
A note on the Fairness of TCP Vegas

Catherine Boutremans and Jean-Yves Le Boudec

Institute for Computer Communication and Applications (ICA)

Ecole Polytechnique F�ed�erale de Lausanne(EPFL)

1015 Lausanne, Switzerland

[Catherine.Boutremans,Jean-Yves.Leboudec]@ep.ch

Abstract

We study the fairness of TCP Vegas. The latter is an alternative to the commonly used

TCP Reno, and uses measures of the round trip time as feedback on congestion. We consider

two cases that depend on the value of the two parameters � and � controlling the window

sizes' update.

Our main conclusion is that TCP Vegas is unfair in several points. First, when � = �, if

the propagation delays are correctly estimated, TCP Vegas is known to be fair. However we

show that any over-estimation of the propagation delay of a given connection results in an

increase of its rate and hence leads to unfairness. This rate increase augments with the over-

estimation factor. Moreover, the rate oscillations, whose amplitude increases with the rate

value, are not su�cient to provide an accurate estimation of the propagation delay. Second,

when � < �, TCP Vegas is unfair even if the propagation delays are correctly estimated. In

this case, the rate of a connection converges to a stable value that depends on the arrival

order of all connections so that earliest established connections get more bandwidth. Also,

in a more realistic scheme, later connections see their propagation delay over-estimated and

thus they gain larger portion of the bandwidth. These two e�ects tend to counterbalance

each other but the second tends to dominate.

Future use of TCP Vegas in the context of TCP-friendly applications, should therefore

rely on � = �, but will require the propagation delays to be correctly estimated. Yet, this

seems to be quite hard to achieve.

1 Introduction

Our objective in this paper is to better understand the dynamics of the congestion control algo-

rithm implemented in TCP Vegas [3] and to better assert its possible use in the context of TCP

friendly applications.

First, we briey introduce the principles of TCP Vegas, detailed in Section 2, which uses

measures of round trip time (RTT) as congestion feedback, rather than packet losses. In Vegas,

actual and expected rates in a connection are evaluated using, respectively, the actual value of

the RTT and the minimum value of all RTT values ever measured in this connection (this is

the estimation of the propagation delay). The di�erence between these rates, whose value is

compared to two parameters (namely � and �), is then used to adjust the window size.

Several drawbacks of TCP Vegas have been pointed out recently. First, because of the default

values of � and � in its implementation [3, 1], TCP Vegas does not share the total bandwidth

amongst connections in a fair way [2, 6]. Secondly, the same unfairness is observed for any given

inaccurate estimation of the propagation delay.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This led Hasegawa [5, 4] to propose an enhanced Vegas in which � = �. He shows that

this setting leads to oscillations in the window size values, and claims that their amplitude can

provide an accurate estimate of the propagation delay. This is crucial as even in this setting,

the accurate estimate is necessary to ensure a fair share of the bandwidth.

In this paper, we �rst check the fairness of the enhanced TCP Vegas proposed by Hasegawa.

In particular, we address the problem of the propagation delay estimation. This leads us to

review the case where � < �. Our main results follow.

Under the � = � setting, we �nd that the rate oscillations, which we show increase with

the rate value, do not allow a connection to accurately estimate the propagation delay. Also,

any over-estimation of the propagation delay of a given connection will increase its rate, an

increase that becomes more pronounced with the over-estimation factor. In return, the di�erent

connections' peaks in the oscillations are not synchronized in time, thus there is no sub-use of

the link capacity.

When � < �, we show that the rate of a connection converges to a stable value that depends

on the arrival order of all connections. As a result, the �rst connections to be established will

be favored when the propagation delays are properly estimated. Yet, in later connections the

propagation delays are overestimated and so their rates are greater than what they should be.

These two e�ects tend to counterbalance each other but the second tends to dominate.

This paper is organized as follows. In section 2, we summarize the congestion avoidance

scheme of TCP Vegas. Section 3 gives an analysis of the case � = � and presents simulation

results. Section 4 is devoted to the case � < �. Finally, a discussion on our results is addressed

and conclusions are drawn.

2 TCP Vegas' Congestion Control Algorithm

In this section, we describe the congestion avoidance algorithm of TCP Vegas. As mentioned

previously, the bandwidth estimation scheme of TCP Vegas radically di�ers from the one of

TCP Reno. While TCP Reno uses packet losses as congestion feedback, TCP Vegas uses the

di�erence between the expected and actual rates to estimate the congestion state of the network.

Because TCP Vegas does not need to engender losses to evaluate the available bandwidth in the

network, it utilizes the bandwidth more e�ciently than TCP Reno.

The basic idea of TCP Vegas is that the farther away the actual throughput gets from the

expected throughput, the more congested is the network, which implies that the sending rate

should be reduced. The threshold � triggers this decrease. On the other hand, when the actual

and expected throughputs are close, the connection is in danger of not utilizing the available

bandwidth. The threshold � triggers this increase.

The Congestion Avoidance algorithm of TCP Vegas, �rst introduced in [3], can be summa-

rized as follows. Once per round trip time,

1. Vegas computes the expected throughput, which is given by:

Expected = cwnd=baseRTT

where cwnd is the current window size and baseRTT is the minimum of all measured

round trip times.

2

d1

dn

di

c

Connection 1

 Connecti on i

Connection n

∞

Figure 1: Network model

2. Vegas calculates the current Actual sending rate by using the actual round trip time:

Actual = cwnd=RTT

where RTT is the observed round trip time of a packet.

3. Vegas computes the estimated backlog in the bu�ers by:

Diff = (Expected �Actual) � baseRTT

4. �nally, Vegas updates the window size as follows:

cwnd =

8>><
>>:

cwnd+ 1 if Diff < �

cwnd if � � Diff � �

cwnd� 1 if Diff > �

(1)

TCP Vegas controls its window size to keep the measured backlog within the boundaries

[�::�]. The reason behind is that TCP Vegas tries to detect and utilize the extra bandwidth

whenever it becomes available without congesting the network. Typical values of � and � are 1

and 3 or 2 and 4 [3, 1] .

3 Case 1: � = �

As we have just seen, TCP Vegas tries to keep a certain amount of packets queued in the bu�ers.

This implies that the value of baseRTT can be greater than the propagation delay (which is the

delay when there is no queue). In this section, in which � = �, we will analyze the inuence of

an over-estimation of the propagation delay on the fairness of TCP Vegas.

3.1 Analysis

3.1.1 Analytical study of the steady state

In this analysis of the fairness of TCP Vegas, we propose a generalization of the equations

presented in [6]. We will study the rate distribution, provided by TCP Vegas, at the steady state

that is when all the window sizes have converged to a stable value.

The network model considered here is illustrated in Figure 1. It consists of a single bot-

tleneck link, shared by n users. User i (i = 1; :::; n) has a propagation delay di and uses the

window-based ow control of TCP Vegas. The bandwidth of the link is c and the switch adopts

3

a FIFO discipline. The bu�er size is assumed to be in�nite. This assumption ensures that TCP

Vegas does not behave like TCP Reno, which would be the case for small bu�er sizes (as shown

in [2]).

In the depicted con�guration, let us assume that each user i measures a minimum round trip

time,

baseRTTi = di + xi (2)

where xi (� 0) is the propagation delay over-estimation of connection i.

We now consider that the TCP Vegas algorithm has reached a steady state (�xed window

sizes). Then, each connection i measures a round trip time RTTi = di + � where � is the

queuing delay at the switch.

We can deduce from (1) that, at the steady state, Diff = �. Therefore, we can express the

window sizes by:

cwndi �
baseRTTi
RTTi

cwndi = �

or

cwndi �
di + xi
di +�

cwndi = � (3)

cwndi = �
di +�

�� xi
(4)

Let us now derive an expression for the throughput of connection i:

ratei =
cwndi
RTTi

=
�

�� xi
(5)

This equation clearly shows that any over-estimation xi of the propagation delay of a given

connection results in an increase of its rate which gets greater as the over-estimation factor gets

close to � .

And �nally, if the network capacity c is fully utilized, i.e.
Pn

i=1 ratei = c, we can deduce

the queuing delay at the steady state using:

nX
i=1

�

�� xi
= c (6)

3.1.2 Particular cases

Here we solve equation (6) for two cases of interest:

� if all connections measure accurately the propagation delay, xi = 0 for all i.

Then, the solution of (6) is � = c
n �

and

ratei =
c

n

This case leads to a fair share of the link bandwidth, which con�rms the results in [5, 2].

� if connection i starts when connections 1; :::; i� 1 are in equilibrium, the value of

xi (i = 1; :::; n) has been determined by Bonald in [2]. He showed that baseRTTi, which is

4

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25
rate i = f(i) where n = 20

index of connection (i)
ra

te
i/c

 (
%

)

Figure 2: Repartition of the rates for n = 20

the measure of the round trip time in the steady state reached by connections 1; :::; i � 1

was given by

baseRTTi = di +
�

c
(i� 1) Si�1

where S0 = 0 and for all i � 1, Si = 1 + 1
2 +

1
3 + :::+ 1

i
.

Therefore the solution of (6) is � = �
a
n Sn and

ratei =
c

n Sn � (i� 1) Si�1

for i = 1; :::; n.

Figure 2 shows the repartition of the rates for n = 20. The last connection to be established

gets 10 times more bandwidth than the earlier connections. This con�rms the critical

inuence of the propagation delay over-estimation on the fairness.

3.1.3 Quanti�cation of the inuence of the propagation delay over-estimation

In order to quantify the inuence of the propagation delay over-estimation on the rate distribu-

tion we computed two partial derivatives of interest:

� the partial derivative of the rate of a connection with respect to its over-estimation factor

is

@ratei
@xi

ratei
=

P
k 6=i

1
(��xk)2

1 + (�� xi)2
P

k 6=i
1

(��xk)2
(�� xi) (7)

This derivative has large values when xi is close to �. This shows that the inuence of

the over-estimation of the propagation delay of a connection on its rate increases with the

over-estimation factor.

� the partial derivative of the rate of a connection with respect to the over-estimation factor

of another connection is

@ratei
@xk

ratei
= �

1

(�� xi) +
P

j 6=k
(��xk)2(��xi)

(��xj)2

(8)

5

This quantity (which is negative) has signi�cant values only when xi and xk are close to

� and xi < xk. In practice, this means that the cross inuence of the over-estimation of

a connection on the rate of another connection is important only for connections with an

important over-shooting.

So far, we have considered that all window sizes did stabilize. In fact, when � = �, the

window sizes will oscillate around the steady state values considered in this section. An analytical

study of the system dynamics is quite complex. Therefore, we performed simulations to study

these oscillations and to check if Hasegawa's hypothesis was true.

3.2 Simulations

The results presented in this section were obtained with two di�erent simulators: the Network

Simulator (ns) developed at Lawrence Berkeley Laboratory and our own implementation of the

congestion avoidance algorithm of TCP Vegas, to cross-check our results.

3.2.1 Simulation setup

The simple network model that was simulated is the one described in section 3.1. It consists

of a single bottleneck shared by n connections (see Figure 1). The following parameters were

used: the link bandwidth c = 1 Mbps, the propagation delays di = d = 0.2 s for all i (all users

have the same propagation delay), the number of users n = 10, 20 and 40, and the bu�er size is

in�nite. The successive connections (i = 1,...,n) join the network every 2 seconds, starting from

connection with index 1. In addition, we introduced a random part to the propagation delay in

order to take into account the inuence of very small variations of the queue size (the random

part was a zero mean gaussian with variance equal to the variance of an M/M/1 queue loaded

at 90%). Each simulation lasted for 120 seconds.

3.2.2 Results

In this section, we present some results that exhibit the behaviour of the TCP Vegas congestion

avoidance phase.

In Figure 3 (a,b,c), we show the values of baseRTT measured by the di�erent connections.

Each �gure corresponds to a di�erent value of the � parameter. The x-axis and y-axis represent

respectively the index of the connection (recall connections join successively the network) and

the corresponding baseRTT . The solid line represent the theoretical values of baseRTT given

by Bonald (not taking the oscillations into account). The triangles and the stars represent

respectively the values of baseRTT at the beginning and at the end of the connection. Their

simulation values are very close to each other and are far from the value of the propagation

delay (especially for the late connections). This means that the oscillations are not su�cient

to allow the connections to measure accurately the propagation delay. However, the theoretical

value of baseRTT is pessimistic compared to the real values.

Let us now investigate the inuence of the propagation delay over-estimations on the rates

distribution. Figure 4 (a,b,c) shows the rates of the di�erent connections (ratei) as a function

of their over-estimation factor (xi) for di�erent values of � and n. The vertical bars represent

the amplitude of the rate oscillations. We can see that any over-estimation of the propagation

delay of a connection results in an increase of its rate which gets worse (for a given �) when the

over-estimation factor increases. This e�ect is very critical as the late connections can receive

up to 5 times more bandwidth than the earlier connections. This demonstrates the unfairness

of TCP Vegas.

6

0 2 4 6 8 10 12 14 16 18 20
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

ba
se

R
T

T
i (

s)

index of the connection (i)

baseRTT of the connections, n = 20, alpha = 1

theoretical
last measurement
first measurement

0 2 4 6 8 10 12 14 16 18 20
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

ba
se

R
T

T
i (

s)

index of the connection (i)

baseRTT of the connections, n = 20, alpha = 3

theoretical
last measurement
first measurement

(a) (b)

0 2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ba
se

R
T

T
i (

s)

index of the connection (i)

baseRTT of the connections, n = 20, alpha = 5

theoretical
last measurement
first measurement

(c)

Figure 3: baseRTT of the connections for (a) � = 1, (b) � = 3 and (c) � = 5.

7

10 0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

x 10
5 rate i = f (x i*c), n = 10

ra
te

i (
bp

s)

xi *c

alpha = 1
alpha = 3
alpha = 5

50 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5 rate i = f (xi*c), n = 20

ra
te

i (
bp

s)

xi*c

alpha = 1
alpha = 3
alpha = 5

(a) (b)

50 0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12
x 10

4 rate i = f (xi *c), n = 40

ra
te

i (
bp

s)

xi *c

alpha = 1
alpha = 3
alpha = 5

(c)

Figure 4: Repartition of the rates for (a) n = 10, (b) n = 20 and (c) n = 40.

8

55 60 65 70 75
0

0.5

1

1.5

2

2.5

3

x 10
5

ra
te

(b
ps

)

time(s)

Figure 5: Evolution of the rates over time for n = 20 and � = 3.

Another point of interest is the increase of the amplitude of the rate oscillations with the

rate value. This is explained in the following. For all connections, the window size oscillates

around its mean value, all oscillation amplitudes being similar. This leads to oscillations of the

queuing delay �, which inuences the rate value following:

@ratei
@�

ratei
= �

1

�� xi
(9)

This derivative increases as xi approaches �, explaining why the rate oscillations increase with

the over-estimation factor.

The dynamics of the oscillations are illustrated in Figure 5 where the evolution of the rates

of the connections as a function of the time is plotted (we chose a small simulation window

to facilitate the reading of the plot). The oscillations' peaks are not synchronized in time and

therefore don't lead to an under-utilization of the link capacity.

3.3 Conclusion for � = �

We have shown that any over-estimation of the propagation delay of a connection results in

an increase of its rate which gets worse as the over-estimation factor increases. We also have

found that the rate oscillations did not allow to compensate this e�ect. As a result, the late

connections, which have an important over-estimation factor, can get a lot more bandwidth

than the earlier connections. Because of this, the enhanced TCP Vegas, when � = �, does not

achieve fairness among the connections. This leads to non deterministic transfer times.

4 Case 2: � < �

We now turn to the case � < � in which stabilization of the window sizes, that would oscillate

for � = � is observed. We now propose to analyze the joint impact of 1) the di�erence between

� and �, and 2) the over-estimation of the propagation delay on the fairness of TCP Vegas. The

network model and notations are the same as those depicted in section 3.

4.1 Analysis of the fairness

At the steady state, in the case � < �, we can deduce from (1) that � � Diffi � � for all i.

Therefore, we can express the window sizes by:

�
di +�

�� xi
� cwndi � �

di +�

�� xi
(10)

9

Fairness lineα1 β1

α 2

β 2

cwnd

cwnd2

Init ial condition
1

(1) (2)
(3)

(4)

(5)

(6)

(7)
(8)

(9)

g

Figure 6: Convergence region of TCP Vegas

and derive the following expression for the throughput of connection i:

�

�� xi
� ratei �

�

�� xi
(11)

This equation holds the two reasons of unfairness of TCP Vegas. First, if the propagation delays

are correctly estimated (xi = 0), the rate of a connection converges to a value that lies between

two bounds that depend on the parameters � and �. Therefore some connections could receive

�=� times more bandwidth than other connections. Second, late connections will probably

receive more bandwidth that earlier ones as the boundary values increase with over-estimation

of the propagation delay. The adjective probably refers to the fact that the actual convergence

value, because of possible overlap between boundaries of successive connections, can not be

assessed to a greater value for later connections. Moreover, the convergence values depend on

the arrival order of connections, as more than one solution exists to the equation
Pn

i=1 ratei = c.

Let us now detail the case in which all connections measure accurately the propagation delay.

We state that earlier connections will be favored and will receive more bandwidth, as shown in

the heuristic argument that follows.

Let us consider the simple case where only two connections are sharing a bottleneck link. Fig-

ure 6 illustrates the convergence region of TCP Vegas for 2 users, but the same geometric picture

can be easily extended to a case with more users. In the �gure, �i and �i lines for connection i

denote the sets of window size pairs f(cwnd1; cwnd2)jDiffi = �g and f(cwnd1; cwnd2)jDiffi =

�g, respectively. The fairness line represents window size pairs of equal throughputs of connec-

tions, i.e. f(cwnd1; cwnd2)jrate1 = rate2g. Connection 1 increases its window size in regions (1),

(4) and (7), and decreases it in regions (3), (6), and (9). Similarly, user 2 increases its window

size in regions (7), (8) and (9), and decreases it in regions (1), (2) and (3). The only region

where neither user updates its window size is region (5). The arrows in other regions indicate

the directions in which the window sizes may get updated. Now, if we suppose that connection

1 starts �rst and connection 2 joins the network when connection 1 is in steady state, the initial

conditions of the system are situated on the x-axis between the lines �1 and �1. And, starting

from that region, the window sizes will converge to a point in the hachured part of region (5),

assuming that the distance between �i and �i lines is su�ciently large compared to the amount

(� > 0) by which users update their window sizes. In the hachured part of region (5), the rate

of connection 1 is greater than the one of connection 2 and this explains the bias in favor of

early connections. Of course, the greater the di�erence between � and �, the greater will be the

unfairness.

In the next section, we present some simulation results that illustrate our analysis.

10

1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

x 10
5

ra
te

i (
bp

s)
index of the connection (i)

alpha = 1
beta = 2
beta = 3
beta = 5

Figure 7: Rate distribution between the connections for n = 10 and without propagation delay

over-estimation

4.2 Simulations

Using the setup of section 3.2.1, with � < �, we simulated two scenarios: in the �rst one, we

imposed that all connections have an accurate estimation the propagation delay (xi = 0) while

in the second one, more realistic, the propagation delay is estimated by the connections.

4.2.1 Case 1: without over-estimation of the propagation delay

Figure 7 illustrates the rate distribution between users for di�erent values of the parameters

(�; �). The x-axis and y-axis represent respectively the index and the rate of the connections.

As expected, we see that early connections receive more bandwidth than later ones. Moreover,

the unfairness increases with the ratio �=�. We can also notice that the oscillations disappeared.

4.2.2 Case 2: with over-estimation of the propagation delay

Now, we investigate the joint impact of � being unequal to � and the propagation delay over-

estimation.

11

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3
x 10

5 rate i = f (xi *c), n = 10

ra
te

i (
bp

s)

xi *c

alpha = 1
beta = 2
beta = 3
beta = 5

0 50 100 150
2

4

6

8

10

12

14

16
x 10

4 rate i = f (xi*c), n = 20

ra
te

i (
bp

s)

xi *c

alpha = 1
beta = 2
beta = 3
beta = 5

(a) (b)

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8

9
x 10

4 rate i = f (x i*c), n = 40

ra
te

i (
bp

s)

xi *c

alpha = 1
beta = 2
beta = 3
beta = 5

(c)

Figure 8: Repartition of the rates for (a) n = 10, (b) n = 20 and (c) n = 40.

In �gure 8 (a,b,c), we plotted the rates of the connections as a function of their over-

estimation factor, for di�erent values of (�; �), and n. We see that the two e�ects tend to

compensate each other and so the overall fairness increases as � furthers o� �. However, the

e�ects do not cancel out as the inuence of the over-estimation factor dominates. This can be

seen in the �gure as the rates increase with increasing values of xi.

4.3 Conclusion for � < �

Under this setting, the rate of a connection converges to a stable value that depends on the

arrival order of the connections. When the propagation delays are properly estimated, the

earliest established connections are favored and receive more bandwidth. On the other hand,

the later connections over-estimate the propagation delays and therefore gain a larger portion

of the bandwidth. These two e�ects tend to counterbalance each other but the second tends to

dominate.

12

5 Final Conclusion

In this article, we have studied the fairness of TCP Vegas. We have considered the two cases

� = � and � < �.

When � = �, any over-estimation of the propagation delay of a given connection results

in an increase of its rate that gets greater as the over-estimation factor increases. The rate

oscillations do not allow for compensation of this e�ect. This results in unfair distribution of

bandwidth among the users.

In the case � < �, we showed that two reasons of unfairness of TCP Vegas are 1) the over-

estimation of the propagation delay of a connection and 2) the fact that � 6= �. The analysis of

these two factors evidenced that, although their e�ects counterbalance, they do not cancel each

other out. The over-estimation problem is dominant and causes unfairness.

Our �nal conclusion is that the use of TCP Vegas in the future (instead of Reno) should rely

on � = � but will require that propagation delays be correctly estimated. There is no obvious

way to achieve this.

Acknowledgement

The authors would like to thank Professor Patrick Thiran for fruitfull discussions.

References

[1] J. S. Ahn, P. B Dansig, Z. Liu, , and L. Yan. Evaluation of TCP Vegas: Emulation and

experiment. In ACM SIGCOMM Computer Communication Review, volume 25, pages 185{

195, 1995.

[2] Thomas Bonald. Comparison of TCP Reno and TCP Vegas via uid approximation. Tech-

nical report, INRIA, 1998.

[3] L.S. Brakmo and L.L. Peterson. TCP Vegas: End to end congestion avoidance on a global

internet. IEEE J. of Selected Areas in Communication, 13:1465{1480, 1995.

[4] G. Hasegawa, M. Murata, and H. Miyahara. Fairness and stability of congestion control

mechanisms of TCP. In Globecom'99, pages 1329{1336.

[5] G. Hasegawa, M. Murata, and H. Miyahara. Fairness and stability of congestion control

mechanisms of TCP. In 11th ITC Specialist Seminar, pages 255{262, October 1998.

[6] J. Mo, R.J. La, V. Anantharam, and J. Walrand. Analysis and comparison of TCP Reno

and Vegas. In Globecom'99.

13

