue and have

the server pull that queue, we provide a push mechanism that keeps sending the request,

until the server (or some of its replicas) receive and process that request. Similarly, we do

not store the reply in a persistent queue but we use the replication mechanism that ensures

server availability to also make the reply highly available.
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7.3 Message Logging

The recovery mechanism in [20] uses message logging to recover from failures in multi-tier archi-

tectures. The system model is that multiple, stateful clients interact with a single database server.

To recover from failures, clients log requests from the outside world and requests sent to the server.

The server logs incoming requests and replies sent to clients and hence guarantees that request

processing is idempotent: the same request can be sent multiple times without repeating its server-

side side-e�ect and the reply will be the same each time. In addition to requests and replies, the

server also stores information about all read and write operations performed against the database,

to allow the server to replay these operations during recovery of incomplete invocations.

The approach in [20] provides e�cient client-side recovery against a single server, whereas our

approach provides e�cient server-side replication without client-side recovery. The two approaches

reect di�erent target domains. The approach in [20] is targeted at systems where clients have inter-

transaction state, such as CAD design systems. In contrast, our approach is targeted at highly

interactive clients, such as web browsers, where client-side state recovery is much less important.

7.4 Object Groups

Several authors suggested the use of an object group abstraction to mask failures in the context

of three-tier architectures [4, 5, 6, 21, 7]. The Object Management Group is in the process of

standardizing a CORBA Object Group Service [22] to make CORBA applications highly-available.

Roughly speaking, a group appears to its clients to be a single, highly available entity. A

group is made highly available through replication and a coordination protocol to ensure that all

group members process all requests in some coordinated manner and thus contain the same state.

Relying (only) on groups in a pure three-tier architecture (where the application state is stored in

databases) to mask failures would actually imply paying the overhead of the coordination of every

group of (stateless) middle-tier server replicas and building a highly available database group out

of each single database. Using replication for the back-end database tier makes it complicated,

36



if not impossible, to use standard, o�-the-shelf database systems. Other issues such as how to

coordinate many-to-many communication (between a group of servers and a group of databases)

are not obvious and might induce considerable performance penalties [23].

In our case, we rely on o�-the-shelf clustering technology to provide quick recovery for databases.

However, we do not assume that each database can be viewed as a failure-free entity: we still need to

handle the case of transaction aborts because of a database crash. Our primary backup replication

mechanism at the middle-tier makes use of the assumption of stateless servers without the overhead

of replica coordination [15].

8 Concluding Remarks

This paper de�nes a desirable, yet realistic, speci�cation of end-to-end reliability in three-tier

applications. We present that speci�cation in the form of a problem called Transactional Exactly-

Once which encompasses both safety and liveness properties in such environments. Transactional

Exactly-Once addresses end-to-end reliability and includes all the components in a single speci�-

cation, namely, clients, application servers, and database servers. The speci�cation can be used as

a metric to evaluate the correctness of reliability protocols for three-tier applications [8, 1]. It can

also help building new protocols for those applications, for example by composing transactional

and group communication mechanisms, along the lines suggested in [24].

Transactional Exactly-Once is meaningful because it captures a very useful exactly-once guar-

antee for the end-user, in all failure cases that are not related to her machine. It is also sensible

because, as we show in the paper, we have devised a realistic Transactional Exactly-Once protocol.

Our protocol is di�erent from alternative protocols that address similar issues, e.g., [8, 1, 20] in

that we do not rely on any stable storage at the client side. This makes our protocol particularly

well-suited for pure three-tier applications, where the only stable state is at the back-end databases

and �le systems. As we pointed out in the paper, the overhead introduced by our protocol is

reasonable in a practical setting: we do not introduce extra disk accesses, and we use the very same
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replication scheme to ensure both the high availability of the result and the non-blocking property

of atomic commitment.

The protocol we describe intimately relates three subprotocols: (1) a request retransmission

protocol executed by the client; (2) a primary-backup replication protocol executed by the applica-

tion servers; and (3) a distributed commit protocol. Several variations of each of these subprotocols

have been discussed in the literature (e.g., [10, 25, 11]) but, to our knowledge, their integration

in a practical context has never been discussed. Evaluating the feasibility of a modular solution

to the Transactional-Exactly Once problem, where the three subprotocols would appear as black-

boxes, and comparing the e�ciency of that approach with our current solution, is the subject of

our current investigation.
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