
X-Ability: A Theory of Replication

Svend Frølund1 Rachid Guerraoui2
1 Hewlett-Packard Laboratories, 1501 Page Mill Rd, Palo Alto

2 Swiss Federal Institute of Technology, CH 1015, Lausanne

January 15, 2000

Abstract

This paper presents x-ability (Exactly-once-ability): a correctness criteria for replicated ser-
vices. X-ability provides the illusion that the actions executed by a replicated service are exe-
cuted exactly-once, even if these actions have been actually executed several times and by various
replicas. A client can treat a x-able replicated service as if it was not replicated, even if this
service executes actions that are non-deterministic and have side-effects on the environment,
e.g., invoke other services. X-ability is a local property: replicated services can be specified
and implemented independently, and later composed in the implementation of more complex
replicated services. We illustrate our theory through an asynchronous replication protocol that
handles non-determinism and external side-effects. The replication protocol is asynchronous in
the sense that it may vary, at run-time and according to the asynchrony of the system, between
some form of primary-backup and some form of active replication.

1 Introduction

Background. There has a been a significant body of literature in the last decade about replication
algorithms. Surprisingly, there is no satisfactory specification of what it precisely means for a repli-
cation algorithm to be correct. There are well-known specifications of correctness for particular
ways of implementing replication, such as primary-backup [BMST93] and active replication [Sch93].
However, these are specifications of replication “schemes” rather than specification of the actual
“problem” solved by replication. The very few abstract replication properties that we know about,
e.g., [Aiz89] and [MP88], do not address correctness with respect to external side-effect. They
only address consistency of state that is encapsulated within the service. In particular, there is
no provisioning, in the specifications, of having a replicated service call a third party entity, e.g.,
another replicated service. This form of interaction is however common in practice.1

X-ability in short. This paper presents a correctness criteria for replicated action execution, which
we call x-ability (Exactly-once-ability). The notion of x-ability is independent of a particular repli-
cation algorithm: it can be viewed as the specification of the problem solved by the so-called
transparent replication, where the aim is to provide the illusion that, as long as the functional

1Three-tier architectures are becoming mainstream for the Internet. In a three-tier architecture, a client typically
invokes a middle-tier application server (which may be replicated), which itself invokes a back-end database (which
may as well be replicated).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

behavior of the service is concerned, replication is transparent and the client of the service typically
invokes it as if was implemented by a single process.

Roughly speaking, a sequence of actions is executed correctly (i.e., is x-able) if their side-effect
appears to have happened exactly-once. The side-effect of the action can be the modification
of a shared state or the invocation of another (replicated or not) service. Actions can be non-
deterministic as can the particular sequence of actions executed in response to a request. We
formally define the notion of “appears to have happened exactly-once” through history reductions.
An action history h is x-able if h can be reduced to a history h′ where every action is executed
exactly-once. We base history reductions on rewriting rules that exploit idempotence and undoabil-
ity properties of actions. Basically, an idempotent action has the same side-effect whether executed
once or multiple times, and an undoable action is one that either commits, or aborts and have
its side-effect cancelled [GR93]. X-ability is a local property. It can be used in a recursive way to
locally prove the correctness of composable replicated services. Let S1 be a replicated service that
is proved to be x-able, and S2 be a replicated service that invokes S1. We can prove the x-ability of
S2 by simply assuming that any interation with S1 is an idempotent action.

X-ability in perspective. The role of x-ability for replicated programs is similar to that of lineariz-
ability for concurrent objects [HW90] and serializability for concurrent transactions [Pap79]. It
facilitates certain kinds of formal reasoning by transforming assertions about complex replicated
behavior (resp. concurrent for [HW90, Pap79]) into assertions about simpler non-replicated (resp.
sequential for [HW90, Pap79]) behavior. X-ability is similar to 1-copy serializability [BHG87] in
that it considers a replicated program to be correct if it is “equivalent” to a non-replicated pro-
gram. However, x-ability does not directly handle concurrent invocations of a replicated service.
More precisely, x-ability states constraints about the concurrency among replicas in the context
of a given request (“intra-request” concurrency), but does ignore the concurrency that originates
from different requests (from different clients). The latter kind of concurrency is indirectly viewed
in our case as a source of non-determinism of actions.2 On the other hand, our underlying model
is more general than those considered for linearizability and serializability (or 1-copy serializabil-
ity) in that we do not only consider operations on data objects, but arbitrary actions that may
involve third party entities. Furthermore, x-ability encompasses both safety and liveness. It is a
safety property because it states that certain partial histories must not occur. It is also a liveness
property since it enforces guarantees about what must occur (x-ability encompasses a notion of
wait-freedom [Her91]). Finally, and as we pointed out, unlike serializability, but (somehow) like
linearizability, x-ability is a local property of replicated services.

X-ability in use. To illustrate the use of x-ability, we present a replication protocol where replicas
may invoke non-deterministic actions on third-party entities. We consider here idempotent and
undoable actions. At first glance, it may appear trivial to guarantee exactly-once execution for
idempotent and undoable actions: we can always retry an idempotent action, and we can always
cancel an undoable action, and try again, if the action appears to have failed. However, the trick
is to coordinate the execution logic with the retry logic so that there is agreement on the result
of a nondeterministic idempotent action, and when to cancel an undoable action. Our replication

2We believe the decoupling of concurrency and duplication to be an important step towards the design of more
modular replication protocols.

2

protocol has an asynchronous flavor. Unlike in primary-backup replication [BMST93], we do not
make any assumption about the existence of a single leader at every given time and we tolerate
unreliable failure detection. Unlike active replication [Sch93], we do not assume that replicas are
deterministic. Our replication protocol is asynchronous: it may vary at run-time and according
to the asynchrony of the system, between some form of primary-backup and some form of active
replication.
Roadmap. The rest of the paper is organized as follows. Section 2 describes our system model.
Section 3 defines what it means for a history to be x-able. Section 4 defines what it means for a
replicated service to be x-able. Section 5 illustrates the use of x-ability through our asynchronous
replication scheme. Section 6 contrasts our work with related work.

2 System model

To describe x-ability, we consider a general model where a set of process replicas implement a
service. The functionality of the service is captured by a state machine. Each replica has its own
copy of the state machine. Clients send requests to the service to invoke state machine actions.

To describe the fault-tolerance semantics, and reason about correctness, of a service, we associate
events with the start and completion of actions. Event histories convey the observable behavior
of processes, i.e., the externally observable behavior of a service. Different runs of a service on
the same input may produce different histories: the service may fail differently in different runs,
actions may be non-deterministic, and the concurrency within the service may cause events to
be interleaved differently. We use history patterns to abstract out some of these differences and
capture structural properties of histories.

2.1 State Machines

A state machine exports a number of actions. An action takes an input value and produces an
output value. In addition, an action may modify the internal state of its state machine and it
may communicate with external entities. In contrast to [Sch93], our state machines may be non-
deterministic. That is, the side-effect and output value of a specific action may not be the same
each time we execute it, even if we execute it in the same initial state.

A client can invoke a replica’s state machine by sending a request to the replica. A request
contains the name of an action and an input value for the action. If no failures occur, the replica
returns the action’s output value to the client as a reply to the request. The execution of an action
may fail (for example if the action manipulates a database and the database crashes), or the replica
executing the action may fail. If the action fails, it returns an exception (or error) value as the
result of execution.

Formally speaking, we model action names as elements of a set Action. We refer to elements
of this set using the letter a. The set Value contains the input and output values associated with
actions. Furthermore, we identify two sets, Request and Result, that are defined as follows:

Request ⊆ (Action × Value) (1)
Result ⊆ Value (2)

3

A request is simply a pair value that contains an action name and an input value. We write pairs
as “(a, v)” (this pair contains the action name a and the value v).

2.2 Events

A state machine represents the program that a service must execute. To reason about service
correctness, we also need a way represent executions of this program. We associate events with the
execution of actions, and introduce a hypothetical event observer that can watch the occurrence of
events and construct an event history . Events are subject to a total order that reflects the (relative)
time at which they were observed.

We associate events with the start and completion of actions. The causal and temporal rela-
tionship between action execution and event observation is subject to the following axioms:

• An action’s start event cannot be observed before the action is invoked.
• An action’s completion event cannot be observed before its start event.
• If an action returns successfully, then its start and completion events have been observed.

In a failure-free run, the execution of an action will always give rise to a start event and a
completion event. If a failure occurs, an action may give rise to both events, a start event only, or
no events at all.

We can use events to reason about the side-effect of actions. A start event signifies that the
side-effect may happen; a completion event means that the side-effect has happened (successfully).

We model events as elements of the set Event. Events are structured values with the following
structure:

e ::= S(a, iv) | C(a, ov)

The event S(a, iv) captures the start of executing the action a with iv as argument. The event
C(a, ov) captures the completion of executing the action a, and ov is the output value produced
by the action.

2.3 Histories

A history is a sequence of events. The notion of a sequence captures the total order in which events
are observed. We model histories as elements of the set History, and we consider histories to be
structured values as defined by the following syntax:

h ::= Λ
| e1 . . . en

| h1 • . . . • hn

The symbol Λ denotes the empty history—a history with no events. The history e1 . . . en contains
the events e1 through en. The history h1 • . . . • hn is the concatenation of histories h1 through
hn. The semantics of concatenating histories is to concatenate the corresponding event sequences:

4

h1 = e1 . . . en h2 = en+1 . . . em

h1 • h2 = e1 . . . en en+1 . . . em
(3)

The action a appears with input value iv in a history h if h contains a start event produced by
the execution of a on iv . We write this as (a, iv) ∈ h, and we formally define the semantics of ∈
for histories as follows:

(a, iv) ∈ e1 . . . en =

{
true if ∃ i : 1 ≤ i ≤ n ∧ ei = S(a, iv)
false otherwise

2.4 Patterns

We typically consider histories that are produced by multiple processes. For example, we may
want to reason about a history that is produced by a set of server processes that collectively
implement a replicated service. Since processes execute concurrently, we end up with a “combined”
history in which events produced by different processes are interleaved. In many cases, we want to
consider this interleaving as “incidental” (or un-important), and reason about histories at a level of
abstraction where histories that only differ in the particular interleaving are considered equivalent.
We use history patterns (or simply patterns) to capture these higher-level structural properties.

In Figure 1, we define an abstract syntax for patterns. Formally speaking, patterns are elements
of the set Pattern, and we use the letter p to refer to patterns.

sp ::= [a, iv , ov] | ?[a, iv , ov]
p ::= sp | sp1 ‖h sp2

Figure 1: Abstract syntax for history patterns

The only use for patterns is to match histories. A simple pattern sp matches single-action
histories. The pattern [a, iv , ov] matches a history that contains the events from a failure-free
execution of an action a. The value iv is the input to a and ov is the output from a. The pattern
?[a, iv , ov] matches a history in which a may have failed. A matching history may be the empty
history, it may contain a start event only, or it may contain both the start and completion event
of a.

The pattern sp1 ‖h sp2 matches a history h′ that contains an interleaving of three sub histories
h1, h2, and h3, where h1 matches sp1, h2 matches sp2, and h is an arbitrary history. The interleaving
is constrained in the sense that the first event in h1 must also be the first event in h′ and the last
event in h2 must also be the last event in h′.

Formally speaking, pattern matching is a relation � between elements of the set History and
elements of the set Pattern. In other words, � is a subset of History × Pattern (the set of all pairs
from History and Pattern). We define this relation in Figure 2.

A history that matches a simple pattern contains at most two events. We define two operators
on such histories: first() and second(). We define those operators in Figure 3. The first operator

5

� ⊆ (History × Pattern) (4)
S(a, iv)C(a, ov) � [a, iv , ov] (5)

Λ � ?[a, iv , ov] (6)
S(a, iv) � ?[a, iv , ov] (7)

S(a, iv)C(a, ov) � ?[a, iv , ov] (8)
h1 � sp1 h2 � sp2

(h1 • h • h2) � (sp1 ‖h sp2)
(9)

h1 � sp1 h2 � sp2

(first(h1) • h3 • second(h1) • h4 • first(h2) • h5 • second(h2)) � (sp1 ‖h3•h4 •h5 sp2)
(10)

h1 � sp1 h2 � sp2

(first(h1) • h3 • first(h2) • h4 • second(h1) • h5 • second(h2)) � (sp1 ‖h3•h4 •h5 sp2)
(11)

Figure 2: Semantics of Pattern matching

first : History → History (12)
second : History → History (13)

first(Λ) = Λ first(e1e2) = e1 first(e) = e (14)
second(Λ) = Λ second(e) = e second(e1e2) = e2 (15)

Figure 3: The definition of first and second

returns the first element in a history, if any, and Λ otherwise. The second operator returns the
second element in a history of length two, the only element in a history of length one, and the
empty history otherwise.

3 X-Able Histories

To be fault-tolerant, a replicated service must be prepared to invoke the same action multiple times
until it completes successfully. At the same time, the service must have exactly-once semantics
relative to its environment—the service must maintain the illusion that the action was executed
once only. An x-able history is a history that maintains the illusion of exactly-once but possibly
contains multiple incarnations of the same action.

3.1 History Reduction

We define a relation, ⇒ , on histories. If h ⇒ h′, then the execution that produced h has the the
same side-effect as an execution that produced h′. We refer to ⇒ as a reduction operator because

6

it is asymmetric, and h′ always has fewer events than h. Essentially, a history is x-able if it can be
reduced, under ⇒ to a history that is identical to a history that is produced by system without
failures.

Then main idea in defining ⇒ is to consider two particular types of actions: idempotent and
undoable. Informally speaking, n executions of an idempotent action has the same side-effect as a
single execution of it. Thus, we can say that h ⇒ h′ if h contains n incarnations of an action and
h′ contains n − 1 incarnations of the same action. Similarly, an undoable action is like a database
transaction: it can be rolled back up to a certain point (the commit point) after which its effects
are permanent. In terms of undoable actions, we can say that h ⇒ h′ if h contains an undoable
action that was rolled back and if h′ does not contain the action at all.

More formally speaking, we identify two subsets of Action: Idempotent and Undoable. The set
Idempotent contains the names of idempotent actions. We use the notation ai to indicate that the
action a is idempotent. The set Undoable contains names of undoable actions. We use the notation
au to indicate that an action a is undoable. An undoable action, au, has two associated actions:
a cancellation action, a−1 and a commit action, ac. The commit and cancellation actions for an
action au take the same arguments as au, and they return the value nil. Cancellation and commit
actions are idempotent.

⇒ ⊆ (History × History) (16)
h1 ⇒ h2 h2 ⇒ h3

h1 ⇒ h3
(17)

h � (?[ai, iv , ov] ‖h′ [ai, iv , ov])
h1 • h • h2 ⇒ h1 • h′ • (S(ai, iv)C(ai, ov)) • h2

(18)

h � (?[au, iv , ov] ‖h′ [a−1, iv , nil]) (au, iv) /∈ h1 (ac, iv) /∈ h′

h1 • h • h2 ⇒ h1 • h′ • h2
(19)

h � (?[ac, iv , nil] ‖h′ [ac, iv , nil]) (au, iv) /∈ h′

h1 • h • h2 ⇒ h1 • h′ • (S(ac, iv)C(ac, nil)) • h2
(20)

Figure 4: Definition of history reduction

We then define the ⇒ operator in terms of idempotent and undoable actions in Figure 4.

• The first inference rule (17) defines ⇒ as a transitive relation.

• The second rule (18) captures the semantics of idempotent actions. If a history contains a
successfully executed idempotent action ai, then we can remove the events from a previous
attempt to execute ai. The events from the previous attempt and the successful attempt can
overlap. Moreover, there can be an interleaving history h′ between these sets of events as
well.

• The third rule (19) is concerned with cancellation of undoable actions. Intuitively, if we
successfully cancel an undoable action, then we remove its side-effect (it appears as if the

7

action was never executed). We can keep alternating between executing the action and
cancelling it. But for the action to happen exactly-once, we must eventually execute it
successfully and execute its commit action successfully. The rule captures when we can
remove events that stem from an attempt to execute an action au and then cancel it.

The sub-history h contains the events from such an action pair (au followed by a−1). It also
contains a history h′ that is interleaved with the events from au and a−1. One requirement
is that h′ must not contain the commit action of au: if we committed au before issuing a−1,
the cancellation would not take effect. Furthermore, we need the constraint on h′ to ensure
that an algorithm does not concurrently cancel and commit the same action.

The requirement that (au, iv) /∈ h1 states that the preceeding sub-history, h1, cannot contain
any events from au. Since ?[a, iv , ov] matches the empty history, we need to ensure that the
cancellation events are not removed by themselves if they actually do cancel an action. If
that is the case, we should also remove the action itself from the history. Thus, we create a
constraint so that the ?[a, iv , ov] part of the pattern only matches the empty history if there
are no events from a to the left of ?[a, iv , ov].

• The fourth rule (20) states that commit actions are idempotent. The requirement that
(au, iv) /∈ h′ ensures that the commit action and the action being committed do not overlap.

3.2 Failure-Free Histories

A failure-free history is a history that could have been produced by a failure-free execution of
a single state machine action. To define the notion of failure-free history, we define a function,
called eventsof, on actions and their values. The eventsof function returns the failure-free history
associated with the action and the values.

eventsof(au, iv , ov) = S(au, iv)C(au, ov)S(ac, iv)C(ac, nil) (21)

eventsof(ai) = S(ai, iv)C(ai, ov) (22)

Due to non-determinism, there are multiple failure-free histories which are possible for a given
action a and a given input value iv . We define the set of all possible as histories, FailureFree(a,iv)

as follows:

FailureFree(a,iv) = {h ∈ History | ∃ ov ∈ Value : h = eventsof(a, iv , ov)}

A single-action history is x-able if it can be “reduced” to a failure-free history under the ⇒
relation. We capture this through a predicate, x-able on histories:

x-able(a,iv)(h) =

{
true if ∃h′ ∈ FailureFree(a,iv) : h ⇒ h′

false otherwise
(23)

Notice that the predicate x-able(a,iv) determines x-ability relative to a particular action-value pair.

8

3.3 History Signature

Given a request (a, iv), we use the set FailureFree(a,iv) to constrain the server-side processing of that
request to have exactly-once side-effect. We also need to ensure that the result delivered to the
client corresponds to the server-side history. We introduce the notion of a history signature, which
captures the client-side information (request and result) that is legal relative to a given server-side
history. Because of non-determinism and server-side retry, a history can have multiple signatures.
We define the set of signatures by the following inference rules:

h ⇒ S(au, iv)C(au, ov)S(ac, iv)C(ac, nil)
(a, iv , ov) ∈ signature(h)

(24)

h ⇒ S(ai, iv)C(ai, ov)
(a, iv , ov) ∈ signature(h)

(25)

3.4 Possible Reply Values

The execution of state machine actions may be non-deterministic. The same request may result in
different reply values. For example, the state of the machine may determine the reply value, and
this state may change over time.

We want to characterize the set of possible reply values for a given request. Since we do not
know what state machine actions do, we cannot describe which specific values are possible. Instead,
we assume the existence of a set PossibleReply that contains the possible reply values for a given
request. To capture the history-sensitive nature of the set of possible replies, we define PossibleReply
in the context of a request sequence R1 . . . Rn. The interpretation of PossibleReply in the context
of a sequence is the set of possible replies to request Rn after the state machine has executed the
requests R1 . . . Rn−1. Thus, we write the set as: PossibleReply(R1...Rn).

Notice that the set PossibleReply is defined for state machines, not replicated services. Thus,
there is no notion of failures or replication involved in its definition. The set is well-defined for
state machines in general.

4 X-Able Services

We provide here a formal specification of replication that is idependent of a particular replication
protocol. We can implement the specification with various protocols, including protcols that have
a primary-backup flavor and protocols that have an active-replication flavor. Moreover, the spec-
ification takes side-effect into account. We use the notion of x-able histories to capture correct
execution of actions with side-effect.

We consider here a single client submitting one request to a replicated service. Formally speak-
ing, a replicated service consists of a sequencer S and an action submit . The sequencer captures
the functionality of the service. It is executed by a set of server proceses s1 . . . sn that each have
a copy of S. These are the only processes that have a copy of S. The action submit can be used
by any process p to invoke the service. The action takes a value in the domain Request and, when
executed, produces a value in the domain Result. We specify correctness relative to a single client

9

C. Thus, we consider a system that consists of the processes s1 . . . sn and C only. The service is
x-able if the following conditions hold:

R1. The action submit is idempotent.

R2. The client C will eventually be able to execute submit successfully.

R3. If C submits a sequence of requests R1 . . . Rn, and if C only submits Ri+1 after Ri succeeds,
then the history produced by s1 . . . sn satisfies either x-able(S,R1...Rn) or x-able(S,R1...Rn−1).

R4. If C executes submit successfully on a request R, then submit returns a value in Possible(S,R).

The first two requirements are concerned with the contract between a service and its clients.
Clients use the action submit to invoke the service. Because submit is idempotent, clients can
repeatedly invoke the service without concern for duplicating side-effects. The second requirement
(R2) is a liveness property. The action submit is not allowed to fail an infinite number of times.
There must be a time after which submit does not fail. The requirement also makes a service
non-blocking in the sense that the submit is guaranteed to eventually return a value. In addition,
submit is free to fail a finite number of times and return an error value (a value that does not belong
to Result). The combination of the first two requirements facilitates composition of services. Since
a replicated service can execute idempotent actions that eventually succeed, it can invoke another
replicated service and view its invocation as an idempotent action.

The third requirement (R3), deals with the server-side “effect” of executing a sequence of
requests. The resulting server-side history must be x-able, that is, it must be equivalent (under
history reduction) to a failure-free history obtained from S. This forces the replication algorithm
to correctly retry failed actions, and execute each action returned by S so that it appears to have
happened exactly-once.

The fourth requirement forces submit to communicate with s1 . . . sn, the submit action cannot
locally, at C, ensure that the server-side history is x-able. Moreover, once a server process starts
to execute the actions in response to a request, the service must execute the action sequence to
completion (even if C fails).

Since C submits one request after another, only Rn can fail in the sequence R1 . . . Rn. If C
itself fails before retrying Rn, the server-side history may not contain the events related to the
processing of Rn: perhaps Rn was initially sent to a failed replica, and the processing never begun.
Thus, because C can fail, we cannot guarantee that all submitted requests are indeed processed.
What we can guarantee is that all successfully submitted requests are processed. Furthermore, if
the service starts to process a request, then the processing will complete event if C fails. This gives
an exactly-once guarantee for all successfully submitted requests and an at-most-once guarantee
for all submitted requests.

The third requirement also forces the service to correctly maintain S’s state, if any. The server-
side history must be equivalent to a failure-free execution of the sequence R1 . . . Rn. But since R1

may result in a transformation of S’s state, the actions executed for R2 may depend on this state
transformation. So, a replication algorithm must ensure that the state resulting from R1 is used as
a context for executing R2. The replication algorithm cannot assume that R1 did not update the
state of S, or that the state update is immaterial to the processing of R2. rep

10

Requirement R4 guarantees that the algorithm does not execute a correct sequence of actions
and then return a meaningless result. The algorithm must return a result value that is in the set
of possible values for each request.

5 A General Replication Algorithm

This section presents a general asynchronous replication algorithm. The algorithm is general in the
sense that it handles the replication of services that may execute actions that are non-deterministic,
or actions that have external side-effect. It is asynchronous in the sense that it may vary, at
run-time, and according to the asynchrony of the system, between some form of active replica-
tion [Sch93], and some form of primary-backup [BMST93]. We describe the algorithm and then
prove its correctness, i.e., we show that every service replicated using this algorithm is x-able.

5.1 Overview

Our replication algorithm is mainly composed of two parts. A client part, described in Figure 53,
and the replica part, described in Figure 6. For presentation simplicity, we consider only the case
of a single client, submitting a single request to the replicated service. The replicated service is
implemented by n replicas. Basically, the client sends the request to a single replica and then waits
until it either suspects the replica to have failed or receives a result from the replica. All replicas
execute the same protocol (Figure 6).

In a “nice” run, where no replica crashes or is suspected to have crashed, the protocol goes as
follows. The replica that receives the client’s request, executes the corresponding state machine
action, and sends back the resulting reply to the client. In such a run, the replication scheme is
very much like a primary-back scheme (applied to general actions that might have external side
effect).

Any replica that suspects the crash of the primary tries to terminate the action execution by
the primary: if the primary was executing an undoable action, the replica aborts this action; if
the primary was executing a non-deterministic idempotent action, the replica prevents the primary
from responding to the client. After terminating the possible ongoing action execution, the replica
initiates a new round, and tries to become primary for that round.

Because of false failure suspicions, we may very well end-up in the situation where all replicas
concurrently execute actions on behalf of the same clients (in different rounds): in such a config-
uration, our replication scheme is very much like an active replication scheme (applied to general
actions that might be non-deterministic and have external side effect).

5.2 Assumptions

We assume that processes (client and replicas) fail by crashing. They do not recover after a crash,
neither do they ever behave maliciously. A correct process is one that does not fail. We assume
that communication channels are reliable: if a correct process sends a message to another correct
process, then the message is eventually received, and it is only received once. We also assume that

3In fact, the figure actually describes the algorithm executed by the client’s stub. In the presentation, we simply
do not distinguish between the client and the client’s stub.

11

every action is eventually successful. If we keep invoking them, they will eventually execute to
successful completion. Furthermore, we assume that a successfully executed undoable action can
be committed.

In order to ensure that the service is indeed x-able, we rely on two kinds of abstractions:

1. Failure detector [CT96]. The failure detector is a distributed oracle that provides hints about
failed processes. The client uses the failure detector to monitor the crashes of replicas, and
every replica uses the failure detector to monitor the crashes of other replicas. We assume here
that the client’s failure detector satisfies the strong completeness property [CT96]: eventually,
every crashed replica is suspected by the client. Among the replicas, we assume the failure
detector to be eventually perfect [CT96]. Besides strong completeness, it also ensures eventual
strong accuracy: eventually, no replica is suspected unless it has crashed. These assumptions
are needed to guarantee progress. If a replica suspects another replica, it will try to clean
up the execution state of the suspected replica. For undoable actions, this means cancelling
the actions. Thus, if we forever have false suspicions, the same action could in principle be
cancelled over and over again.

2. Consensus object [Her91]. The consensus abstraction is used for three kinds of synchroniza-
tions: (1) to ensure agreement about which replica is leader for a given round, (2) to ensure
agreement about the outcome of undoable actions (commit or abort), and (3) to ensure agree-
ment on the results of idempotent actions (these might be non-deterministic). The consensus
abstraction is used here through two primitives: a propose() primitive which takes as input
a value proposed for consensus, and returns the value decided, and a read() primitive that
returns the value decided, if any, or ⊥ if no such value has been decided.

We simply assume here the existence of these abstractions, i.e., we do not discuss their imple-
mentation in a message passing system.

5.3 The pseudo-code

We discuss below the semantics of our C++-like pseudo-code we use to describe our algoritms in
Figure 5, Figure 6, and Figure 7.

A channel is specified by two primitives: send and receive. For example, the statement “send
[Request,req] to pj” captures the action of sending the message [Request,req] to process pj . A
message [Request,req] is of type “Request” and contains the value req. We assume that messages
are uniquely identified. In many cases, servers acknowledge receipt of messages. We assume that
the receiver of an acknowledgment message can correlate it with the message being acknowledged.
This can be achieved by appropriate tagging of acknowledgment messages. However, to simplify
the presentation, we do not describe this tagging and correlation in our protocol. The statement
“receive [Request,req] from pi” captures the action of waiting for a message of type “Request”
from process pi. When such a message arrives, the variable req is assigned to the contents of the
message, and the variable pi is assigned to the sender’s identity. We also use the receive primitive
without a “from” part if we do not need to assign the sender’s identity to a variable.

Besides message passing, we also use various synchronization primitives. We use “await”
statements to wait for an event to occur. Events can be the reception of messages and detection of
failures. We use and and or combinators to specify these event sets. Traditional control structures,

12

Client {
Process replicas[n];

Int i = 1;

Result submit(Request req) {
Result res;

send [Request,req] to replicas[i];

await (receive [Result,res]) or suspect(replicas[i]);

if(received [Result,res]) then

return res;

else

i = (i +1) mod n;

return failure;

}
}

Figure 5: Client-side algorithm

such as branches and loops, are used with their usual semantics. In addition, we also use cobegin
and coend to capture concurrent executions. The cobegin statement terminates when any of the
contained activities terminates. We use “==” (resp. “!=”) to compare values for equality (resp.
non-equality) and “:=” for assignment. Finally, we abstract the suspicion information through a
predicate suspect(). The execution of suspect(pi) by process pj at t returns true if and only if pj

suspects pi at time t.

5.4 Algorithm Description

The client part of the algorithm consist of the submit primitive described in Figure 5. The submit
primitive sends a request to one of the replicas. It then waits for a result, and if it has suspected
the replica, it returns an error. The primitive uses two “global” variables replicas and i. The
variable replicas contains a list of the replicas. The variable i is the replica to contact next time
submit is executed.

All replicas execute the same algorithm, and they all have a copy of the same state machine S.
Rather than describe invocation of state machine actions directly, we assume that a state machine
has a method, called execute, that “dispatches” a request. A request contains the name of an
action and a list of input parameters for the action. One of these parameters is called round, and
it keeps track of the current execution round of the request (the server-side algorithm increments
this parameter when a new round is initiated). Having the round number as part of the parameters
ensures that commit and cancellation actions are specific to a particular round. Thus, a cancelletion
action issued for round number n cannot cancel the action of round number n+ 1.

Round number one is initiated by a replica p1, that receives a request from the client. This
replica starts executing the requested state machine action. If it does not fail, and is not suspected
to have failed, p1 executes the action to completion and returns the result to the client. If another
replica pi suspects p1 to have failed, pi will start round two as a continuation of round one. Each
round is owned by a single replica, and a replica only takes ownership of rounds greater than one

13

if they suspect another owner to have failed.
In Figure 6, we show the behavior of the main part of a server replica. A server contains

two activities: a thread to receive and execute requests and a thread to perform failure detection
cleanup. Since the failure suspicion may be false—the replica may be suspected, but has actually
not failed—we need to coordinate the actions taken by cleaner threads and replicas during request
processing since they may execute in parallel.

Each replica has access to four arrays. The owner-agreement array contains consensus objects
that control onwership of particular rounds. This array has a total of max-round objects. If a
replica wishes to become the owner of round i, it will try to propose its own identity as the value of
consensus object number i in the array. The outcome-agreement array contains consensus objects
that implement the required coordination on the outcome (commit or abort) of undoable actions.
Finally, the result-agreement array contains consensus objects that ensure agreement on the
result of idempotent actions.

Different rounds can have a different outcome for the same undoable action. For example, we
may have a number of rounds in which the outcome is abort followed by a single round in which
the outcome is commit. Subsequent rounds will then not execute the action once it has been
successfully committed. The outcome-agreement is indexed by requests, which have the round
number as part of their parameters. The owner-agreement array is uni-dimensional because there
is one owner per round, and result-agreement array is uni-dimensional because the result can be
fixed the first time an idempotent action is successfully executed.

The method called result-coordination in Figure 6 implements the required coordination of
action results. The method can be used in two “modes:” cleaning mode and execution mode. In
cleaning mode, the method is used to prevent a suspected primary from enforcing its action results.
In execution mode, it is used to propose a value that is the result of a successfully executed action.
The parameter val determines the mode. If it contains the value empty-result, we are in cleaning
mode. If it contains a regular value, that value is used as the agreed upon result.

The method execute-until-success executes a state machine action until it succeeds. For
idempotent actions, we simply keep reissuing the action. For undoable actions, the procedure is
slightly more complicated. If an undoable action fails, we apply its cancellation action. We obtain
the name of a cancellation action by using the primitive cancel. This primitive takes a request r,
and returns a request that invokes the cancellation action of r. We construct commit actions in a
similar manner by using the primitive called commit.

6 Concluding Remarks

Considering that a replicated program is correct if it can somehow be shown to be equivalent to
a non-replicated program is an intuitive idea, and this idea has already been explored by different
authors. The main differences between the various approaches have to do with how the notion of
equivalence is defined. In [MP88], an algebra of action sequences is used to define a correctness
criteria for replication. The N replication of a base process is a replicated process, denoted by PN .
The replicated process PN is correct if it is possible to extract, from every trace tN of PN , a trace
t of P . The authors assume the existence of a generic extract function, and describe an implemen-
tation example of that function for deterministic pure server processes (that do not interact with
third party entities). As pointed out by the authors, it is not clear how to devise such a function
for non-deterministic programs. It is also not clear neither how to express it for servers that invoke

14

Server {
Consensus(Process,Request,Process) owner-agreement[max-round];

Consensus(Result) result-agreement[Request];

Consensus(Outcome,Result) outcome-agreement[Request];

State-machine S;

cobegin

Request req; Process client;

while true {
receive [Request,req] from client;

req.round := 1;

this->process-request(req,client);

}
||

this->cleaner();

coend;

}

Server::process-request(Request req,Process client) {
Process id,tmp-client; Request tmp-val;

(id,tmp-req,tmp-client) := owner-agreement[req.round].propose(my-id,req,client);

if id == my-id then

Result res-val := execute-until-success(req);

res-val := result-coordination(req,res-val);

if res-val != empty-result then

send [Result,res-val] to client;

}

Server::cleaner() {
while true {
Process id,suspected-id,client; Request req;

if suspect(suspected-id) then

let last-round be the largest defined index in owner-agreement;

(id,req,client) := owner-agreement[last-round].read();

if id == suspected-id then

res-val := result-coordination(req,empty-result);

if res-val == empty-result then

req.round := last-round + 1;

this->process-request(req,client);

}
}

Figure 6: Main algorithm on server side

15

Result Server::result-coordination(Request req,Value val) {
Result res-val; Outcome outcome;

if S.is-idempotent(req) then

res-val := result-agreement[req].propose(val);

if S.is-undoable(req) then

if val == empty-result then

(outcome,res-val) := outcome-agreement[req.round].propose(abort,val);

else

(outcome,res-val) := outcome-agreement[req.round].propose(commit,val);

if outcome == abort then

this->execute-until-success(cancel(req));

else

this->execute-until-success(commit(req));

return res-val;

}

Result Server::execute-until-success(Request req) {
while true {
Result res-val;

try res-val := S.execute(req);

catch(failure)

if S.is-idempotent(req) then

continue;

if S.is-undoable(req) then

this->execute-until-success(cancel(req));

continue;

return res-val;

}
}

Figure 7: Algorithms to execute and clean sequences of actions

16

third party entities. In [Aiz89], the author defines a reduction relation between programs in terms
of refinement mapping, using temporal logic descriptions of state sequences. The author does not
describe here a mechanical way of performing the reduction, but rather suggests a methodology
for transforming a non-replicated program into a replicated one. Our reduction technique is much
simpler than those considered in [MP88] and [Aiz89]: we describe simple rewriting rules that me-
chanically exploit idempotence and undoability properties of actions. In this sense, our theory is
closer to the theory of 1-copy serializability [BHG87], which exploits the semantics of read() and
write() operations: a replicated history is equivalent to a non-replicated one if they have the same
reads-from relationships and final writes. The main differences between x-ability and 1-copy seri-
alizability are twofold. First, 1-copy serializability assumes replicated entities to be data servers
on which read() and write() operations can be performed.4 We more generally assume replicated
entities to execute arbitrary actions, that may very well be operations on data objects, but also
non-deterministic invocations of third party entities (which enables us to state interesting proper-
ties about replication composition). Second, we do not restrict ourselves to committed actions, and
we integrate liveness in the x-ability theory.

References

[Aiz89] J. Aizikowitz. Designing distributed services using refinement mappings. Technical
Report CS TR 89-1040, Cornell University, 1989.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Reading, Mass., 1987.

[BMST93] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. The primary-backup ap-
proach. In S. Mullender, editor, Distributed Systems. Addison-Wesley, 1993.

[CT96] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, 1996.

[DSS98] X. Défago, A. Schiper, and N. Sergent. Semi-passive replication. In Proceedings of the
IEEE Symposium on Reliable Distributed Systems, October 1998.

[FG99] S. Frolund and R. Guerraoui. Implementing e-transactions with asynchronous replica-
tion. Technical Report to appear, Hewlett-Packard Laboratories, December 1999.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

[Her91] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):123–149, January 1991.

[HW90] M. Herlihy and J. Wing. Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463–492, July 1990.

4One could consider operations on more complex data objects, along the lines of [LMWF94], but the underlying
model would remain that of replicated data servers.

17

[Lam89] L. Lamport. The part-time parliament. Technical Report 49, DEC Systems Research
Center, 1989.

[LMWF94] N. Lynch, M. Merrit, W. Weihl, and A. Fekete. Atomic Transactions. Morgan-
Kaufmann, 1994.

[MP88] L. Mancini and G. Pappalardo. Towards a theory of replicated processings. In For-
mal Techniques in Real-time and Fault-tolerant Systems, pages 175–192. LNCS (331),
Springer Verlag, 1988.

[Pap79] C. Papadimitriou. The serializability of concurrent database updates. Journal of the
ACM, 26(4):631–653, October 1979.

[PSB+88] D. Powell, D. Seaton, G. Bonn, P. Verissimo, and F. Waeselynk. The delta-4 approach
to dependability in open distributed computing systems. In International Symposium
on Fault-Tolerant Computing Systems. IEEE, June 1988.

[Sch93] F. B. Schneider. Replication management using the state machine approach. In S. Mul-
lender, editor, Distributed Systems. Addison-Wesley, 1993.

18

