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ABSTRACT

In this short note, we derive the large deviations estimate of the tail of the bu�er occupancy
distribution in a communications link with a very general integrated Poisson shot noise
model for the total input. The result is obtained by a straightforward application of the
general theory developped in [KWC93], [GlWh94] and [DuO'C95]. The interesting outcome
of these computations is that, in the light-tail case, it is largely model independent, and
this makes the statistical analysis of traÆc in view of link dimensioning, with a procedure
implementable by a simple network-based software.

1 Introduction

In the uid models of traÆc, the total number of packets presented to a communications
link during the time interval (a; b] is

R b
a X(s)ds, where X(t) is the traÆc intensity at time t,

whereas in the hard model, it is
P

n �n 1(a;b](Tn) where �n is the work brought at time Tn.
The uid model is justi�ed as long as the packet size is very small compared to the average
traÆc intensity, as is indeed the case in broadband communications networks.

It remains to choose a realistic probabilistic model for the traÆc intensity, and one which
is also analytically tractable. Several have been proposed in the litterature, for instance on-
o� and Markov uids [KWC93], Ornstein-Uhlenbeck models [KuRo94], and fractal brownian
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motion models [No94]. In this article, we take for the integrated traÆc an integrated Poisson
shot noise, which encompasses uid as well as hard models, in particular, the usual hard
M=GI input and the uid M=GI=1 input. However we consider the very general model,
leaving the identi�cation problem aside for the time being.

We are interested in computing the rate of exponential decay (with respect to B) of the
probability of overshoot of level B in a link of given capacity c, which in turn gives the
e�ective bandwidth ([Ke91]). Talking about exponential rates implies some kind of ligh-
tail and/or short dependence assumption, which will be explicited in section 3. The large
deviations asymptotics of the overshoot probability are obtained as a direct applications of
the results in [KWC93], [GlWh94] and [DuO'C95] and of well known formulas concerning
Poisson shot noise.

The result is that the rate of decay does not depend on the �ne details of the utterly
general model we consider. It depends only on the distribution of the total number of packets
in a typical shot of the Poisson shot noise, it does not depend on the rate of delivery of the
shot. We show how this feature can be exploited in model independent statistical analysis
leading directly to an estimate of the e�ective bandwidth using simple software tools.

2 Poisson shot noise traffic

A Poisson shot noise (PSN) is a process of the form

X(t) =
X
n

h(t� Tn; Xn) 1(0;t](Tn);

where fTngn2Z is the sequence of times of a homogeneous Poisson process of rate �, and
fXngn2Zis an i.i.d sequence of random elements of a measurable space (E; E), independent
of the Poisson process, and h(t; x) = 0 for negative times, and is otherwise non-negative.
From

E[X(t)] = �
Z 1

0
E[h(s;X1)]ds;

we deduce that the PSN, which is always well de�ned since the function h is non-negative,
is �nite if

�
def
= �

Z 1

0
E[h(t; X1)]dt <1:

In a communications context � is called the traÆc rate.

A typical example is the uid M=GI=1 input, where h(t; x) = 1ft�xg in which case X(t)
represents the number of virtual customers present at time t in a virtual pure delay system,
a typical virtual customer arriving at time Tn and departing at time Tn +Xn.
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A PSN is also called a (randomly) �ltered Poisson process, with the interpretation that
h(t� Tn; Xn) is the random impulse response associated with spike, or impulse, at Tn.

The total (or integrated) input in the time interval (0; t] is

A((0; t]) =
Z t

0
X(s)ds;

and it takes the form

A((0; t]) =
X
n

H(t� Tn; Xn) 1(0;t](Tn) +
X
n

(H(t� Tn; Xn)�H(�Tn; Xn)) 1(�1;0](Tn);

(2.1)
where

H(t; x) =
Z t

0
h(s; x)ds:

To account for traÆc of a general type, not necessarily uid, we adopt the integrated
Poisson shot noise (IPSN) model (2.1) where

H(t; x) = �(x; [0; t]) (2.2)

and �(x; �) is for each x a measure on the non-negative half-line.

If �(x; �) = xÆ(�) where Æ(�) is the Dirac unit mass at 0, we have the input of the classical
M=GI=1=1 queue. In this case we denote Xn by �n, and therefore

A((0; t]) =
X
n

�n1(0;t](Tn):

In the general model

E[A([0; t))] = �
Z t

0
E[H(s;X1)]ds + �

Z 1

0
E[H(t+ s;X1)�H(s;X1)]ds:

In particular if this quantity is �nite for some t, then it is �nite for all t, and proportional
to t. The traÆc intensity is then

�
def
=

1

t

�
�
Z t

0
E[H(s;X1)]ds�+

Z 1

0
E[H(t+ s;X1)�H(s;X1)]ds

�
: (2.3)

This model is very rich, because the marks Xn are of an arbitrary nature. The measure
A is also called a Poisson cluster measure, where �(Xn; �) is the cluster measure at Tn. An
important random variable is the total cluster size, or total input per shot,

H(1; X1) = �(X1;R+):



4

The total (integrated) input in the interval (0; t] can be written as a sum

A((0; t]) = A0((0; t]) +D((0; t]); (2.4)

where

A0((0; t]) =
X
n

H(t� Tn; Xn) 1(0;t](Tn); (2.5)

is the transient total input in interval (0; t], corresponding to an initially empty system, and

D((0; t]) =
X
n

(H(t� Tn; Xn)�H(�Tn; Xn)) 1(�1;0](Tn) (2.6)

is the part of the total input in interval (0; t] due to clusters initiated before time 0. Note that
D and A0 are independent. The transient total input measure process A0(t+ �) converges in
distribution to the stationary measure A as t!1 if and only if for all intervals (a; b] 2 R+

the random variable

D((t+ a; t+ b]) =
X
n

(H(t+ b� Tn; Xn)�H(t+ a� Tn; Xn)) 1(�1;0](Tn)

accounting for that part of the traÆc in the interval (a; b] initiated before time 0, converges
in distribution to 0 as t!1. The characteristic function of this variable is

exp
�
�
Z 1

0
E[eiu(H(s+t+b;X1)�H(s+t+a;X1) � 1]ds

�

and therefore a necessary and suÆcient condition for convergence in distribution is that for
all intervals (a; b] 2 R+,

Z 1

0
E[eiu(H(s+t+b;X1)�H(s+t+a;X1) � 1]ds

tends to zero as t tends to in�nity.

Note that in some occasions, D((�;1) = 0 for some almost surely �nite random time � .
In this case the transient and the stationary total input measures couple, and in particular
the convergence is in variation. This is the case for the M/GI/1 process. A necessary
and suÆcient condition for this is that the support [0; Z1] of the function h(t; X1) veri�es
E[Z1] < 1. This follows from the consideration of the associated M/GI/1 process with
typical delay Z1.
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3 Effective bandwidth

We consider a communications link of capacity c. We assume the stability condition

� < c (3.1)

which guarantees existence of a stationary bu�er content W when the bu�er is in�nite.
For �nite bu�er capacity B the overow probability is overestimated by P (W > B). The
stationary bu�er content is

W = sup
t�0

fA((�t; 0])� ctg : (3.2)

Let fW (t)gt�0 be the stationary bu�er content process, i.e W (0) = W , and let fW0(t)gt�0

be the transient bu�er content starting empty, i.e W0(0) = 0. The former dominates the
latter, and both couple as soon as the stationary process becomes null. Therefore in order
to show that coupling occurs in �nite time, and therefore the transient process converges in
variation to the stationary one, it suÆces to show that P (W = 0) > 0. But we have the
inequality

W (t) � W (0) + A((0; t])� c
Z t

0
1W (s)>0;

from which it follows that
P (W = 0) � 1�

�

c
> 0: (3.3)

We now assume that the traÆc is light-tailed, that is

E
h
e�H(1;X1)

i
< 1; (3.4)

for all � in a neighborhood of 0. Also, we assume that in the same neighborhood of 0,

lim
t"1

1

t

Z 1

0
E[e�(H(t+s;X1)�H(s;X1)) � 1]ds = 0 (3.5)

It then holds that

lim
B"1

1

B
ln(P (W > B)) = �R (3.6)

where R > 0 is the solution of

�E
h
e�H(1;X1) � 1

i
= c�: (3.7)

Proof. We use the general results of [GlWh94] and [DuO'C95], which give

R = supf� ; �(�) � 0g; (3.8)
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where

�(�) = lim
t"1

1

t
lnE

h
e�(A([0;t))�ct)

i
: (3.9)

Straightforward computations (see section 2.1 of [KlMi95]) show that

1

t
lnE[e�A([0;t))] = �

1

t

Z t

0
E[e�H(s;X1) � 1]ds + �

1

t

Z 1

0
E[e�(H(t+s;X1)�H(s;X1)) � 1]ds: (3.10)

Under the light-tailed assumption (3.4), the �rst term in the left-hand side converges to

�E[e�H(1;X1) � 1];

whereas the second term tends to 0 under the condition (3.5). 2

Condition (3.5) is implied by

�E
�Z 1

0

�
e�(H(1;X1)�H(s;X1)) � 1

�
ds
�
< 1; (3.11)

This condition implies the convergence of the transient traÆc process to the stationary traÆc
process.

One should start by checking the simpler condition (3.11). Note however that it may
happen that (3.11) is veri�ed but not (3.5). Here is a simple example: Take

H(t; X1) = H(t; Y1; Z1) = Y1 inf (t; Z1);

where Z1 = 1=Y1. This corresponds to a total input per shot H(1; X1) = 1 delivered at
rate Y1. If E[1=Y1] =1 (very slow delivery), the left hand side of (3.11) is

(e� � 1� �)E[1=Y1] =1;

whereas the limit to be taken in (3.5) is that of

1t>Y �1
1

1

t

1

�Y1
(e� � 1� �) + 1t�Y �1

1
(e�Y1t � 1)

 
1

Y1t

1 + �

�
� 1

!
:

The second term is easily bounded by a deterministic constant times 1t�Y �1
1

and therefore

its expectation tends to zero since Y �1
1 is a.-s. �nite. As for the �rst term we write

E
�
1t>Y �1

1

1

t

1

�Y1

�
=

1

�t

Z 1

t
zf(z)dz;
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where f is the probability density of 1=Y1. If for large z this density behaves like
1

z1+c , where
c 2 (0; 1), the last displayed quantity converges to zero as t tends to 1.

Suppose we can caracterize K independent inputs to the link as Poisson shot noises with
rates �i and total input per shot �i = H(1; X i), 1 � i � K. If we impose on the link a
large bu�er size B and a given probability of overow corresponding to a given decay rate
R, then the e�ective bandwidth ([Ke91]) of ow i is

�i =
�i
R
E[eR�

i

� 1]: (3.12)

Indeed the aggregated ow requires, in order to guarantee the above bound of the overow
probability, a capacity c equal to

�

R
E[eR� � 1] =

X
i

�i
R
E[eR�

i

� 1]: (3.13)

A diÆculty with traÆc models of the shot noise type is the choice of a realistic \shot
shape" h(t; X1) and of the \shot rate" �. EÆcient estimation procedures, say for a parametric
model of the shot shape, are not generally available. However, as far as e�ective bandwidth is
concerned, the modelling problem only concerns the rate and the total \one-shot" input �1 =
H(1; X1). The modeling and statistical problems however do not completely disappear.

We now take a global point of view, by considering suÆciently aggregated traÆc, in a
given link, say from a local network to the entry point of a broadband network. We then
identify Tn as the start of a session and �n as the total number of packets transferred in the
session. It is reasonable to consider that the Poisson model is adequate, since aggregation
of small streams leads to a Poisson limit, as follows from the various versions of the law
of rare events (see [DaV-J88]). The statistics concerning the session rates and the session
sizes require standard statistical software tools, and the modeling problem is by-passed. Of
course such statistical analysis is best performed o�-line and is potentially useful for network
architecture design, in view of predicting resource needs.

4 Conclusion

The result of this note depends in a crucial way on the light tail hypothesis. This diminishes
the impact of it, since it has been observed that the traÆc often exhibits heavy tail or
long range dependence phenomena. However, since heavy tailed traÆc is in a certain sense,
catastrophic, and in any case detrimental to the other type of traÆc, it could be a good idea
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to segregate heavy tail traÆc from the rest, via a simple threshold rule on the size of the �le
(which could, for instance discriminate between emails with or without attachment), and to
allocate to each of them its own bandwidth.

Another direction of research concerns heavy-tail Poisson shot noise traÆc, using the
corresponding theory in [DuO'C95] and the same formulas for the moment generating func-
tions of shot noise. A recent article in this direction is [PaMa98], where the discrete-time
M=G=1 process, a special case of discrete-time shot noise is considered. In the latter ar-
ticle, Theorem 3 and Corollary 4 coincide (modulo the fact that time is discrete, which is
not a fundamental issue) with our results for the special case considered. However, the main
import of our work consists in the observation that, for the general shot noise and in the
light-tail case, the result depends only on the statistics of the total number of packets in a
shot, and not on the rate of delivery of a shot.

Finally, let us observe that the result of this note can be adapted to the insurance context
[Bre99].
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