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Abstract: By extending the system theory under the (min;+)-algebra to the time varying
setting, we solve the problem of constrained tra�c regulation and develop a calculus for dynamic
service guarantees. For a constrained tra�c regulation problem with maximum tolerable delay
d and maximum bu�er size q, the optimal regulator that generates the output tra�c conforming
to a subadditive envelope f and minimizes the number of discarded packets is a concatenation
of the g-clipper with g(t) = min[f(t+ d); f(t) + q] and the maximal f -regulator. The g-clipper
is a bu�erless device which optimally drops packets as necessary in order that its output be
conformant to an envelope g. The maximal f -regulator is a bu�ered device that delays packets
as necessary in order that its output be conformant to an envelope f . The maximal f -regulator
is a linear time invariant �lter with impulse response f , under the (min;+)-algebra.

To provide dynamic service guarantees in a network, we develop the concept of a dynamic
server as a basic network element. Dynamic servers can be joined by concatenation, \�lter bank
summation," and feedback to form a composite dynamic server. We also show that dynamic
service guarantees for multiple input streams sharing a work conserving link can be achieved
by a dynamic SCED (Service Curve Earliest Deadline) scheduling algorithm, if an appropriate
admission control is enforced.
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1 Introduction

Future high speed digital networks aim to provide integrated services, including voice, video, fax,

and data. To control interaction among tra�c generated by di�erent sources, tra�c regulation

seems inevitable. In [10], Cruz proposed the following deterministic tra�c characterization. A

tra�c stream, described by a non-decreasing sequence A � fA(t); t = 0; 1; 2; g (with A(0) = 0),

conforms to a function f , called an envelope, if

A(t)�A(s) � f(t� s); 8s � t:

Without loss of generality, an envelope f can be assumed to be subadditive [6], i.e., f(s)+f(t�

s) � f(t) for all s � t. Using this characterization, a calculus is developed in [10, 11] to compute

deterministic performance measures, such as bounds on delay and bounds on queue length.

Tra�c regulation addresses the problem of modifying a tra�c stream so that it conforms to a

subadditive envelope f . The problem of tra�c regulation was treated systematically in [8, 20].

There it is shown that the optimal tra�c regulator that generates an output B conforming to a

subadditive envelope f for an input A is a linear time invariant �lter with the impulse response

f under the (min;+)-algebra, i.e.,

B(t) = min
0�s�t

[A(s) + f(t� s)]:

We call such a �lter the maximal f -regulator. This characterization was also observed in

[1][2][27].

As the bu�er in the maximal f -regulator is assumed to be in�nite, packets from the input

might be queued at the regulator. For a real-time service, the delay of a queued packet at

the regulator might exceed a maximum tolerable delay and such a packet should be discarded

(i.e. clipped). The problem of tra�c regulation with such a delay constraint is called the

constrained tra�c regulation problem in [19]. Its objective is to �nd a regulator that not only

generates tra�c conforming to an envelope, but also minimizes the number of discarded packets.

In addition to the delay constraint, Konstantopoulos and Ananthram [19] also considered the

bu�er constraint for the regulator. For f(t) = �t + �, they derived optimal tra�c regulators

that satis�ed either the delay constraint or the bu�er constraint.

Cruz and Taneja [16] considered the zero delay case of the constrained tra�c regulation

problem. This is also the case without any bu�er. By extending the time invariant �ltering

theory under the (min;+)-algebra to the time varying setting, it is shown there that the depar-

ture process of the optimal zero-delay regulator, that generates a departure process conformant
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to f , is the subadditive closure [8] of the arrival process convolved with f . Such a bu�erless

regulator is called the f -clipper in [16].

Motivated by all these works, one of the main objectives of this paper is to provide an

optimal and implementable solution for the general constrained tra�c regulation problem with

both the delay constraint and the bu�er constraint. As in [16], our approach is based on the

time varying �ltering theory under the (min;+)-algebra. By extending the subadditive closure

in [8] to the time varying setting, we show that the f -clipper with input A and output B can

be implemented using the following recursive equation:

B(t) = min
h
B(t� 1) +A(t)�A(t� 1); min

0�s<t
[B(s) + f(t� s)]

i
:

The computation complexity of the f -clipper is almost the same as that of the maximal f -

regulator. The recursive equation also implies that the f -clipper is greedy. Packets are discarded

only when needed.

For the constrained tra�c regulation problem with maximum tolerable delay d and maxi-

mum bu�er size q, the optimal tra�c regulator is shown to be a concatenation of the g-clipper

with g(t) = min[f(t)+ q; f(t+d)] and the maximal f -regulator. The solution is intuitive as the

output from the g-clipper conforms to the envelope g that yields bounded delay d and bounded

queue length q at the maximal f -regulator. For example, when f(t) = min1�i�K [�it+ �i], the

corresponding g-clipper can be implemented by K parallel bu�erless (�i+min[q; �id]; �i)-leaky

buckets. A packet is discarded if it cannot be admitted to one of these K leaky buckets. The

output from the g-clipper is then fed into K parallel (�i; �i)-leaky buckets.

The time varying �ltering theory can also be used for dynamic service guarantees. By

extending the concept of the service curve in [12, 1, 20] to a bivariate function F (�; �), we de�ne

a dynamic F -server for an input A if its output B satis�es

B(t) � min
0�s�t

[A(s) + F (s; t)]; 8t:

Analogous to the time invariant �ltering theory in [8, 1, 20], a dynamic F -server can be viewed

as a linear �lter with the time varying impulse response F . It can be combined by concatenation,

\�lter bank summation," and feedback to form a composite dynamic server. We illustrate the

use of the dynamic server by considering a work conserving link with a time varying capacity

and a dynamic window ow control problem. We also show that dynamic service guarantees

for multiple input streams sharing a work conserving link can be achieved by a dynamic SCED

(Service Curve Earliest Deadline) scheduling algorithm, if an appropriate admission control is
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enforced. As the SCED algorithm in [28], the dynamic SCED algorithm is an EDF (Earliest

Deadline First) policy that schedules packets according to their deadlines.

The remainder of the paper is organized as follows. In the next section, we introduce the

time varying �ltering theory under the (min;+)-algebra. The development is parallel to the

time invariant �ltering theory in [8, 1, 20]. The reader is also referred to [3], [4], which contains

results overlapping with the paper. In Section 3 and Section 4, we introduce the maximal

dynamic tra�c regulators and the maximal dynamic clippers, respectively. These are used for

solving the problem of constrained tra�c regulation in Section 5. In Section 6, we develop

the concept of dynamic servers and their associated calculus. We show in Section 7 that the

dynamic SCED algorithm can be used to achieve dynamic service guarantees. We conclude the

paper in Section 8 by discussing possible extensions and applications.

2 Time varying �ltering theory under the min-plus algebra

In the section, we introduce the time varying �ltering theory under the (min;+)-algebra. The

development is parallel to the time invariant �ltering theory in [8, 1, 20]. To extend the

(min;+)-algebra to the time varying setting, we consider the family of bivariate functions.

~F = fF (�; �) : F (s; t) � 0; F (s; t) � F (s; t+ 1); for all 0 � s � tg

Thus, for any F 2 ~F , F (s; t) is nonnegative and non-decreasing in t. For any two bivariate

functions F andG in ~F , we say F = G (resp. F � G) if F (s; t) = G(s; t) (resp. F (s; t) � G(s; t))

for all 0 � s � t. We de�ne the following two operations for functions in ~F .

(i) (min) the pointwise minimum of two functions:

(F �G)(s; t) = min[F (s; t); G(s; t)]:

(ii) (convolution) the convolution of two functions under the (min;+)-algebra:

(F ? G)(s; t) = min
s���t

[F (s; �) +G(�; t)]:

One can easily verify that ( ~F ;�; ?) is a complete dioid (see e.g., [5]) with the zero function ~�

and the identity function ~e, where ~�(s; t) = 1 for all s � t, and ~e(s; t) = 0 if s = t and 1

otherwise. To be precise, we have the following properties.
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1. (Associativity) 8F;G;H 2 ~F ,

(F �G)�H = F � (G�H);

(F ? G) ? H = F ? (G ?H):

2. (Commutativity) 8F;G 2 ~F ,

F �G = G� F:

3. (Distributivity for in�nite \sums") For any two sequences of functions Fm and Gm in ~F ,

(F1 � F2 � : : : � Fm � : : :) ? (G1 �G2 � : : : �Gm � : : :)

= (F1 ? G1)� (F1 ? G2)� (F2 ? G1)� : : : � (Fm ? Gm)� : : :

4. (Zero element) 8F 2 ~F ,

F � ~� = F:

5. (Absorbing zero element) 8F 2 ~F ,

F ? ~� = ~� ? F = ~�:

6. (Identity element) 8F 2 ~F ,

F ? ~e = ~e ? F = F:

7. (Idempotency of addition) 8F 2 ~F ,

F � F = F:

The key di�erence to the time invariant �ltering theory is that we do not have the commu-

tative property for ? in ( ~F ;�; ?), i.e., F ? G 6= G ? H in general.

Let ~F0 = fF 2 ~F : F � ~e = Fg. That is, a function F 2 ~F0 if F (t; t) = 0 for all t. As in

the time invariant case, we still have the following monotonicity.

8. (Monotonicity) 8F � ~F ;G � ~G,

F �G � ~F � ~G � ~F ;

F ? G � ~F ? ~G:

If F (resp. G) is in ~F0, then F ? G � G (resp. F ? G � F ). If both F and G are in ~F0,

then F �G � F ? G.
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For any function F 2 ~F , de�ne the unitary operator (called the closure operation in this

paper)

F � = lim
n!1

(F � ~e)(n) = lim
n!1

(~e� F � F (2) � : : :� F (n)); (1)

where F (n) is the self convolution of F for n times, i.e., F (n) = F (n�1) ?F , n � 2 and F (1) = F .

Expanding (1) yields

F �(s; t) = inf
S

mX
i=1

[F (ti�1; ti)]; (2)

where S = ft0; t1; t2; : : : ; tmg is any subset of f1; 2; : : : ; tg with t0 = s < t1 < t2 < : : : < tm = t.

In addition to the algebraic properties, we present several important properties in Lemmas

2.1 and 2.2 that will be used to prove results for constrained tra�c regulation and service

guarantees.

Lemma 2.1 Suppose that F;G 2 ~F .

(i) (Monotonicity) If F � G, then F � � G�.

(ii) (Closure properties) F � = F � � ~e = F � ? F � = (F �)(m) = (F �)� � F � ~e � F .

(iii) (Maximum solution) F � is the maximum solution of the equation H = (H ? F ) � ~e, i.e.,

for any H satisfying H = (H ? F )� ~e, H � F �.

(iv) F � can be computed recursively from the following equations:

F �(s; s) = 0;

F �(s; t) = min
s��<t

[F �(s; �) + F (�; t)]:

(v) (F �G)� = (F � �G�)� = (F � ? G�)�.

Proof. As the proofs for (i)-(iv) are identical to those in [9, 8], we only prove (v). From the

monotonicity, F �G � F � �G� � F � ? G�. Thus, (F �G)� � (F � ? G�)�. On the other hand,

one has F � F �G. Thus, F � � (F �G)�. Similarly, G� � (F �G)�. This implies

F � ? G� � (F �G)� ? (F �G)� = (F �G)�:

Thus,

(F � ? G�)� � ((F �G)�)� = (F �G)�:
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Lemma 2.2 (Feedback) Suppose that F;G;H 2 ~F .

(i) For the equation

H = (H ? F )�G; (3)

H = G ? F � is the maximum solution.

(ii) If inft F (t; t) > 0, then H = G ? F � is the unique solution.

(iii) Under the condition in (ii), if

H � (H ? F )�G;

then H � G ? F �.

The proofs for Lemma 2.2 are identical to those in [9, 8] and thus omitted.

Remark 2.3 As in [8], let F = ff : f(0) � 0; f(s) � f(t); s � tg be the set of nonnegative and

non-decreasing functions. Also, let F0 be the subset of functions in F with f(0) = 0. Then one

may de�ne the convolution of a function f 2 F and a bivariate function G 2 ~F as follows:

(f ? G)(t) = min
0�s�t

[f(s) +G(s; t)]:

Under such a de�nition, f ? G is in F . One may view f ? G as a special case of F ? G for some

F 2 ~F with F (0; t) = f(t) for all t and F (s; t) = 1, for all t and s > 0. Thus, the results in

Lemma 2.2 still hold.

Remark 2.4 A bivariate function F is time-invariant if

F (s; t) = F (s+ u; t+ u); 8s � t; and u � 0:

By letting f(t) = F (0; t), one can easily verify that F is time-invariant if and only if there

exists some f 2 F such that F (s; t) = f(t� s). As a result, time-invariant bivariate functions

commute. To see this, consider two invariant functions F and G and let f(t) = F (0; t) and

g(t) = G(0; t). Then

(F ? G)(s; t) = min
s�u�t

[f(u� s) + g(t� u)] = (G ? F )(s; t): (4)

An important corollary of (4) is that Lemma 2.1(v) can be simpli�ed as follows (cf.[8], Lemma

2.2(xi)):

(F �G)� = (F � �G�)� = (F � ? G�)� = F � ? G�: (5)
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Remark 2.5 A bivariate function F is additive if

F (s; u) + F (u; t) = F (s; t); 8s � u � t:

For an additive bivariate function F , one easily check that

F (2)(s; t) = min
s�u�t

[F (s; u) + F (u; t)] = F (s; t);

which implies that F � = F . Note that a bivariate function F is additive if and only if there

is a function f 2 F such that F (s; t) = f(t) � f(s). This can be easily veri�ed by choosing

f(t) = F (0; t).

3 Dynamic tra�c regulation

Given a sequence A 2 F0, it is de�ned in [10, 11] that A conforms to the (static) upper envelope

f 2 F0 if A(t)�A(s) � f(t� s) for all s � t. It is also shown in [8, 1] that the optimal tra�c

regulator that generates output tra�c conforming to a subadditive envelope f is a linear time

invariant �lter with the impulse response f under the (min;+)-algebra. In this section, we

extend such a result to the time varying setting.

We start from extending the de�nition of a static envelope to a dynamic envelope.

De�nition 3.1 A sequence A 2 F0 is said to conform to the dynamic upper envelope F 2 ~F0

if for all s � t there holds A(t)�A(s) � F (s; t).

As in [8, 9], this characterization has the following equivalent statements. The proof is

omitted.

Lemma 3.2 Suppose that A 2 F0 and F 2 ~F0. The following statements are equivalent.

(i) A conforms to the dynamic upper envelope F .

(ii) A = A ? F .

(iii) A = A ? F �.

(iv) A conforms to the dynamic upper envelope F �.

Given a dynamic upper envelope F 2 ~F0, one can construct a regulator such that for any

input A 2 F0, the output from the regulator conforms to the dynamic upper envelope F . This

is done in the following theorem. Once again, the proof is omitted.
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Theorem 3.3 Suppose that A 2 F0 and F 2 ~F0. Let B = A ? F �.

(i) (Tra�c regulation) B conforms to the dynamic upper envelope F � and thus B also conforms

to the dynamic upper envelope F .

(ii) (Flow constraint) B � A.

(iii) (Optimality) For any ~B 2 F0 that satis�es (i) and (ii), one has ~B � B.

(iv) (Conformity) A conforms to the dynamic upper envelope F if and only if B = A.

The construction B = A?F � is called the maximal dynamic F -regulator (for the input A).

As in the time invariant case, the ow constraint B � A corresponds to one of the causal

conditions in [19] as the number of departures cannot be larger than the number of arrivals.

Theorem 3.3(iii) shows that under the ow constraint and the constraint that the output tra�c

conforms to the dynamic upper envelope F , the maximal F -regulator is the best construction

that one can implement.

Example 3.4 (Work conserving link with a time varying capacity) Consider a work

conserving link with a time varying capacity. Let c(t) be the maximum number of packets that

can be served at time t, C(t) =
Pt

�=1 c(�) be the cumulative capacity in the interval [1; t], and

Ĉ(s; t) = C(t)�C(s) be the cumulative capacity in the interval [s+1; t]. Let A(t) and B(t) be

the input and the output from the work conserving link. Denote by q(t) the number of packets

at the link at time t. Then the work conserving link is governed by Lindley's equation

q(t+ 1) = [q(t) +A(t+ 1)�A(t)� c(t+ 1)]+: (6)

Suppose q(0) = 0. Recursive expansion of Lindley's equation yields

q(t) = max
0�s�t

[A(t)�A(s)� Ĉ(s; t)]: (7)

Since q(t) = A(t)�B(t), we have

B(t) = min
0�s�t

[A(s) + Ĉ(s; t)]:

As Ĉ is an additive bivariate function, we have from Remark 2.5 that Ĉ� = Ĉ, which shows

that the work conserving link is the maximal dynamic Ĉ-regulator.

We note that a work conserving link with a time varying capacity is also equivalent to a

time-varying (greedy) shaper in [20].
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Example 3.5 (Tra�c regulation with a capacity constraint) Consider a link with a

time varying capacity. The link is not necessarily work conserving. As in the previous example,

let c(t) be the maximum number of packets that can be served at time t, and C(t) =
Pt

�=1 c(�)

be the cumulative capacity by time t. Let A(t) and B(t) be the input and the output from the

link. Though the link may not be work conserving, the output B is still constrained by the

capacity, i.e.,

B(t)�B(s) � C(t)� C(s): (8)

Suppose that we would like to perform tra�c regulation for the input A such that the output

B conforms to the static envelope f 2 F , i.e.,

B(t)�B(s) � f(t� s); 8s � t: (9)

From Theorem 3.3, we know that the optimal implementation for the output to satisfy (8) and

(9) is the maximal dynamic F -regulator with

F (s; t) = min[C(t)� C(s); f(t� s)]: (10)

If c(t) is bounded above by cmax > 0 and if the cumulative time-varying capacity C is bounded

below by some curve h 2 F over any time window, that is, if for all 0 � s � t, h(t � s) �

C(t)�C(s) � cmax(t�s), then one can derive static service curves bounding below the maximal

dynamic F -regulator (10). Such curves are obtained in [15, 21, 23].

4 Dynamic tra�c clipping

The maximal dynamic F -regulator solves the tra�c regulation problem with in�nite bu�er. In

this section, we consider the tra�c regulation problem without bu�er. The question is then

how one drops packets optimally such that the output conforms to a dynamic envelope F .

Such a problem was previously solved in [16]; however, the solution in [16] cannot be easily

implemented directly. In the following theorem, we present a recursive construction for the

solution.

Theorem 4.1 Suppose that A 2 F0 and F 2 ~F0. Let B(t) = (Â � F )�(0; t), where Â(s; t) =

A(t)�A(s). Then the following statements hold.

(i) (Tra�c regulation) B conforms to the dynamic upper envelope F .

9



(ii) (Clipping constraint) B(t)�B(t� 1) � A(t)�A(t� 1) for all t.

(iii) (Optimality) For any ~B 2 F0 that satis�es (i) and (ii), one has ~B � B.

(iv) B can be constructed by the following recursive equation:

B(t) = min
h
B(t� 1) +A(t)�A(t� 1); min

0�s<t
[B(s) + F (s; t)]

i
; (11)

with B(0) = 0.

(v) (Conformity) A conforms to the dynamic upper envelope F if and only if B = A.

The construction in (11) is called the maximal dynamic F -clipper (for the input A) in the

paper.

Proof. For any s � t we have

B(t) = (Â� F )�(0; t)

� (Â� F )�(0; s) + (Â� F )(s; t)

� B(s) + F (s; t) ;

and hence B � B ? F , so that B is conformant to F , establishing (i).

To see (ii), note similarly that

B(t) = (Â� F )�(0; t)

� (Â� F )�(0; t � 1) + (Â� F )(t� 1; t)

� B(t� 1) + Â(t� 1; t) :

Next, we establish (iii). Suppose that ~B 2 F0 satis�es (i) and (ii). Since ~B(0) = 0,

~B � e; (12)

where e(0) = 0 and e(s) =1 for s > 0. As ~B conforms to the dynamic envelope F ,

~B � ~B ? F: (13)

The inequality in the clipping constraint in (ii) is equivalent to ~B(t)� ~B(s) � A(t) �A(s) for

all s � t and it can be rewritten as

~B � ~B ? Â; (14)
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with Â(s; t) = A(t)�A(s). The constraints in (12)-(14) are equivalent to

~B = ~B � ( ~B ? F )� ( ~B ? Â)� e: (15)

Applying the distributivity and the fact that Â 2 ~F0 yields

~B = ( ~B ? (~e� Â� F ))� e

= ( ~B ? (Â� F ))� e:

It then follows from Lemma 2.2(i) that e? (Â�F )� is the maximum solution of (15). Note that

(e ? (Â� F )�)(t) = (Â� F )�(0; t) = B(t):

Thus, B is the maximum solution that satis�es (i) and (ii).

To see (iv), note from Lemma 2.1(iv) that B can be constructed recursively as follows:

B(t) = min
0�s<t

h
B(s) + min[A(t)�A(s); F (s; t)]

i

= min
h
min
0�s<t

[B(s) +A(t)�A(s)]; min
0�s<t

[B(s) + F (s; t)]
i
; (16)

with B(0) = 0. Since B satis�es the clipping constraint,

B(s) +A(t)�A(s) = B(s) +A(t� 1)�A(s) +A(t)�A(t� 1)

� B(s) +B(t� 1)�B(s) +A(t)�A(t� 1) = B(t� 1) +A(t)�A(t� 1):

This implies that

min
0�s<t

[B(s) +A(t)�A(s)] = B(t� 1) +A(t)�A(t� 1):

Thus,

B(t) = min
h
B(t� 1) +A(t)�A(t� 1); min

0�s<t
[B(s) + F (s; t)]

i
: (17)

To prove (v), note that if B = A, then it follows from (17) that A = A?F . Thus, A conforms

to the dynamic envelope F . On the other hand, if A conforms to the dynamic envelope F , then

A(t)�A(s) � F (s; t):

This implies Â� F = Â. As Â� = Â,

B(t) = (Â� F )�(0; t) = A(t)�A(0) = A(t):
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We note that the original representation in [16] is that B(t) = (Â ? F �)�(0; t). This is

equivalent to our result in Theorem 4.1 from Lemma 2.1(v) and Â� = Â. As (Â�F )� = (Â�F �)�

in Lemma 2.1(v), one also has the following equivalent implementation

B(t) = min
h
B(t� 1) +A(t)�A(t� 1); min

0�s<t
[B(s) + F �(s; t)]

i
: (18)

Note that the key di�erence between Theorem 3.3 and Theorem 4.1 is the clipping con-

straint. The clipping constraint implies that in any given slot, the packets departing are a

subset of the packets arriving in the same slot. Let `(t) = A(t)� A(t� 1)� (B(t)�B(t� 1))

be the number of packets clipped at time t. From (11), we have

`(t) = max
h
0; B(t� 1) +A(t)�A(t� 1)� min

0�s<t
[B(s) + F (s; t)]

i
: (19)

Observe from (19) that packet loss occurs at time t only when at least one of the following

inequalities is violated

(B(t� 1) +A(t)�A(t� 1))�B(s) � F (s; t); s = 0; 1 : : : ; t� 1: (20)

When this happens, one then discards packets to the extent so that the above inequalities are all

satis�ed. Note also that (11) implies that the maximal dynamic F -clipper can be implemented

in real-time, since the value of B(t) depends only on B(s� 1) and A(s) for s � t.

In the following example, we illustrate how one implements the maximal dynamic F -clipper

by a work conserving link with a �nite bu�er when F (s; t) = �(t� s) + q for s < t.

Example 4.2 (Work conserving link with a �nite bu�er) Consider the work conserving

link with a time varying capacity in Example 3.4. In addition, we assume that the bu�er size

of the link is q, i.e., at most q packets can be stored at the link. Packets that arrive at the

link and �nd the bu�er full are lost. As in Example 3.4, let A(t) and B(t) be the input and

the output from the work conserving link. Denote by q(t) the number of packets at the link at

time t.

Then we need to modify Lindley's equation in (6) as follows:

q(t+ 1) = min
h
[q(t) +A(t+ 1)�A(t)� c(t+ 1)]+; q

i
:

12



The number of lost packets at time t, denoted by `(t), is then max[q(t� 1) +A(t)�A(t� 1)�

c(t)� q; 0]. Let A1 be the e�ective input to the link, i.e.,

A1(t)�A1(t� 1) = A(t)�A(t� 1)� `(t):

For the e�ective input A1, the work conserving link behaves like a work conserving link with

an in�nite bu�er. Thus, we have from (7) that

q(t) = max
0�s�t

[A1(t)�A1(s)� Ĉ(s; t)]; (21)

assuming q(0) = 0. This then implies

`(t) = max[q(t� 1) +A(t)�A(t� 1)� c(t)� q; 0]

= max
h
0; max

0�s�t�1
[A1(t� 1)�A1(s)� Ĉ(s; t� 1)] +A(t)�A(t� 1)� c(t)� q

i

= max
h
0; A1(t� 1) +A(t)�A(t� 1)� min

0�s<t
[A1(s) + Ĉ(s; t) + q]

i
:

In view of (19), the e�ective inputA1 to the work conserving link with a �nite bu�er is in fact the

output of the maximal dynamic F -clipper with F (s; t) = Ĉ(s; t) + q, s < t. In particular, when

c(t) = � for all t, we can implement the maximal dynamic F -clipper with F (s; t) = �(t� s) + q

by the e�ective input of a work conserving link with constant capacity � and bu�er q.

For the maximal dynamic F -clipper with the input A and the output B, let L(t) = A(t)�

B(t) be the cumulative losses at the clipper by time t. As B(t) = (Â � F )�(0; t) in Theorem

4.1, using (2) yields

L(t) = A(t)� inf
S

mX
i=1

min[A(ti)�A(ti�1); F (ti�1; ti)]

= sup
S

h
A(t)�

mX
i=1

min[A(ti)�A(ti�1); F (ti�1; ti)]
i

= sup
S

h mX
i=1

(A(ti)�A(ti�1))�
mX
i=1

min[A(ti)�A(ti�1); F (ti�1; ti)]
i

= sup
S

mX
i=1

[A(ti)�A(ti�1)� F (ti�1; ti)]
+; (22)

where S = ft0; t1; t2; : : : ; tmg is any subset of f1; 2; : : : ; tg with t0 = 0 < t1 < t2 < : : : < tm = t.

This was previously shown in [16], Corollary 1. A similar result is also obtained in [21] for both

the continuous and discrete time settings.
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Example 4.3 (Clippers in tandem) Now we compare the output from the maximal dy-

namic F1�F2-clipper and a concatenation of the maximal dynamic F1-clipper and the maximal

dynamic F2-clipper. Let A be the input to both systems, B1 be the output from the maximal

dynamic F1-clipper, B2 be the output from the maximal dynamic F2-clipper, and B be the out-

put from the maximal dynamic F1 � F2-clipper. Also let L(t) = A(t)�B(t) be the cumulative

losses at the maximal dynamic F1�F2-clipper by time t. Similar, let L1(t) = A(t)�B1(t) and

L2(t) = B1(t)�B2(t). From Theorem 4.1, we have for all s � t,

B1(t)�B1(s) � A(t)�A(s);

B1(t)�B1(s) � F1(s; t);

B2(t)�B2(s) � B1(t)�B1(s);

B2(t)�B2(s) � F2(s; t):

This implies that B2 conforms to the dynamic upper envelope F1�F2 and that B2(t)�B2(t�1) �

A(t) � A(t � 1). Thus, B2 � B and L(t) � L1(t) + L2(t) for all t, by Theorem 4.1. In fact,

a concatenation of the maximal dynamic F1-clipper and the maximal dynamic F2-clipper is a

suboptimal implementation of an F1 � F2-clipper. The reason for this, as observed in [16], is

that the discarding of packets in the F2-clipper is not accounted for in the F1-clipper.

Example 4.4 (Clippers in parallel) Continue from the previous example. Since clippers in

tandem is suboptimal and may yield more cumulative losses than the optimal one, we may use

this to compare the cumulative losses for clippers in parallel. Now suppose both the maximal

dynamic F1-clipper and the maximal dynamic F2-clipper are fed with the input A. Let B0
1 and

B0
2 be the outputs from these two clippers and L01(t) = A(t) �B0

1(t) and L02(t) = A(t) �B0
2(t)

be the cumulative losses at these two clippers by time t. Clearly, L01(t) = L1(t). It is easy to

see from (22) that L02(t) � L2(t). Thus, we still have L(t) � L01(t) + L02(t) for all t. This is

previously reported in [16], Corollary 2.

5 Constrained tra�c regulation

The two tra�c regulation problems, with an in�nite bu�er and without bu�er, are two extreme

cases. In practice, packets (or cells) may be queued and delayed at a regulator. However,

14



there might be constraints for the bu�er size and the delay. In this regard, one might have to

discard (i.e. clip) some packets from the input so that the bu�er and delay constraints can be

satis�ed. The question is then how one discard packets optimally so that the number of clipped

packets can be minimized. Such a problem is called constrained tra�c regulation and was �rst

considered in [19] for (�; �)-leaky buckets. Our objective of this section is to provide a general,

simple and optimal solution for the constrained tra�c regulation problem.

To formalize the problem of constrained tra�c regulation with bu�er and delay constraints,

we let A be the input and B be the output from the regulator. We require that the bu�er

occupancy in the regulator be less than or equal to q, the delay be bounded above by d, and

that the output B be conformant to a dynamic envelope F . Due to these constraints, packets

may need to be discarded. Let A1 be the e�ective input, i.e. A1(t) counts the total number

of packets arriving up to and including slot t which eventually depart the regulator without

being discarded. The objective is to maximize the e�ective input A1 and the output B, given

the bu�er and delay constraints and the constraint that B conforms to the dynamic envelope

F . More formally, given the input A and a dynamic envelope F , we seek A1 and B which are

as large as possible subject to the following constraints.

(C1) (Clipping constraint) A1(t)�A1(t� 1) � A(t)�A(t� 1) for all t.

(C2) (Bu�er constraint) A1(t)� q � B(t) for all t, where q is the bu�er size at the regulator.

(C3) (Delay constraint) A1(t) � B(t+ d) for all t, where d is the maximum tolerable delay at

the regulator.

(C4) (Tra�c regulation) B conforms to the dynamic upper envelope F .

(C5) (Flow constraint) B(t) � A1(t) for all t.

The clipping constraint implies that the packets in the e�ective input A1 is a subset of

the packets in A for any time t. We note that the clipping constraint does not imply that

packets arriving at time t have to be clipped at time t. In fact, they could be clipped at some

time later than t. However, as we will show below that optimal clipping can be greedy and

only those packets arriving at time t need to be clipped at time t. Note also that the natural

bu�er constraint should be A01(t)�B(t) � q, where A01(t) is the cumulative number of packets

arriving up to time t which have not been discarded at the end of slot t. Our bu�er constraint

A1(t)�B(t) � q is fact less restrictive as A1(t) � A01(t) for all t. However, as the theorem below
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shows, the optimal value of A1(t) can be computed without knowledge of A(s) for s > t, so

that packets which will eventually be discarded in an optimal clipper can in fact be discarded

when they arrive. Assuming this is the case, the backlog of packets in the optimal regulator at

the end of slot t is A1(t)�B(t).

Theorem 5.1 Suppose that A 2 F0 and F 2 ~F0. Let A1 be the output from the maximal

dynamic G-clipper for the input A, where

G(s; s) = 0; 8s; (23)

G(s; t) = min[F �(s; t+ d); F �(s; t) + q]; 8s < t: (24)

Also, let B be the output from the maximal dynamic F -regulator for the input A1. Then all the

constraints [C1-5] are satis�ed. Moreover, for any ~A1; ~B 2 F0 that satisfy [C1-C5], one has

~A1 � A1 and ~B � B.

The construction of A1 and B, based on a concatenation of the maximal dynamic G-clipper

and the maximal dynamic F -regulator, is called the maximal dynamic F -regulator with delay d

and bu�er q.

Proof. Suppose that A1 and B are as stated in the theorem. Theorem 4.1 then implies [C1],

and also that A1(t) � (A1 ?G)(t). Conditions [C4-C5] follow from Theorem 3.3 (i) and (ii). To

establish [C2], note that

A1(t)� q � (A1 ? G)(t)� q

� min
0�s�t

[A1(s) + F �(s; t) + q]� q

= (A1 ? F
�)(t)

= B(t) :

Similarly, to establish [C3], note that

A1(t) � (A1 ? G)(t)

� min
0�s�t

fA1(s) + F �(s; t+ d)g :

Since A1(t) � A1(s) for s > t and F � is non-negative, it therefore follows that A1(t) � (A1 ?

F �)(t+ d) = B(t+ d), which establishes [C3]. Thus, [C1-C5] are satis�ed as claimed.

Next, suppose that ~A1; ~B 2 F0 satisfy [C1-C5]. From Theorem 3.3 (iii), we know that

under the ow constraint in [C5] and the tra�c constraint [C4], we have

~B � ~A1 ? F
�: (25)

16



Moreover, combining this with [C2] and [C3], we obtain

(C20) (Bu�er constraint) ~A1(t)� q � ( ~A1 ? F
�)(t) for all t.

(C30) (Delay constraint) ~A1(t) � ( ~A1 ? F
�)(t+ d) for all t.

The bu�er constraint in (C20) can be rewritten as

~A1 � ~A1 ? F2 (26)

with F2(s; t) = F �(s; t)+q. Since ~A1(t) 2 F0 is non-decreasing in t and F
�(s; t) is nonnegative,

~A1(s) + F �(s; t+ d) � ~A1(t); s = t+ 1; : : : ; t+ d: (27)

Thus, the conditions in (27) are redundant and the delay constraint in (C30) can be rewritten

as

~A1 � ~A1 ? F3 (28)

with F3(s; t) = F �(s; t+ d). Using the idempotency and distributivity, the constraints in (26)

and (28) are equivalent to

~A1 = ~A1 � ~A1 � ( ~A1 ? F2)� ( ~A1 ? F3) = ~A1 ? (F2 � F3) (29)

Note that (F2 � F3)(s; t) = G(s; t) for all s < t, where G is de�ned in (23). Thus, ~A1 conforms

to the dynamic envelope G. Using Theorem 4.1(iii) and the assumption that ~A1 satis�es [C1],

it therefore follows that ~A1(t) � (Â � G)�(0; t) = A1(t). From the monotonicity of ?, we also

have from (25) that

~B � ~A1 ? F
� � A1 ? F

� = B:

We note that for the special cases that d = 1 (without delay constraint) and that q =1

(without bu�er constraint), the results were previous obtained in Examples 4 and 5 of [21].

The result in Theorem 5.1 not only �nds a representation of the optimal tra�c regulator that

satis�es both the delay constraint and the bu�er constraint, but also provides a method for

the implementation of such a regulator. In [19], the bu�er constraint and the delay constraint

are treated separately and it is shown that the optimal solution can be implemented by the

greedy ow controller which discards packets only when needed. As shown in Theorem 5.1, the

maximal dynamic F -regulator with delay d and bu�er q is still the greedy ow controller as the

maximal dynamic G-clipper discards packets only when needed.
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Example 5.2 (Work conserving link with a �nite bu�er) In this example, we show

that a work conserving link with a �nite bu�er solves a tra�c regulation problem with a bu�er

constraint. Consider the work conserving link with a time varying capacity and a �nite bu�er

in Example 4.2. As in Example 3.4 and Example 4.2, let A, A1 and B be the input, the e�ective

input and the output of the link. As we have shown from Example 4.2 that the e�ective inputA1

to the link is in fact the output of the maximal dynamic G-clipper with G(s; t) = Ĉ(s; t)+q and

from Example 3.4 that the output B from the link is the output from the maximal dynamic

F -regulator with F (s; t) = Ĉ(s; t), the link is a concatenation of the maximal dynamic G-

clipper and the maximal dynamic F -regulator. Thus, we have from Theorem 5.1 that the work

conserving link with a �nite bu�er q is the maximal dynamic F -regulator with bu�er q, where

F (s; t) = Ĉ(s; t).

A(t) Storage 
system

B(t)

L(t)

A1(t)
Controller 1

I(t)

C(t)

Controller 2

Figure 1: A work conserving link with a �nite bu�er

There is a well known duality interpretation for a work conserving link with a �nite bu�er.

One may view the cumulative capacity C(t) as the cumulative number of tokens generated by

time t. As in a leaky bucket, every packet needs to grab a token for its departure. Thus,

packet losses occur when the bu�er is full and token losses occur when the bu�er is empty.

To be precise, let q(t) be the number of packets at the link at time t, L(t) = A(t) � A1(t) be

the cumulative number of packet losses by time t, and I(t) = C(t) � B(t) be the cumulative

number of token losses by time t. Figure 1 represents this system. Then one has the following

conditions of complementary slackness:

1fq(t) < qg(L(t)� L(t� 1)) = 0; for all t;

1fq(t) > 0g(I(t) � I(t� 1)) = 0; for all t:

As

q(t) = A1(t)�B(t) = (A(t)� C(t)) + I(t)� L(t);

18



the work conserving link with a �nite bu�er solves the so called Skorokhod reection problem

with two boundaries [29], where A(t) � C(t) is the free process, I(t) is the lower boundary

process, and L(t) is the upper boundary process (see e.g., [19, 18] for more detailed discussions

of the reection problem). Since a work conserving with a �nite bu�er also solves the bu�er-

constrained tra�c regulation problem, it follows from (22) that the upper boundary process

of the reection problem admits the following close form representation (in terms of the free

process):

L(t) = sup
S

mX
i=1

[(A(ti)� C(ti)� (A(ti�1)� C(ti�1))� q]+;

where S = ft0; t1; t2; : : : ; tmg is any subset of f1; 2; : : : ; tg with t0 = 0 < t1 < t2 < : : : < tm = t.

Using (2) and B = A1 ? Ĉ, one can also show that the lower boundary process admits the

following close form representation:

I(t) = sup
S

m�1X
i=1

max[(C(ti)�A(ti)� (C(ti�1)�A(ti�1));�q]:

We also note the queue length process q(t) can also be represented in close form. Two repre-

sentations based on min,max and plus operations were given in [14].

Example 5.3 (Multiple leaky buckets with delay and bu�er constraints) Now con-

sider the maximal dynamic F -regulator with delay d and bu�er q when

F (s; s+ t) = min
1�i�K

[�it+ �i]; t > 0:

This corresponds to the case of multiple leaky buckets with the delay constraint d and the

bu�er constraint q. In this case,

G(s; t) = min
h
min

1�i�K
[�i(t+ d� s) + �i]; min

1�i�K
[�i(t� s) + �i] + q

i

= min
1�i�K

h
�i(t� s) + �i +min[q; �id]

i
:

Thus, one can construct the maximal dynamic G-clipper by feeding the input to K parallel

bu�erless (�i +min[q; �id]; �i)-leaky buckets. A packet is discarded (or clipped) if it cannot be

admitted to one of these K leaky buckets. The output from the maximal dynamic G-clipper is

then fed into another K parallel (�i; �i)-leaky buckets with bu�er q.
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To bound the cumulative loss for the maximal dynamic G-clipper in this example, we may

apply the comparison result in Example 4.4. Consider K maximal dynamic clippers, all subject

to the same input. The ith clipper is the maximal dynamic Gi-clipper with

Gi(s; t) = �i(t� s) + �i +min[q; �id]:

Let Li(t) be the cumulative number of losses by time t at the ith clipper. From Example 4.4,
PK

i=1 Li(t) is an upper bound for the cumulative loss for the maximal dynamic G-clipper. Now

Li(t) is much easier to compute as it is simply the cumulative loss for a work conserving link

with capacity �i and bu�er �i +min[q; �id] in Example 5.2.

Example 5.4 (Bounding losses by segregation between bu�er and policer) We have

shown in Theorem 5.1 that the maximal dynamic F 0-regulator with bu�er q is the optimal

implementation of the constrained tra�c regulation problem that generates an output that

conforms to the dynamic envelope F 0 subject to the bu�er constraint q. In this example, we

will show that segregation of bu�er discard and policing discard provides an upper bound on

the cumulative losses for the maximal dynamic F 0-regulator with bu�er q.

As we have shown in Theorem 5.1, the �rst stage of the maximal dynamic F 0-regulator

with bu�er q is the maximal dynamic F -clipper, where

F (s; t) = F 0(s; t) + q: (30)

Let A(t), D(t) and L(t) be its input, output, and the cumulative losses by time t, i.e., L(t) =

A(t)�D(t). We now compare the cumulative losses L(t) with the losses in another system made

of two parts, as shown in Figure 2. The �rst part is some causal system with storage capacity

q. We know however that the �rst part discards packets as soon as the total backlogged packets

in this system exceeds q. This operation is called bu�er discard, and the amount of bu�er

discarded packets by time t is denoted by LBuf(t). The second part is the maximal dynamic

F 0-clipper called here policer. Packets are discarded as soon as the total output of the storage

system exceeds the maximum output allowed by the policer. This operation is called policing

discard, and the amount of discarded packets by time t due to policing is denoted by LPol(t).

We show that L(t) � LBuf(t)+LPol(t). Let B1(t) be the output of the bu�er clipper, A2(t)

and B2(t) be respectively the input and the output of the policer clipper. As B2 is the output

of the maximal dynamic F 0-clipper,

B2(t)�B2(s) � F 0(s; t): (31)
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LBuf(t) LPol(t)

A(t)

Buffer
Clipper

Policer
Clipper

Storage 
system with 
buffer q

F’(s,t)
B1(t) A2(t) B2(t)

Figure 2: A storage/policer system with separation between losses due to bu�er discard and to
policing discard

Now let A1 be the e�ective input to the system, i.e.,

A1(t) = A(t)� LBuf(t)� LPol(t): (32)

Also, as shown in Figure 2, we have

LBuf(t) = A(t)�B1(t); (33)

and

LPol(t) = A2(t)�B2(t): (34)

Since LBuf(t) + LPol(t) is a non-decreasing function in t, we have from (32) that

A1(t)�A1(s) � A(t)�A(s): (35)

On the other hand, because the \storage system" is causal, it satis�es the ow constraint

A2(t) � B1(t): (36)

Since its storage space is limited to q, we also have

B1(t) � A2(t) + q: (37)

Using (32) and (33), we have for all 0 � s < t,

A1(t)�A1(s) = B1(t)�B1(s)� (LPol(t)� LPol(s)):

From (36), (37), (34), (31) and (30), it then follows

A1(t)�A1(s) � A2(t)�A2(s)� (LPol(t)� LPol(s)) + q

= B2(t)�B2(s) + q

� F 0(s; t) + q = F (s; t) (38)
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Combining (35) with (38), one notices that A1 satis�es the same constraints as D. As D is

the output from the optimal implementation in Theorem 5.1, it follows that A1(t) � D(t), or

equivalently that L(t) � LBuf(t) + LPol(t).

Such a separation of resources between \bu�ered system" and \policing system" is used in

the estimation of loss probability for devising statistical CAC algorithms as proposed by Lo

Presti et al. [26] (see also Elwalid et al [17]).

6 Dynamic service guarantees

To guarantee end-to-end deterministic quality-of-service for an input, the concept of service

curves is developed in [12, 1, 20] to work with the static envelopes in Cruz [10, 11]. A server is

called a static f -server (f 2 F0) for an input sequence A if its output sequence B � fB(t); t =

0; 1; 2; : : :g satis�es

B(t) � min
0�s�t

[A(s) + f(t� s)] (39)

for all t. Based on this, there is an associated �ltering theory (under the (min;+)-algebra) in

[8, 1, 20] that eases design and computation of deterministic QoS. Our main objective of this

section is to extend the concept of service curves and the associated �ltering theory to the time

varying setting so that dynamic QoS can be guaranteed. The theory is based on the following

de�nition of a dynamic F -server.

De�nition 6.1 (Dynamic F -server) A server is called a dynamic F -server (F 2 ~F0) for an

input sequence A if its output sequence satis�es B � A ? F , i.e.,

B(t) � min
0�s�t

[A(s) + F (s; t)] (40)

for all t. If the inequality in (40) is satis�ed for all input sequences, then we say the dynamic

F -server is universal. If the inequality in (40) is an equality, we say the dynamic F -server is

exact.

Analogous to the �ltering theory for static service curves, one may view the right hand side

of (40) as the output from a linear �lter with the time varying impulse response F (s; t) under

the (min;+)-algebra. If F is a time-invariant bivariate function, then the dynamic F -server is

equivalent to a static f -server, where f(t) = F (0; t).
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Clearly, the maximal dynamic F -regulator is a universal and exact dynamic F �-server.

Analogous to the time invariant case, one has the following properties in Theorems 6.2-6.5 for

dynamic F -servers. The proofs are omitted as they are identical to those in [8, 9].

Theorem 6.2 (Concatenation) A concatenation of a dynamic F1-server for an input sequence

A and a dynamic F2-server for the output from the dynamic F1-server is a dynamic F -server

for A, where F = F1 ? F2.

Theorem 6.3 (Filter bank summation) Consider an input sequence A. Let B1 (resp. B2)

be the output from a dynamic F1-server (resp. F2-server) for A. The output from the \�lter

bank summation", denoted by B, is B1 � B2. Then the \�lter bank summation" of a dynamic

F1-server for A and a dynamic F2-server for A is a dynamic F -server for A, where F = F1�F2.

Theorem 6.4 (Feedback) Consider an input sequence A 2 F0 and a dynamic F -server for B,

where B = A � A1, and A1 is the output from the dynamic F -server. If inft F (t; t) > 0, then

the feedback system is a dynamic F �-server for A.

Theorem 6.5 Consider a dynamic F2-server for A. Let B be the output. Also, let q =

supt�0[A(t) � B(t)]+ be the maximum queue length at the server, where x+ = max(0; x). Let

d = inff� � 0 : B(t+ �) � A(t) for all tg be the maximum delay at the server. Suppose that

A conforms to the dynamic upper envelope F1.

(i) (Queue length) q � supsmaxt�s[F
�
1 (s; t)� F2(s; t)]

+.

(ii) (Output burstiness) If B � A, then B conforms to the dynamic upper envelope F �
3 , where

F3(s; t) = max
0���s

[F �
1 (�; t)� F2(�; s)]

+:

(iii) (Delay) d � inff� � 0 : supsmaxt�s[F
�
1 (s; t)� F2(s; t+ �)] � 0g.

Remark 6.6 As the maximal dynamic F -regulator is a dynamic F �-server, there is an intuitive

explanation why the maximal dynamic F -regulator with delay d and bu�er q is a concatenation

of the maximal dynamic G-clipper (with G being de�ned in (23)) and the maximal dynamic F -

regulator. As shown in Theorem 4.1, the output from the maximal dynamic G-clipper conforms

to the dynamic envelope G(s; t) = min[F �(s; t + d); F �(s; t) + q]. When such an output is fed

to the maximal dynamic F -regulator, one has from Theorem 6.5 that the delay at the maximal

dynamic F -regulator is bounded above by d and the queue length is also bounded above by q.

Thus, both the delay constraint and the bu�er constraint are satis�ed.

23



In the following, we illustrate the use of dynamic service guarantees by a dynamic window

ow control problem.

Example 6.7 (Dynamic window ow control) Consider a network with the input A and

the output B. Suppose that the network enforces a dynamic window ow control for the input

A with the dynamic window size w(t). We assume that inftw(t) > 0. For the dynamic window

ow control system, the e�ective input to the network, denoted by A1, satis�es

A1(t) = min[A(t); B(t) + w(t)]: (41)

Observe that B(t)+w(t) = (B ?H)(t), where H is the function with H(s; t) =1 for s < t and

H(t; t) = w(t). One may rewrite (41) as follows:

A1 = A� (B ? H): (42)

Also, we assume that the network is a dynamic F -server for the e�ective input A1, i.e.,

B � A1 ? F: (43)

In conjunction with (42),

B � A1 ? F = (A� (B ? H)) ? F = (A ? F )� (B ? (H ? F ));

where we apply the distributive property and the associativity of ?. Since we assume that

inftw(t) > 0,

inf
t
(H ? F )(t; t) = inf

t
[H(t; t) + F (t; t)] � inf

t
w(t) > 0:

We then have from Lemma 2.2(iii) that

B � A ? F ? (H ? F )�:

Thus, the dynamic window ow control system is a dynamic F ? (H ? F )�-server.

7 The dynamic SCED scheduling algorithm

In this section, we de�ne a scheduling algorithm, called the dynamic SCED algorithm, which

we will show achieves the dynamic service guarantees in Section 6.
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Consider a server with a time varying capacity. Let c(t) be the maximum number of

packets that can be served at time t, and Ĉ(s; t) =
Pt

�=s+1 c(�) be the cumulative capacity in

the interval [s+1; t]. A policy is called the Earliest Deadline First (EDF) if the server schedules

the packets according to their deadlines. Note that the EDF policy is work conserving, i.e., the

server serves packets whenever there are packets at the server.

Now consider feeding n streams of inputs to such a server. Let Ai(t) be the cumulative

number of packet arrivals of the ith stream up to time t. Each packet is assigned a deadline. We

assume that the deadlines within the same stream are non-decreasing. Also, let Ni(t) be the

number of packets from the ith stream that have deadlines not greater than t. As we assume

the deadlines for each stream is non-decreasing, packet k from stream i is assigned the deadline

Di;k from the following inverse mapping

Di;k = infft : t � 0 and Ni(t) � kg : (44)

Theorem 7.1 Suppose that the server is operated under the EDF policy.

(i) A necessary condition for every packet to be served not later than its deadline is

nX
i=1

Ni(t) � min
0�s�t

[
nX
i=1

Ai(s) + Ĉ(s; t)]; (45)

for all t.

(ii) A su�cient condition for every packet to be served not later than its deadline is

X
i2S

Ni(t) � min
0�s�t

[
X
i2S

Ai(s) + Ĉ(s; t)]; (46)

for all t and for every S that is a subset of f1; 2; : : : ; ng.

Proof. (i) Let B(t) be the cumulative number of packet departures from all streams up to

time t. Since the EDF policy is work conserving, we have from Example 3.4 that

B(t) = min
0�s�t

[
nX
i=1

Ai(s) + Ĉ(s; t)]:

As we assume that every packet is served not later than its deadline,
Pn

i=1Ni(t) � B(t) for all

t.

(ii) We prove this by contradiction as in [25]. Suppose that the �rst packet that misses its

deadline occurs at time t. Let �� be the last slot no later than t such that the server serves
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less than c(��) packets. Since the EDF policy is work conserving, �� < t as there are at least

one stream i packet backlogged at time t. Moreover, there are exactly Ĉ(��; t) packets served

in the interval [�� + 1; t].

Now let s� be the last slot in the interval [�� + 1; t] during which a packet with deadline

greater than t is served. If all the packets served during the interval [�� + 1; t] have deadlines

less than or equal to t, then de�ne s� = �� (in this case, there are no backlogged packets at

the end of slot s�). Thus, during the interval [s�+1; t], exactly Ĉ(s�; t) packets are served, and

each of these packets has a deadline that is less than or equal to t.

Let S be the set of streams that are not backlogged at the end of slot s�. We claim that those

packets served in [s� + 1; t] can only come from the streams in S. Suppose that stream i is not

in S. Since there is a packet with deadline greater than t is served in slot s�, all the backlogged

stream i packets at the end of slot s� must have deadlines greater than t. This implies all the

stream i packets with deadlines not greater than t have been served as we assume the deadlines

are non-decreasing within the same stream. Thus, those packets served in [s� + 1; t] can only

come from the streams in S as those packets have deadlines less than or equal to t.

Now suppose that stream i is in S. As there are no backlogged stream i packets at the end

of slot s�, all the stream i packets that arrive not later than s� have been served. Thus, the

number of stream i packets that can be served in [s�+1; t] is bounded above by (Ni(t)�Ai(s
�))+.

This in turn implies that the number of packets served in [s� + 1; t] is bounded above by
P

i2S(Ni(t) � Ai(s
�))+. As there is a packet that misses its deadline at time t, the bound is

strict. Thus,

Ĉ(s�; t) <
X
i2S

(Ni(t)�Ai(s
�))+ =

X
i2S0

[Ni(t)�Ai(s
�)]

for some S0 that is a subset of S with Ni(t) � Ai(s
�). As S0 is a subset of f1; 2; : : : ; ng, we have

a contradiction to (46).

Lemma 7.2 Suppose we choose Ni = Ai ? Fi some Fi 2 ~F0, i = 1; : : : ; n. If
Pn

i=1 Fi(s; t) �

Ĉ(s; t) for all 0 � s � t, then all the packets are served not later than their deadlines.

Such a deadline assignment scheme is called the dynamic SCED algorithm in this paper.

Proof. It su�ces to verify that the su�cient condition in Theorem 7.1 is satis�ed. Note that

for every S in f1; 2; : : : ; ng

X
i2S

Ni(t) =
X
i2S

min
0�s�t

[Ai(s) + Fi(s; t)] � min
0�s�t

X
i2S

[Ai(s) + Fi(s; t)]
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= min
0�s�t

[
X
i2S

Ai(s) +
X
i2S

Fi(s; t)] � min
0�s�t

[
X
i2S

Ai(s) +
nX
i=1

Fi(s; t)] � min
0�s�t

[
X
i2S

Ai(s) + Ĉ(s; t)]

where we use Fi(s; t) � 0 and
P

i=1 Fi(s; t) � Ĉ(s; t) in the last two inequalities.

The next lemma implies that deadlines in the dynamic SCED algorithm can be assigned

in real-time. Speci�cally, if packet k from stream i arrives during slot t, Di;k can be computed

without knowledge of Ai(s) for s > t.

Lemma 7.3 Suppose packet k from stream i arrives during slot t. Then under the dynamic

SCED algorithm, Di;k = Di;k(t) where

Di;k(t) = inff� : � � t and min
0�u�t�1

[Ai(u) + Fi(u;�)] � kg : (47)

Proof. Note that under the dynamic SCED algorithm

Di;k = inff� : � � 0 and (Ai ? Fi)(�) � kg : (48)

Since packet k arrives at time t we have Ai(u) < k for u < t. Thus, (Ai ? Fi)(�) � Ai(�) < k

when � � t � 1, which implies that Di;k � t by de�nition of Di;k in (48). Therefore, by

de�nition of Di;k we have

k � (Ai ? Fi)(Di;k)

� min
0�u�t�1

[Ai(u) + Fi(u;Di;k)] :

By de�nition of Di;k(t), this implies Di;k(t) � Di;k. To show the reverse inequality, note that

by de�nition of Di;k(t) we have

min
0�u�t�1

[Ai(u) + Fi(u;Di;k(t))] � k : (49)

Since Ai(u) � k for u � t and Fi is non-negative, inequality (49) implies that (Ai?Fi)(Di;k(t)) �

k. By de�nition of Di;k, this then implies that Di;k � Di;k(t).

In Theorem 7.4, we state the admission criteria for the dynamic SCED algorithm for a

server with a time varying capacity.
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Theorem 7.4 A set of n arrival streams, indexed i = 1; : : : ; n, arrives to a server. The

arrival sequence of the ith stream is denoted by Ai, and is known to conform to the dynamic

upper envelope Gi. The server has a time varying capacity to serve up to c(t) packets during

slot t. Under the dynamic SCED algorithm, the server is a dynamic Fi-server for Ai, for all

i = 1; : : : ; n if the following condition is satis�ed for all s � t:

nX
i=1

(Gi ? Fi)(s; t) � Ĉ(s; t): (50)

Proof. As we assume that Ai conforms to the dynamic upper envelope Gi, we have from

Lemma 3.2(ii) that Ai = Ai ? Gi. Thus,

Ni = Ai ? Fi = (Ai ? Gi) ? Fi = Ai ? (Gi ? Fi);

where we apply the associativity of ?. From Lemma 7.2, it then follows that all the packets

are served before their deadlines. Denote by Bi(t) the cumulative number of departures from

stream i by time t. Thus,

Bi � Ni = Ai ? Fi

and the server is a dynamic Fi-server for Ai, for all i = 1; : : : ; n.

8 Conclusions

By extending the �ltering theory under the (min;+)-algebra to the time varying setting, we

solved the problem of constrained tra�c regulation. For a constrained tra�c regulation problem

with maximum tolerable delay d and maximum bu�er size q, we showed that the optimal

regulator that generates the output tra�c conforming to a dynamic envelope F and minimizes

the number of discarded packets is a concatenation of the maximal dynamic G-clipper with

G(s; t) = min[F �(s; t + d); F �(s; t) + q] and the maximal dynamic F -regulator. To provide

dynamic service guarantees in a network, we developed the concept of the dynamic F -server

as a basic network element. We showed that dynamic servers can be joined by concatenation,

\�lter bank summation," and feedback to form a composite dynamic server. We also proposed

the dynamic SCED scheduling algorithm to achieve dynamic service guarantees for a work

conserving link subject to multiple inputs.

One possible application of the time varying �ltering theory is dynamic admission control.

For a given connection i, we may de�ne a service curve fi to be guaranteed over the interval

28



[ai + 1; bi] if a dynamic service curve Fi is guaranteed, where

Fi(s; t) =

8>>>>>>><
>>>>>>>:

0 , if s � ai and t � ai
fi(t� ai) , if s � ai and ai � t � bi
fi(t� s) , if ai � s � bi and ai � t � bi
fi(bi � s) , if ai � s � bi and t > bi
0 , if s � bi and t � bi
fi(bi � ai) , if s < ai and t > bi :

For such a de�nition for dynamic service guarantees, an interesting problem is to �nd the

relaxation time ri such that connection i has virtually no impact on the admission criteria in

Theorem 7.4 after bi + ri.

Finally, we note that our approach is also applicable in the continuous-time setting, as shown

in [21, 22, 23]. We also note that the bivariate function F could be random. By specifying the

probabilistic characteristics of the bivariate function F , it is possible to provide probabilistic

guarantees. Previous results along this line could be found in [7, 13].
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