Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Formal Methods for Communication Services

F. Dietrich and J.-P. Hubaux

Institute for computer Communications and Applications (ICA)
Swiss Federal Institute of Technology, CH-1015 Lausanne

September 7, 1999

Abstract

We survey formal methods as they are applied to the development of com-
munication services. We report on industrial and academic projects, consider
different communication architectures and work related to the feature interac-
tion problem. Based on our survey, the results reported in the literature and
most importantly, on extensive discussions with industry, we investigate impor-
tant industrial concerns and criticisms about the use of formal methods for the
development of communication services.

We report on a collaborative project between the Swiss Federal Institute of
Technology in Lausanne, Swisscom, Alcatel and Thomson in which these in-
dustrial concerns have been taken into account from the very beginning. The
results of this project are currently being integrated into an industrial software
development platform.

1 Introduction

With installations that will soon reach one billion wireline phones, 300 million mobile
phones and 200 million IP hosts, assuring communication service reliability is one of
the most challenging tasks in software engineering. Unreliable and misimplemented
communication services can easily trigger huge losses and damage customer faith.
To rectify the users’ bad impressions, a telecom operator not only has to correct
the errors, but must compensate the unsatisfied customers. In today’s competitive
markets, customer faith is a difficult commodity to restore. Formal methods (FMs)
have been advocated as one possible approach to increase software reliability.

However, even with the most liberal meaning of formal methods (FM) it is safe
to say that formal methods are rarely used in the industry [39]. While academics see
formal methods as inevitable in the future of the software profession, most practitioners
see formal methods as irrelevant to what they do [36]. In this paper, we are specifically
interested in formal methods as they are applied to the development of communication
services.

The main contributions of this paper are as follows:

1. We survey formal methods as they are applied to the development of communi-
cation services. While there are some excellent surveys about formal methods in
general [70, 18], there is currently none which tackles the specific area of commu-
nication services. In [21], it is pointed out that, in practice, preference is given
to those FMs that have industrial acceptance. We therefore report on industrial
and academic projects separately thus explicitly identifying the formal meth-
ods that have (or have not) gained industry acceptance. We consider different

https://core.ac.uk/display/147902513?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

communication architectures and discuss work related to the feature interaction
problem.

2. Based on our survey, the results reported in the literature and most importantly,
on extensive discussions with industry, we analyze important industrial concerns
and criticisms about the use of formal methods for the development of com-
munication services; thereby reporting on some of the major barriers for the
application of FMs in the communications industry.

3. We present a collaborative project between the Swiss Federal Institute of Tech-
nology in Lausanne and Alcatel in Paris, in which these industrial concerns have
been taken into consideration from the very beginning. The results of this project
are currently being integrated into an industrial development platform, provid-
ing strong evidence of the applicability of formal methods in the industry if their
specific needs are not ignored.

The remainder of this chapter is structured as follows: In Section 2 we explain what
we mean by communication services and identify their peculiarities. In Section 3 we
survey the formal approaches used for communication services. In Section 4 we discuss
industrial concerns about the application of formal methods and show how they can
be addressed in formal methods research. In Section 5 we describe the work carried
out in our collaboration with Alcatel and show how our proposal pays attention to the
industrial concerns. Finally, our conclusions are presented.

2 The Peculiarities of Communication Services

In this section we explain what we mean by communication services and identify their
peculiarities.

We follow the definition given in [67] where a service is defined as a meaningful set
of capabilities provided by an existing or intended set of systems to all who utilize it:
subscribers, end users, network providers, and service providers - each seeing a different
perspective of the service. The term communication service as used in this paper refers
to telecommunication services, Internet services and hybrid services. A telecommuni-
cation service is defined as a service that is provided by the Public Switched Telephone
Network or mobile technology. Typical examples of telecommunication services are call
forwarding or originating call screening but also video conference services. An Internet
service is defined as a service that is provided over Internet infrastructure. A hybrid
service [76] is defined as a service that spans many network technologies, especially
the Public Switched Telephone Network (PSTN) and the Internet. An example of a
simple hybrid service is Click-to-Dial, which enables a user to request, from a Web
browser, a connection to be set up between telephones connected to the PSTN.

Another term frequently used in the communications domain is protocol. A protocol
is the special set of rules for communicating that the end points in a communication
connection use when they send signals back and forth. Protocols exist at several lev-
els in a communication connection. Protocols are often described in an industry or
international standard. For example, on the Internet, there are the TCP/IP proto-
cols, consisting of TCP (Transmission Control Protocol), which uses a set of rules
to exchange messages with other Internet points at the information packet level, and
IP (Internet Protocol), which uses a set of rules to send and receive messages at the
Internet address level.

In this paper we expressly refrain from looking at the application of formal methods
for communication protocols but concentrate only on communication services. We
acknowledge that it is not always possible to draw a clear line between communications
protocols and communications services and in some cases one might be tempted to say

Concurrency, distribution, reactivity Communication services belong to the
class of concurrent, distributed and reactive systems.

Real-time Communications services have to meet real-time deadlines; this means
that they have to respond to a stimulus within a fixed (not necessarily in the range
of milliseconds) time limit.

Code size, complexity Industrial communication software is huge in code size
and very often is composed of thousands or even hundreds of thousands of lines
of implementation code.

Large-scale environment Communications services operate in a large-scale en-
vironment, where large-scale refers to three major points: (i) wide geographical
distribution, (ii) a high number of participating objects and processes, (iii) a high
number of users interacting with the service.

Reliability, availability and fault tolerance Only marginal down-time is ac-
ceptable for communication systems. To increase reliability and availability, in-
dustrial communication systems cannot be developed without considering fault
tolerance, which is quite an essential point for communication systems. One of
the key characteristics of communication systems is 24h x 7d operation and they
are seldomly restarted.

Streams, connectivity Communications services incorporate streams and pro-
vide some sort of connectivity, even if in some cases, the user data are conveyed
by a connectionless network.

Coexistence, interoperability A communication service has to coexist and in-
teroperate with other services.

Heterogeneous environment The authors of [73] point out that the real pe-
culiarity of (tele-) communication services which singles them out from the set
of other complex, real-time software like nuclear plants and aircraft, is the en-
vironment, both for system production and system operation. The tremendous
heterogeneity of todays communication systems is a result of their historical,
evolutionary development and perpetual introduction of new services and tech-
nologies. Services newly introduced or existing services that are being extended,
changed or updated, have to cope with this heterogeneous environment.
Long-lived and evolving Communications systems are long-term investments;
existing systems are constantly being extended. Many communication services
are offered for a long time period and are thus subject to many upgrades and
evolutions.

Table 1: The Peculiarities of Communication Services

that a service is just a protocol. Intuitively, we exclude all works that explicitly refer
to protocols.

Some characteristics of public networks are identified in [40] and some peculiarities
of telecommunication systems are briefly discussed in [73]. These characteristics partly
match the characteristics of communication services. The most important character-
istics of communication services are summarized in Table 1 without attributing any
specific meaning to the order in which they are listed. We will come back to some of
the peculiarities in Section 4.

3 Survey of Formal Methods for Communication
Services

In this section we survey the application of formal methods for communication ser-
vices. We first look at the work done in industry and academia, we investigate the
formal methods used for specific communication architectures (Intelligent Network,

TINA, Internet), and look at work related to the feature interaction problem. Work
that covers more than one aspect (e.g., a paper describing an industrial project for
feature interaction detection in the TINA architecture) is referenced several times but
discussed only wherever it seems to be most appropriate.

It is outside the scope of this survey to discuss the advantages and disadvantages
of a given formal method with respect to other formal methods. The reader interested
in such a comparative study is referred to [1] where the authors provide a comparative
case study for Esterel, LOTOS, Modecharts, SDL, VFMS and Z. A set of eleven
fundamental and five important criteria is described and the above-mentioned FMs
are evaluated according to these criteria.

FSM (Finite State Machines). A simple finite state machine is composed of
states connected by transitions. The relative simplicity of finite state machines
makes them especially suitable for formal analysis.

SDL (Specification and Description Language) is based on an extended finite
state machine model, supplemented by features for specifying abstract data types.
SDL has probably received more attention from industry than any other formal
method and is well-supported by tools, some of them are commercially available.
LOTOS (Language Of Temporal Ordering Specification) is a formal specification
technique for specifying concurrent and distributed systems. It consists of a
language for specifying processes and an algebraic specification language called
ACT ONE.

Estelle (Extended Finite State Machine Language). An Estelle specification
defines a system of hierarchically-structured state machines. The state machines
communicate by exchanging messages through bi-directional channels between
their communication ports.

Esterel is a synchronous programming language that is based on the perfectly
synchronous concurrency model in which concurrent processes are able to perform
computations and exchange information in zero time.

Z is a (non-executable) formal specification notation based on set theory and first
order predicate logic.

Temporal logic is a formal specification language for the description and analysis
of time-dependent and behavioral aspects. Temporal logic is an extension of
conventional propositional logic that incorporates special operators that cater for
time. There are many temporal logics; some of them being linear time temporal
logic (LTL) and ACTL* (an action based temporal logic).

Promela is a protocol validation language. The SPIN tool has been devised to
validate Promela specifications.

Others. There are many more formal techniques, such as Larch, TLA (the
Temporal Logic of Actions), etc., but they have received rather limited attention
from the (tele-) communications community.

Table 2: Formal Techniques

Table 2 lists some of the most frequently used formal techniques. Almost every
formal method has been applied to communication services: Finite State Machines
(FSM) [34], Petri nets [68], Promela [29], Esterel [50] and many others. However,
the (tele-)communications community has been paying special attention to the three
standardized FDTs: LOTOS [45], Estelle [46] and SDL [15]. These FDTs, originally
developed to unambiguously specify protocol standards, became standardized about
15 years ago and they have been successfully applied for protocol specification and
validation since then: several design errors have been found in a number of protocols.
The number of projects using these FDTs for service design has increased steadily
as more and more tools have become available. The application of these protocol
specification languages to service engineering triggered many extensions such as for

real-time and object-orientation, and led to the fact that there is almost more work
on formal methods rather than with them.

3.1 Formal Methods in Industry

There are few reliable statistics about faults in communication systems. Starting in
1992, however, telephone companies in the US have been required to notify the US
Federal Communications Commission of outages affecting more than 30,000 customers.
These reports are statistically analyzed in [58]. This analysis revealed several very
interesting facts:

e Overloads accounted for 6 percent of the outages, but for 44 percent of the
down-time.

e Software errors caused 14 percent of the outages, but less system down-time (two
percent!) than any other source of failure except vandalism.

Even though the telecommunication network with its multitude of telecommunications
software is the largest network worldwide, it is also one of the most reliable networks.
It is not surprising that the telecommunications industry is often on the forefront of
formal methods research.

In [21], the importance of FMs is clearly acknowledged. However, preference is
given to those FMs that have industrial acceptance, tool support of production quality
and that are standardized. At present, only SDL fulfils these three requirements.

Table 3 summarizes projects in which formal methods have been applied to the
design of communications services in an industrial setting. It turns out that SDL,
Z and Promela are used in the communications industry whereas industry has not
paid much attention to other formal methods, such as LOTOS for the specification
and validation of communication services. Temporal logic (TL) also seems to have
attracted some interest from the industry and has been used in connection with other
FDTs such as SDL [42]. TL is also integrated in commercial products [77] [79].

Company FM References
AT&T Esterel [50]
AT&T SDL [5] [43] [41]
AT&T SDL, TL [42]
AT&T Z [84]
AT&T Promela, 7 [85]
Bellcore Promela, LTL [60]

BT Z 2]

BT SDL [54] [28]
CSELT Promela [9]
Deutsche Telekom et al.! Petri-nets, SDL [14]

Dutch PTT, Telia SDL, ACTL* [12] [66]
France Télécom Z [53]

Nortel SDL [82]
Score? SDL, Z, ACTL* [20]

SNI FSM, TL [77]

Table 3: Formal Methods in the Communications Industry

!Deutsche Telekom, France Télécom CNET, Tele Danmark A/S, Telefénica I+D

2Score consortium: IBM France, Broadcom, CAP SESA Telecom, CAP Gemini Innovation, France
Télécom CNET, ERICSSON Telecom AB, INESC, PTT-NL, Tele Danmark, Telia AB, Telelogic, Telia
Promotor Uppsala AB, Verilog, CSELT, ABB Corporate Research, NR.

At AT&T, several FM projects aimed at designing and implementing software for
the AT&T 5ESS (Electronic Switching System).? Several formal methods have been
applied over a longer time-period [5, 43, 42, 50].

Jagadeesan, Puchol and Olnhausen [50] described a technique and supporting tools
that automatically verify whether Esterel programs satisfy safety properties. The
verification of those properties is based on an automated translation of the temporal
properties to Esterel, the compilation of the given program in parallel with the Esterel
“model” of the properties; and the analysis of the resulting finite state machine for
satisfaction or violations of the properties. The NewCoRe project described in [42]
ran over a two year period. A specification of 7,500 lines of (non-commented) SDL
code was written and about 150 correctness properties were formally specified and
verified for the SDL model. As a result, a total of 112 serious design errors were
detected in the design requirements. Holzmann claims that the use of automated
formal verification techniques for industrial software design had never been attempted
on such a scale before. To our best knowledge, this is still true. Holzmann points out
that the first generation of FMs that we developed does not live up to the promise of
either an engineering discipline or a scientific method. He lists three characteristics
that a mature engineering discipline should minimally have:

e It discriminates between requirements and implementations, i.e., it should be
possible to make explicit formal statements about the correctness requirements
of a design independent of the design itself.

e It uses engineering models (prototypes) to verify design decisions.

e It can predict the essential characteristics of a product before it is built.

Since neither SDL nor Esterel provide means to make statements about the cor-
rectness of a design independent of the design itself, in both [42] and [50], correctness
requirements for the 5ESS switching software were expressed using temporal logic.

The weakness of SDL for expressing correctness requirements has also been pointed
out in [66] and [12]. The proposal of these authors is to use a temporal logic based on
ACTL* to express properties for telecommunication services.

Temporal logic has also been used in the project described in [77], which deserves
special attention since it describes work that made the step into a commercial product.
For the specification of services in the Intelligent Network, Siemens Nixdorf Informa-
tionssysteme, Munich, Germany and the University of Passau, Germany, developed
an environment for the creation of Intelligent Network services. Services described
in this framework can be formally verified by model checking. Service properties are
expressed using temporal logic. By making the use of formally specified constraints an
option it is up to the service designer to decide to which degree he is willing to invest
into formality; the specification of more constraints leads to a more faithful verification
of the service design. This seems to be a very promising avenue to follow.

The need for an evolutionary rather than a revolutionary integration of formal
methods into system development is expressed in [2]. While many projects produce
complete formal specifications, the approach advocated by British Telecom and Leeds
Metropolitan University leads to a gradual introduction of formal specification. Z is
used as an add-on to the normal development process. While, in the beginning, the
system specifications are developed as usual, those specifications are later transformed
into a formal specification in Z.

CSELT developed the Application Construction Environment (ACE) [9] for the
specification, development and generation of TINA services. Besides containing a
family of graphical editors, it also comprises a compiler that translates (intermediate

3 After the split of AT&T in 1996, the 5ESS is now associated with Lucent.

code of) the specification into Promela. The SPIN tool [41] is then used as model
checker.

The application of the formal description language Z to the specification of TMN
(Telecommunication Management Network) interfaces has been studied in [53] and it
is shown how Z can be used for the specification of the OSI management information
model.

In [85], Zave investigates the use of Promela and Z for the specification of telecom-
munication services. By using a joint semantics for Promela and Z, specifications
written in Promela and Z can be composed and be reasoned about in a number of
ways, e.g., by using tools that are available for either Promela or Z. The starting point
for the investigation is the Distributed Feature Composition (DFC) virtual architecture
which is detailed in [49].

The Score consortium [20] has investigated the use of MSCs, SDL and ACTL*
and Z. To produce formal specifications, Score recommends OMT, SDL and Z with
corresponding supporting tools [22]. However, it is also pointed out that yet a lot
of work has to be done when one wants to introduce the methods in an industrial
environment [23].

The work described in [82] starts with an identification of industrial problems by
interviewing Nortel engineers. Several FMs are evaluated for their suitability and SDL
is finally chosen to formally specify a multi-media messaging subsystem.

3.2 Formal Methods in Academia

The use of formal methods for the design of communications services is heavily ad-
vocated by academics. Almost every formal method in existence has been applied
to communication services. Table 4 lists some of the communication service related
formal methods projects carried out in an academic environment.

FM References

FSM [13] [34]

Petri-nets [68]

LOTOS [31] [57] [78] [32] [6]
Promela [29]

SDL [74]

TL [8] [7] [29] [61] [6]

Table 4: Formal Methods in Academia

The application of LOTOS for the specification of telephone systems is, for example,
described in [31] and [32]. These papers also address the question of how to integrate
behavioral properties into LOTOS specifications.

In [6], the authors investigate the use of LOTOS and a real-time temporal logic
called QTL for the specification and verification of multimedia services.

Because much of the academic work is related to the feature interaction prob-
lem and/or specific communication architectures, it will be discussed in the following
sections.

3.3 Formal Methods for Feature Interactions

A significant amount of work on the application of formal methods to the design
of communication services deals with the problem of service interactions. A service

interaction occurs when the addition of a new feature (e.g., by introducing a new
service) to a system disrupts the existing services. Sometimes service interactions are
desired, and one service is explicitly designed to interact with another. In some cases,
one wants to verify that the two services interact exactly as expected. In most cases,
one simply wants to ensure that the behavior of a service does not alter when composed
with other (supposedly non-interacting) services/features.

A yearly international workshop [33] [10] [17] [27] dedicated to the feature interac-
tion (FI) problem and many other related publications provide strong evidence of the
importance of the problem and the relevance to many researchers. Table 5 summarizes
works related to the FI problem and categorizes them according to the FM used.

FM References
FSM [13] [69]
Petri-nets [52] [68] [14]
Promela [60] [29]
SDL [54] [14]
LOTOS [11] [30] [16]
TL 8] [7]

Table 5: Formal Methods for Feature Interactions

The approach described in [13] proposes to detect feature interactions by describing
the services as layered finite state machines. While the originating and the terminating
end of a call are described by simple finite state machines, features are added on top
of these as layers.

Similarly, the authors of [69] advocate the use of finite state machines to describe
the system’s behavior. The network is considered to be a black box and service speci-
fications are descriptions of desired terminal behaviors. Feature interactions are mod-
elled as unwanted properties of these descriptions. In a follow-up work [52], the authors
analyze some weaknesses of their original proposal such as timing verification and pro-
pose a new method based on Petri-nets.

Nakamura et al. [68] describe an algorithm for the detection of non-deterministic
features that is based on a Petri-net model. This algorithm is more efficient than
typical detection algorithms with state enumeration. Experimental results have shown
that, even though the proposed algorithm may theoretically detect non-determinism
that actually does not occur, the non-determinism detected in five sample service
specifications was detected correctly.

In [60], features are modelled as building blocks that can be combined into complete
descriptions. Features have a procedural representation (in form of Promela code)
and assertions are described by using linear-time temporal logic. Similar to [29], the
SPIN tool is used to check whether or not the assertions expressed in temporal logic
(described as never-claims in Promela) are violated.

Several papers [11] [30] [16] describe how LOTOS can be used to describe features
and to detect interactions.

In [8] and [7], a temporal logic inspired by Lamport’s TLA (Temporal Logic of
Actions) [59] is used to describe the different features. Two features interact if they
result in an inconsistent description.

The approach described in [14] incorporates several formal notations like SDL,
Petri-nets and MSCs. Different formalisms and interaction detection mechanisms are
proposed for the different phases of the service life-cycle. Consistency of the global
approach is achieved by defining several models that form the basis for all methods.

3.4 Formal Methods for Specific Architectures

Much of the work on formal methods for communication services concentrates on spe-
cific communication architectures. In the following we consider the Intelligent Network
(IN) [47], the Telecommunications Information Networking Architecture (TINA) [80]
and the Internet. Table 6 summarizes the approaches discussed in this paper.

Arch. FM Reference
N LOTOS [11]

IN Promela [29]

IN SDL [54]

IN FSM, TL [77]
TINA LOTOS [57]
TINA ODP-DLcomp (LOTOS) [7§]
TINA Promela [9]

TINA LTL [61]
TINA SDL [74]

Table 6: Formal Methods for Specific Architectures

Let us first look at some formal approaches for the Intelligent Network: In [11],
Bouma and Zuidweg present an approach to analyzing feature interactions in the IN
CS-1 (Capability Set 1) Global Functional Plane. The desired behaviour of a service
(feature) is represented by a property satisfied by its LOTOS specification, and the
feature interaction problem appears as a satisfiability problem for the conjunction of
properties. Model-checking and simulation techniques are used to identify violations
of these composite properties.

Etique [29] bases his approach on the FUSION method [19], thereby taking an
object-oriented development method as basis for the construction of services in the in-
telligent network. As the FUSION method is not formal enough to allow an automated
validation of specifications, the FUSION notations are extended and formalized to ob-
tain a language called FUS++. To validate a FUS++ specification, it is translated
to Promela and, subsequently, the SPIN tool is used to validate the corresponding
Promela specification.

The work described in [54] uses SDL to validate and test IN services. Two models
are used: a network model and a service plane model. The network model supports
several nodes with an in-built interaction detection ability in its architecture. The
service plane model is an abstract view of the telephone service with mechanisms for
the creation and addition of services.

In 1993, over 40 network operators, telecommunications equipment and computer
equipment manufacturers formed the Telecommunications Information Networking Ar-
chitecture Consortium (TINA-C) to define and validate a common and open software
architecture for the provision of telecommunication and information services. Due to
the evolving character of TINA and doubts about its future [44], the use of formal
methods for the design and implementation of TINA services is still in an early stage.
Since TINA is built upon ODP concepts and uses CORBA (Common Object Request
Broker Architecture) as underlying platform for services, results obtained from apply-
ing FMs for ODP (Open Distributed Processing) and in CORBA-frameworks can be
reused for TINA services.

In the approach described in [61], behavioral properties of TINA services are ex-
pressed using event-based behavioral abstraction and Linear-time Temporal Logic
(LTL). Whether the service implementation has not violated and is not violating the
formally specified properties is checked at run-time. The approach has been applied
to an industrial desktop video conferencing service and is supported by a tool.

ODP-DLcomp [56] is a formal language similar to TINA ODL (Object Definition
Language) [55], but offers the capability to formally specify behavior. Its formal se-
mantics is based on LOTOS. An example of it is given in [78] where it is used to specify
a plain old telephony system.

Similarly, the authors of [74] start with the interface descriptions given by CORBA
IDL (Interface Definition Language) or TINA ODL that lack a behavioral description
of the components and they investigate the use of SDL for behavior descriptions.

In [57], the authors use LOTOS for the design of TINA-based applications. Specif-
ically, they specify and verify TINA service components in the ODP computational
viewpoint and discuss how compliance checks with the enterprise model of ODP can
be carried out.

According to International Data Corporation, revenues in the worldwide Internet
services market grew an astounding 71% in 1998 to reach $7.8 billion. Revenues in
this emerging market will earn a compound annual growth rate of nearly 60% and
pass $78 billion by 2003. Malfunctions of Internet service can have an adverse affect
on the core business of companies that provide services over the Internet and on their
customers. Surprisingly, the emergence and rapid growth of Internet services has
gone almost completely unnoticed by the formal methods community. This is even
more mysterious as Internet services account for a significant part of the revenues for
many emerging and well-established companies in this multi-billion market. However,
as service development platforms for the Internet, e.g. [81], become mature, these
platforms are likely to be extended with service validating functionality in the near
future. An example can be seen in the work described in [62].

4 The Concerns of the Communications Industry

In this section we look at some of the problems that, according to the industry, pre-
vent or hinder the application of formal methods in an industrial environment. We
discuss six important industrial concerns and show how these industrial concerns can
be addressed by formal methods research. These industrial concerns may or may not
be justified, one may or may not agree with them and it is outside the scope of this
paper to investigate if they are justified. However, these are most important indus-
trial concerns. We argue that, by actively addressing them, formal methods are much
easier to transfer into mainstream service development, as we will show in Section 5.

Very often, formal methods are applied based on simple personal preferences and
historical background of the researchers. The ever-increasing number of extensions of
some formal description techniques can be taken as a schoolbook example. Despite the
fact some of these formal methods have been available for about 15 years and that they
never attracted reasonable interest from the industry, academic research continues and
industrial criticism is still largely ignored.

Even though formal methods have already been used in the communications indus-
try as we have shown in our survey, it should be noted that the vast majority of these
projects have been carried out in the R&D departments. We are still far away from
the integration of formal methods into the mainstream development process. When
considering existing FMs, only SDL can be said to have gained wide acceptance in the
industry.

The industrial concerns discussed in the following show some of the major barriers
for the application of FMs in the communications industry. They have been identified
in many discussions with our industrial partners.

10

4.1 Focus: Implementation vs. Abstract Models

Industrial statement 1 The only thing that counts in the end, is the final imple-
mentation and not an abstract model.

The Communications industry, especially, frequently argues that proving the correct-
ness of abstract models does not pay since it does not provide a guarantee that the
proven properties are preserved in the actual implementation. One of the key charac-
teristics of communication systems is 24h x 7d operation. For example, a switching
system is supposed to be available for all but two hours within a 40-year period [4].
These systems are seldomly restarted which leaves them particularly vulnerable to run-
time problems such as memory faults. These problems are not related to the feature
set of the systems, but to the implementation. They are very likely to pass system
tests and occur in the field. The absence of any kind of sophistication or optimization
in the design of algorithms and data structures in formal specifications, such as data
packing, optimal coding, pointers, dynamic storage allocation and interrupts already
leads to a less faithful representation of industrial communications services.

Of course, the relevance of any formal model to the actual running of the program is
only as good as the degree of faithfulness to which the model represents real executions
of the final program [65]. In [12] it is pointed out that the construction of a model
close to real-life situations is very time-consuming. With respect to the models used
for the detection of feature interactions, it is stated that most of these models are of
an academic nature: they are very high-level, but a lot of interactions only appear
when one takes the details of a real-world system into account. A similar conclusion
is drawn in [38]. The authors of [74] point out that the models produced by applying
existing formal methods often bear no relation to the actual (industrial) software.

By developing more and more faithful models that account for a larger set of
phenomena associated with real executions, we approach more closely the final imple-
mentation. Obviously, there is a tradeoff between the degree of detail incorporated in
the model and the complexity of using it [65]. Even though almost every newly devel-
oped formal model is compared to other formal models, there is very little discussion
on how the different formal models reflect the reality they are supposed to represent.

Formal and analytical methods such as formal specification, verification, and sys-
tematic development will be hard to transfer into mainstream software development
unless it is shown clearly how the effort of validating the mathematical model con-
tributes to the quality of the final implementation. The generation of correctness-
preserving implementations is a possible avenue to follow. At the moment, however,
the generation of correctness-preserving implementations from validated design speci-
fications has not yet matured to a level that satisfies the industry’s requirements.

So far, we have seen very little in the way of model-reality studies — experimental or
otherwise — that give confidence that the proposed validation techniques for abstract
models have value for industrial implementations.

4.2 Size: Very Large Code vs. Toy Examples

Industrial statement 2 Most industrial communication systems are enormous and
significantly more complex than most academic examples.

Most, academic examples are not easily extrapolated to industrial size systems. For
example, the development of a portion of the software in the 5ESS switch took about
100 man-years [42]. While almost every formal approach has been shown to work well
for the Dining Philosophers there are few examples in which formal methods have been
applied to large industrial communication systems. Even for non-trivial examples,
it should be kept in mind that, for the advocates of a given formal approach, it is

11

quite easy to construct or select a suitable application. Evidencing the feasibility of a
formal approach on an industrial service (developed in and by industry) is significantly
different from showing its feasibility on a self-defined example that will most likely be
chosen such that it works well in the final analysis.

Down-scaling is a frequently applied method for making the verification of large
systems practically feasible. Many errors in a service that will involve thousands of
users when actually deployed can be found using a small number of users during the
verification process. In order to deal with systems of different sizes, formal specifica-
tions should be parameterizable.

Additionally, to make formal verification feasible it is common practice to raise the
abstraction level. However, raising the abstraction level often leads to an unfaithful
representation of the actual system: the more abstract the model, the further away it
is from reality.

Model checking is often used for verifying that a system satisfies its specifica-
tion. However, model checking requires examination of all reachable system states
and therefore suffers from state space explosion. Despite the impressive progress that
has been made in the model-checking community in the recent years, model checking is
still computationally infeasible for systems that are represented at a lower abstraction
level (with a faithful representation of the real system).

If applicability in the industry is one of the goals of a formal approach?, showing
the feasibility on an industry-provided example would help significantly in building up
credibility.

4.3 Heterogeneous Environment

Industrial statement 3 Many problems encountered are actually due to the uncer-
titude that arises from the heterogeneous environment.

As the heterogeneity of the environment increases, more and more time has to be
spent on checking whether or not the implemented service behaves correctly in its
environment.

To account for the environment in which communication services are supposed to
run, it would be beneficial to build formal models that faithfully represent the service
and the environment. However, considering the enormous heterogeneity of today’s
communication systems, this is a rather tricky and, in most cases, unattainable goal.

In any case, reports about formal methods should explicitly state the assumptions
and restrictions that have been imposed during the validation process so that it can
be checked, whether or not a given implementation platform and the environment
respect these assumptions. For example, a single assumption about the non-preemptive
character of an operation that does not hold at a given platform can render the entire
validation procedure useless. While, in homogeneous environments, the assumptions -
if known - might be relatively easy to check, this is rarely true for the environment of
today’s communications systems; thereby providing a high barrier for the validation
of highly abstract models in the communications industry.

4.4 Time-to-Market

Industrial statement 4 We simply don’t have the time to develop large formal spec-
ifications.

4which is and should obviously not necessarily be the case for all research

12

Until recently, introducing new services in a telephone network was a slow process and
the deployed services were offered for a rather long period. The lifetime of new com-
munication services, especially that of Internet services and hybrid services, is much
shorter than that of standard telecommunications services. Furthermore, compared to
the past, the time-to-market of these services is significantly reduced. The increased
pace in the development of communication services also influences the application of
formal techniques to the development of communication services: As market pressure
increases and time-to-market decreases, increased development time is hardly accept-
able.

There are a few studies outside the domain of communication service that show
that formal methods can reduce overall development time that confront reports in
which formal methods projects came in over-time; thereby providing a very fuzzy
idea about the actual costs of formal methods. Even though the advocates of formal
methods frequently provide information about the size of the formal specifications they
have developed, information about the time it took to develop these specifications is
rarely included in their reports. A consequential and detailed provision of this kind of
information would be a very important first step towards a more detailed investigation.

Based on the results of a collaborative project between Nortel and the University
of Toronto [82], the author claims that the use of FMs can increase the quality of the
software without lengthening the development cycle. Projects like the one described in
[82], which investigate the usefulness of FMs by quantitatively analyzing productivity
changes, are highly important for a better understanding of the real costs and benefits
of FMs.

To improve the return-on-investment of formal methods, their application should
provide as many benefits as possible to the users. Jackson and Wing state that the
naive presumption that formalization is useful in its own right must be dropped [48].
Besides removing ambiguities, the provision of additional benefits could make formal-
ity more appealing to the industry: test case generation from formal specifications,
verification of the formal model, the generation of correctness preserving implementa-
tions are just a few examples. Jackson and Wing [48] point out that the industry will
have no reasons to adopt formal methods until the benefits of formalization can be
obtained immediately, with an analysis that does not require further massive invest-
ment. They also note that existing formal methods, at least if used in the conventional
manner, cannot achieve these goals.

Formal methods that can be used as add-ons in the normal development process
might be favored by the industry. Whenever more confidence in the communication
service is required (e.g., for safety-critical applications) - and if time permits - formal
approaches can be added. Examples are provided by the work described in [2] and
[77].

4.5 Tool Support

Industrial statement 5 Any formal approach should be complemented with adequate
tool support.

In the NewCoRe project [42] three requirements were adopted for the integration of
formal methods:

e The tools fit smoothly into the existing design environment.
e The usage of the tools requires minimal training.

e The tools deal effectively with the complexity of the application.

13

For the NewCoRe project, these requirements led to a decision in favor of SDL. The
three identified requirements can be assumed to be general requirements for the ap-
plicability of formal methods and their tools in the industry.

Goguen [37] lists five requirements for the success of domain-specific tools:

1. a narrow, well-defined, well understood problem domain is addressed

2. there is a community of users with potential financial resources who understand
the domain

3. the tool has a graphical user interface that is intuitive to the user community,
embodying their own language and conventions,

4. the tool takes a large grain approach; rather than synthesizing procedures out
of statements, it synthesizes systems out of modules; it may use a library of
components and synthesize code for putting them together,

5. inside the tool is a powerful engine that encapsulates formal methods concepts
and/or algorithms; it may be a theorem prover or a code generator; users do not
have to know how it works, or even that it is there.

The first two requirements are definitely satisfied for communication services.

4.6 Industrial Development Process

Industrial statement 6 Any formal approach has to fit well in the typical develop-
ment process and has to be usable by engineers.

Even in projects between industry and academia, formal methods are applied by the
academic partner; very often with the simple goal of demonstrating that the applica-
tion of formal methods is useful. However, we have seen little work with the goal of
providing formal methods and tools that can be applied by engineers. The ultimate
goal of formal methods research should be to develop approaches that will be applied
by engineers in their daily work. Proving theorems and using paper and pencil are
definitely not suited to catch the interest of the industry; they are almost immediately
rejected by the industry and very likely doomed to fail in an industrial environment.

In any case, the use of notions and notations that engineers are used to will sig-
nificantly improve the chances of a smooth integration of formal methods in industry.
OMT (Object Modelling Technique), UML (Unified Modelling Language), MSC (Mes-
sage Sequence Charts) are keywords software engineers are well familiar with. In recent
years there has been a considerable research effort, e.g., [29] [51], into the connection
between formal methods and typical development processes for software, e.g., combin-
ing the benefits of formal methods with mainstream development methods like Fusion
or UML. This trend is likely to continue.

An important issue that has been addressed inadequately in FM research, is the
iterative development of communication services. Formal models must be kept consis-
tent with the changing system requirements and the code. The authors of [83] point
out that this is possibly one of the biggest obstacles in applying formal modelling
techniques and that it requires firm commitments from the entire development team.

5 Transferring Formality to Industry: An Example

Over the last four years several researchers at the Swiss Federal Institute of Technol-
ogy in Lausanne have been working on a collaborative project with three industrial

14

partners, Swisscom, Alcatel and Thomson. While most of today’s academic formal
methods research is based on “We (academics) will do it for you (industry) and you
will see that it is helpful”, the focus of our collaboration has been on providing an
approach that can be used by the industry in their daily work.

Alcatel/ Thomson recently adopted our proposal into one of their development plat-
forms for object-oriented distributed applications (the PERCO platform [64]) provid-
ing strong evidence of the applicability of formal methods in the industry if their
specific needs are not ignored.

In this section, we show how our proposal addresses the industrial concerns dis-
cussed in Section 4. It is outside the scope of this paper to give a detailed technical
description that can be found elsewhere [25] [61] [63] [24] [62]. Technical details are
only provided as far as it it necessary for our discussion of how and why our proposal
caught the interest of the industry and is being integrated in an industrial platform.

In our project we focused on the validation of object-oriented distributed systems in
general and CORBA (Common Object Request Broker Architecture) based systems,
in particular. CORBA is the platform of choice in the TINA architecture and can also
be used for the development of Internet services [71]. As extensions for fault-tolerance
[35] and real-time [72] are being standardized, CORBA technology becomes even more
appealing for the development of communication services.

The PERCO platform, designed and built at the Alcatel-Thomson Common Lab-
oratory, is an industry-provided, CORBA based software platform that specifically
addresses the requirements of highly available dependable autonomous systems. Its
basis tenet is to use UML specifications to build as much of the application as possible,
while integrating real-time and fault-tolerant properties at the architectural level. In
order to check if the services developed with the PERCO platform behave correctly,
they can be validated by using our proposal.

5.1 A Brief Description of our Approach to Service Validation

The general idea of our approach to service validation is as follows: We formally spec-
ify behavioral properties that the service under construction should satisfy. These
properties are to be expressed in a formal model of the service. This formal service
model does not contain a formal behavior description; formal model and formal prop-
erty specification are thus complementary. The formal model is described in detail in
[24]. For CORBA based services, a significant part of the formal model can be auto-
matically (by means of a tool) derived from the IDL (Interface Definition Language)
specification of the service. An IDL specification is written at a level of abstraction
that makes it particularly suitable for providing a basis on which to express behavioral
properties. The advantages of expressing properties at an IDL-like abstraction level
are appealing: a property, making reference to the items of an IDL specification, inher-
its the implementation language independent character from IDL. The standardized
mapping from IDL to implementation languages enables us to automate the process
of finding all the IDL information at the implementation level. Behavioral constraints
are to be specified using a formalism based on Linear-time Temporal Logic (LTL). The
formally specified properties, even though expressed in an abstract model, are checked
at the corresponding service implementation (written in C++, Java etc.) at service
run-time.

See Figure 1 for an illustration of how our approach works: The identification and
specification of important properties of the service under development are essential
tasks in the development process and are carried out by software engineers at several
steps in the service life cycle. Most of these properties are, explicitly or implicitly,
stated in the development documents in an informal (or semi-formal) way. In our
approach, the software engineer identifies the behavioral properties to be specified

15

Property spec. Formal model

Behavioral

Engineer specifies C
constraints

properties O@p->="qUr)

N
&

Prop. specification) .
given to MOTEL Model gives faithful
as input representation of impl.

Software engineer

MOTEL Industrial impl.

Obser-
vation

Notification about
property violations

Object Request Broker

Figure 1: General Tllustration of our Approach

formally according to their importance. The number of formally specified properties
can be adjusted to the as needed.

To check whether or not the final implementation has violated or is violating the
formally specified properties, it suffices to give the properties to a MOnitoring and
TEsting tooL. (MOTEL) that we have developed. MOTEL will automatically map
the “model properties” to “implementation properties” and check at service run-time
whether the implemented system is violating the properties expressed on our model.
A description of MOTEL can be found in [63].

We express behavioral constraints independently of a specific implementation lan-
guage by relying completely on a set of observable events. The idea of event-based
behavioral abstraction has been frequently used (e.g., for testing [26] and debugging
[3]), and is especially useful for accommodating heterogeneous platforms and multi-
language programming environments. For our model, we provide a set of predefined
events that is appropriate for modelling industrial-strength object-oriented systems.
The events we use in our model, can be mapped in a straightforward manner to events
as they occur during the execution of the final implementation. The set of events
was determined by collaborating with several industrial players and by taking into ac-
count the trade-offs between flexibility and complexity of the model and the property
language.

5.2 Relating our Proposal to the Industrial Concerns

In the following we will discuss how our approach to service validation addresses the
aforementioned industrial concerns.

Industrial statement 1 The only thing that counts in the end, is the final
implementation and not an abstract model.

Our solution Formally specified properties are - even though expressed in an
abstract service model - checked at the final implementation at service run-time.

The framework for constructing formal models that is described in detail in [24], allows
for the definition of formal models at an abstraction level that faithfully represents

16

real executions of the final implementation. It has evolved through a large number
of iterations with subsequent improvements and a number of discussions with our
industrial partners. The starting point for the construction of our model was an
investigation of today’s development platforms for distributed services in industry.
Rather than validating the properties in the abstract service model, we check them at
the final implementation at service run-time, thus directly contributing to an increased
confidence in the final implementation®.

Industrial statement 2 Industrial communication systems are huge and signi-
ficantly more complex than most academic examples.

Our solution In a case study we have taken an industrial service as an example
and we had no influence on the selection of the service.

Our approach has been applied to a desktop video conferencing system developed by
Swisscom, Dutch Telecom and Telia [25] and is currently being applied to an air traffic
management system at Alcatel/Thomson. In both cases, the choice of application was
outside of our control.

Industrial statement 3 Many problems encountered are actually due to the
uncertitude that arises from the heterogeneous environment.

Our solution The properties are checked during run-time of the final implemen-
tation.

By checking whether or not the formally specified properties are respected by the final
implementation at run-time, we automatically check if the service behaves correctly in
its environment.

Industrial statement 4 We simply don’t have the time to develop large formal
specifications.

Our solution Our approach places the focus on the formal specification of an
arbitrary number of behavioral constraints.

The development of large formal specifications is rarely feasible in industrial projects.
However, engineers use mathematics to derive important properties of their proposed
design [75]. The work described in [42, 50, 66] indicates that temporal logic can
serve as one possible vehicle for the specification of correctness requirements. In our
approach, the number of behavioral constraints can be adjusted to the needs; It is
therefore possible to concentrate on a limited number of properties that are assumed
to be important; It is also possible not to specify any properties. In such a case, the
typical development process is not changed. The construction of the formal model in
which the behavioral constraints are to be expressed is straightforward and can, to a
large extend, be done automatically.

Industrial statement 5 Any formal approach should be complemented with
adequate tool support.
Our solution We have developed a MOnitoring and TEsting tool (MOTEL).

MOTEL encapsulates formal methods concepts and provides guidance and support
for the specification of the properties. The properties specified with the guidance of
MOTEL are then constantly checked while the final service implementation is observed
at run-time and, if a property is violated by the service, an error message is given to

5Formal reasoning and the validation of the properties in the abstract model are still theoretically
possible but have not been the focus of our investigation.

17

the user. A detailed description of MOTEL can be found in [63]. Using this prototype
we were able to demonstrate the usefulness of our approach and convince our industrial
partner to integrate it into his environment.

The manual use of formal techniques is restricted to the formal specification of the
properties that the service under construction should satisfy. When formally specifying
the properties, the property specifier is guided by MOTEL that allows him to assemble
the different events and to temporally relate the events to each other. By using LTL
for the specification of behavior, we can benefit from the well-known solutions for
constructing test oracles. The generation of test oracles from LTL formulae is done
automatically by MOTEL.

Industrial statement 6 Any formal approach has to fit well in the typical
development process and has to be usable by engineers.

Our solution The combination of our approach and UML is currently being
investigated.

One of the main characteristics of the platform currently developed by Alcatel and
Thomson is the use of UML specifications to build as much of the application as
possible. The automatic (or semi-automatic) generation of formal properties from
UML documents is currently being investigated.

6 Conclusions

We have surveyed the formal methods used for communication services both in industry
and academia and noted that few formal methods have attracted the attention of the
industry. Only SDL can be said to have gained wide acceptance in the communications
industry. Industry has shown considerable interest in Z, Promela and temporal logic
whereas other formal methods like LOTOS are, at present, mostly academic tools with
no or very little application to communication services in industry.

While formal methods have been applied to IN services and to TINA-based services,
there has not been any significant investigation of formal methods for Internet services.
This is very likely to change in the near future. The application of existing formal
methods in the very flexible and fast-changing Internet services market seems to be
extremely difficult; many formal methods are likely to fail here, at least if used in the
conventional manner. Showing the benefits of formal methods for Internet services is
definitely a very promising and challenging, yet untouched, research area.

We have listed and discussed major industrial concerns for the applicability of
formal methods. These points, if seriously taken into consideration by the formal
methods community, are likely to trigger some changes in the focus of formal methods
research. While some peculiarities of communication services such as concurrency and
real-time are well-understood today, others, such as the heterogeneous environment
in which communication services run and the complexity of industrial communication
services are inadequately addressed. We believe that the integration of the impressive
results of formal methods research of the past into the industry will not be helped
by yet another formal mechanism to model concurrency but by providing satisfying
answers to the industrial concerns discussed in this paper.

We have briefly reported on a collaborative project between the Swiss Federal
Institute of Technology, Swisscom, Alcatel and Thomson. The proposed approach to
service validation is currently being integrated into an industrial development platform
and will be used by engineers in their daily work. This successful transfer of formal
methods to industry has been made possible by explicitly addressing the industrial
concerns discussed in this paper.

18

Acknowledgements

The authors would like to thank the many researchers and engineers at Swisscom, Al-
catel and Thomson for the interesting discussions. We thank H. Cogliati, S. Grisouard,
S. Koppenhoefer, L. Logrippo, and P. Zave for their comments on the paper.

References

[1]

[10]

[11]

[12]

[13]

M. Ardis, J. Chaves, L. Jagadeesan, P. Mataga, C. Puchol, M. Staskauskas, and
J. von Olnhausen. A framework for evaluating specification methods for reac-
tive systems — experience report. IEEE Transactions on Software Engineering,
22(6):378-389, June 1996.

S. Aujla, T. Bryant, and L. Semmens. Applying formal methods within struc-
tured development. Journal on Selected Areas in Communications, 12(2):258—-264,
February 1994.

P. Bates. Debugging heterogeneous distributed systems using event-based models
of behavior. ACM Transactions on Computer Systems, 13(1):1-31, February 1995.

Bellcore. LATA switching systems generic requirements (LSSGR). Bellcore, TR-
TSY-000064, 1992.

R. Bennett, J. Lindner, R. Michelsen, and D. Rypka. SDL in 5ESS switching sys-
tem development. In Proceedings of the 6th International Conference on Software
Engineering for Telecommunication Switching Systems, Findhoven, Netherlands,
April 1986.

G. Blair, L. Blair, and J.-B. Stefani. A specification architecture for multimedia
systems in open distributed processing. Computer Networks and ISDN Systems,
Special Issue on Specification Architecture, 29:473-500, 1997.

J. Blom, R. Bol, and L. Kempe. Automatic detection of feature interactions
in temporal logic. In K. Cheng and T. Ohta, editors, Feature interactions in
Telecommunications Systems III, pages 1-19. IOS Press, 1995.

J. Blom, B. Jonsson, and L. Kempe. Using temporal logic for modular specifi-
cation of telephone services. In L. Bouma and H. Velthuijsen, editors, Feature
Interactions in Telecommunications systems, pages 197-213. I0S Press, 1994.

P. Bosco, G. Martini, D. LoGiudice, and C. Moiso. ACE: An environment for
specifying, developing and generating TINA services. In Proceedings of the Fifth
International Symposium on Integrated Network Management, San Diego, CA,
USA, May 1997.

L. Bouma and Velthuijsen, editors. Feature Interactions in Telecommunications
Systems. 10S Press, 1994.

L. Bouma and J. Zuidweg. Formal analysis of feature interactions by model check-
ing. In Proceedings of the First International Workshop on Feature Interactions
in Telecommunications Systems, St. Petersburg, FL, USA, December 1992.

W. Bouma, W. Levelt, A. Melisse, K. Middelburg, and L. Verhaard. Formal-
ization of properties for feature interaction detection: Experience in a real-life
situation. In H.-J. Kugler, A. Mullery, and N. Niebert, editors, Towards a Pan-
European Telecommunication Service Infrastructure — IS€SN’94, number 851 in
Lecture Notes in Computer Science, pages 393—405. Springer-Verlag, 1994.

K. Braithwaite and J. Atlee. Towards automated detection of feature interactions.
In [10], pages 36-59. 10S Press, 1994.

19

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

[32]

C. Capellmann, P. Combes, J. Pettersson, B. Renard, and J. Ruiz. Consistent
interaction detection — a comprehensive approach integrated with service creation.
In [27], pages 183-197. IOS Press, 1997.

CCITT Recommendation Z.100. Specification and Description Language SDL.
CCITT SG X, Contribution Com X-R15-E, 1987.

K. Cheng. Towards a formal model for incremental service specification and
interaction management support. In [10], pages 152-166. IOS Press, 1994.

K. Cheng and T. Ohta, editors. Feature Interactions in Telecommunications Sys-
tems III. IOS Press, 1995.

E. Clarke and J. Wing. Formal methods: State of the art and future directions.
ACM Computing Surveys, 28(4):626—643, December 1996.

D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jere-
maes. Object-oriented Development: The FUSION method. Prentice-Hall, 1994.

Score Consortium. Score deliverables. http://www.tdr.dk/public/
SoftwareEngineering/ServiceCreation/SCORE/score-deliverables.html .

Score Consortium. Industry requirements on the service creation environment.
Score Identifier D405, Available at [20], April 1994.

Score Consortium. Score presentation (version 3). Score Identifier D408, Available
at [20], December 1994.

Score Consortium. Report on methods and tools for service creation (third ver-
sion), volume i: Service interaction. Score Indentifier D206A, Available at [20],
December 1995.

F. Dietrich, X. Logean, and J.-P. Hubaux. Modelling and testing object-oriented
distributed systems with linear-time temporal logic. Submitted to ” Theory and
Practice of Object Systems”.

F. Dietrich, X. Logean, and J.-P. Hubaux. Testing temporal logic properties in
distributed systems. In A. Petrenko and N. Yevtushenko, editors, IFIP Interna-
tional Workshop on Testing of Communicating Systems (IWTCS), pages 247-262,
Tomsk, Russia, August 1998. Kluwer Academic Publishers.

L. Dillon and Q. Yu. Oracles for checking temporal properties of concurrent
systems. In Proceedings of the 2nd ACM SIGSOFT Symposium on Foundations
of Software Engineering, volume 19, pages 140-153, December 1994.

P. Dini, R. Boutaba, and L. Logrippo, editors. Feature Interactions in Telecom-
munication Networks IV. I0S Press, 1997.

A. Eberlein, M. Crowther, and F. Halsall. Development of new telecommunica-
tions services using an expert system. BT Technology Journal, 15(1):217-222,
January 1997.

P.-A. Etique. Service Specification, Verification and Validation for the Intelligent
Network. PhD thesis, Swiss Federal Institute of Technology, Lausanne, 1995.

M. Faci and L. Logrippo. Specifying features and analysing their interactions in
a LOTOS environment. In [10], pages 136-151. IOS Press, 1994.

M. Faci, L. Logrippo, and B. Stépien. Formal specification of telephone systems
in LOTOS: The constraint-oriented approach. Computer Networks and ISDN
Systems, pages 53—67, 1991.

M. Faci, L. Logrippo, and B. Stépien. Structural models for specifying telephone
systems. Computer Networks and ISDN Systems, pages 501-528, 1997.

20

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Proceedings International Workshop on Feature Interactions in Telecommunica-
tions Software Systems, St. Petersburg, FL, December 1992.

A. Flora-Holmquist, J. O’Grady, and M. Staskauskas. Telecommunications soft-
ware design using virtual finite state machines. In Proceedings of the International
Switching Symposium (1S595), Berlin, Germany, pages 103-107, April 1995.

Fault-Tolerant CORBA, Draft Document, OMG, 1999.

R. Glass. Formal methods are a surrogate for a more serious software concern.
IEEE Computer, pages 19-20, April 1996.

J. Goguen and Luqi. Formal methods and social context in software develop-
ment. In TAP-SOFT’95: 6th International Conference on Theory and Practice
of Software Development, number 915 in Lecture Notes in Computer Science,
pages 62—81. Springer-Verlag, May 1995.

J.-Ch. Grégoire and M. Ferguson. Neglected topics of feature interactions: Mech-
anisms, architectures, requirements. In P. Dini, R. Boutaba, and L. Logrippo,
editors, Feature Interactions in Telecommunication Networks IV, pages 3—12. I0S
Press, 1997.

D. Gries. The need for eduation in useful formal logic. IEEE Computer, April
1996.

N. Griffeth and Y.-J. Lin. Extending telecommunications systems: The feature-
interaction problem. IEEE Computer, 26(8):14-18, August 1993.

G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.

G. Holzmann. The theory and practice of a formal method: NewCoRe. In Pro-
ceedings of the IFIP World Computer Congress, volume I, pages 35-44, Hamburg,
Germany, August 1994. North-Holland Publ., Amsterdam, The Netherlands.

G. Holzmann and J. Patti. Validating SDL specifications: An experiment. In Pro-
ceedings of the Ninth International Workshop on Protocol Specification, Testing
and Verification, 1989.

J.-P. Hubaux, C. Gbaguidi, S. Koppenhdfer, and J.-Y. Le Boudec. The impact of
the internet on telecommunications architectures. Computer Networks and ISDN
Systems, 1998. To appear.

ISO IS 8807. LOTOS - A formal description technique based on the temporal
ordering of observational behavior. ISO/TC97/SC21, November 1988.

ISO IS 9074. Estelle - A formal description technique based on an extended state
transition model. ISO/TC97/SC21, 1989.

ITU-T. General recommendations on telephone switching and signalling, Intelli-
gent Network — Q-Series Intelligent Network Q.1200 - Q.1290, 1993.

D. Jackson and J. Wing. Lightweight formal methods. IEEE Computer, pages
21-22, April 1996.

M. Jackson and P. Zave. Distributed feature composition: A virtual architecture
for telecommunications services. IEEE Transactions on Software Engineering,
pages 831-847, October 1998.

L. Jagadeesan, C. Puchol, and J. Olnhausen. A formal approach to reactive
systems software: A telecommunications application in ESTEREL. Journal of
Formal Methods in System Design, 1995.

21

[51] Jean-Marc Jézéquel, Alain Le Guennec, and Francois Pennaneac’h. Validating
distributed software modeled with UML. In Pierre-Alain Muller and Jean Bézivin,
editors, Proceedings of UML’98 International Workshop, Mulhouse, France, June
3 - 4, 1998, pages 331-340. ESSAIM, Mulhouse, France, 1998.

[52] Y. Kawarasaki and T. Ohta. A new proposal for feature interaction detection and
elimination. In [17], pages 127-139. IOS Press, 1995.

[53] J. Keller and O. Dubuisson. Formal description of OSI management information
structure as a prerequisite for formal specifications of TMN interfaces. In Towards
a Pan-European Telecommunication Service Infrastructure — ISE&N’94, number
851 in Lecture Notes in Computer Science, pages 433—442. Springer-Verlag, 1994.

[54] B. Kelly, M. Crowther, J. King, R. Masson, and J. DeLapeyre. Service validation
and testing. In [17]. IOS Press, 1994.

[55] B. Kitson, P. Leydekkers, N. Mercouroff, and F. Ruano. TINA Object Definition
Language (TINA-ODL) Manual 1.3. TINA-C, June 1995.

[56] F. Koch. Spezifizierung offener verteilter Systeme aus Sicht des ODP Compu-
tational Viewpoint. GMD-Studien Nr. 243, Gesellschaft fiir Mathematik und
Datenverarbeitung, October 1994.

[57] E. Koerner and L. Strick. Applying LOTOS to the design of TINA applica-
tions. In H. Bowman and J. Derrick, editors, Proceedings of Second IFIP Interna-
tional Conference on Formal Methods for Open Object-based Distributed Systems
(FMOODS97), pages 455-466. Chapman & Hall, 1997.

[58] D. Kuhn. Sources of failure in the public switched telephone network. Computer,
30(4):31-36, April 1997.

[59] L. Lamport. TLA in pictures. IEEE Transactions on Software Engineering, pages
768-775, September 1995.

[60] F. Lin and Y.-J. Lin. A building block approach to detecting and resolving feature
interactions. In [10]. IOS Press, 1994.

[61] X. Logean, F. Dietrich, and J.-P. Hubaux. TINA service validation: The
ErnesTINA project. In IEEE ICC Conference, Atlanta, June 1998.

[62] X. Logean, F. Dietrich, J.-P. Hubaux, S. Grisouard, and P.-A. Etique. On ap-
plying formal techniques to the development of hybrid services: Challenges and
directions. IEEE Communications Magazine, 37(7):132-138, July 1999.

[63] X. Logean, F. Dietrich, and S. Koppenhoefer. Run-time monitoring of distributed
applications. In Proceedings of Middleware‘98, Lake District, England, September
1998.

[64] J. Maisonneuve, S. Chabridon, and P. Leveillé. The PERCO platform. In
ISORC’99, St. Malo, The 2nd IEEFE International Symposium on Object-oriented
Real-time distributed Computing, May 1999.

[65] Z. Manna and A. Pnueli. On the faithfulness of formal models. In Mathematical
Foundations of Computer Science, number 520 in Lecture Notes in Computer
Science, pages 28—42. Springer-Verlag, 1991.

[66] C. Middelburg. A simple language for expressing properties of telecommunication
services and features. Technical Report 94-PU-356, PTT Research, April 1994.

[67] H. Mulder. TINA-C Glossary of Terms, Version 2.0. TINA-C, January 1997.

22

[68] M. Nakamura, Y. Kakuda, and T. Kikuno. Petri-net based detection method for
non-deterministic feature interactions and its experimental evaluation. In P. Dini,
R. Boutaba, and L. Logrippo, editors, Feature Interactions in Telecommunication
Networks IV, pages 138-152. IOS Press, 1997.

[69] T. Ohta and Y. Harada. Classification, detection and resolution of service inter-
actions in telecommunication services. In [10]. IOS Press, 1994.

[70] G. Parkin and S. Austin. Overview: Survey of formal methods in industry. Tech-
nical report, National Physical Laboratory, Teddington, Middlesex, U.K., May
1993.

[71] IONA Technologies PLC. OrbizWeb Programmer’s Guide, September 1998.

[72] Real-Time CORBA, Joint Revised Submission. Available at
ftp://ftp.omg.org/pub/docs/orbos/98-12-10.pdf, December 1998.

[73] R. Saracco, J. Smith, and R. Reed. Telecommunications System Engineering using
SDL. North-Holland, 1989.

[74] R. Sinnott and M. Kolberg. Engineering telecommunication services with SDL.
In Proceedings of the Conference on Formal Methods for Open,Object-based Dis-
tributed Systems (FMOODS’99), 1999.

[75] IEEE Computer Society. Computer magazine, April 1996.
[76] IEEE Computer Society. Communications magazine, July 1999.

[77] B. Steffen, T. Margaria, A. Clalen, V. Braun, and M. Reitenspief. A constraint-
oriented service creation environment. In PACT’96, 2nd International Conference
on Practical Application of Constraint Technology, London, UK, 1996.

[78] B. Stepien, K. Farooqui, and L. Logrippo. An experience modelling telecom-
munications systems using ODP-DLcomp. In E. Najm and J.-B. Stefani, editors,
Formal Methods for Open Object-based Distributed Systems, pages 221-228. Chap-
man & Hall, 1997.

[79] Time-Rover. http://www.time-rover.com.
[80] TINA-C. http://www.tinac.com.

[81] G. Vanecek, N. Mihai, N. Vidovic, and D. Vrsalovic. Enabling hybrid services in
emerging data networks. IEEE Communications Magazine, 37(7):102-109, July
1999.

[82] A. Wong. Formalizing requirements in a commercial setting: A case study. Mas-
ter’s thesis, University of Toronto, Graduate Department of Computer Science,
1999.

[83] A. Wong and M. Chechik. Applying formal methods to a telecommunications
system in a commercial setting. In 11th International Conference on Software
Engineering € its Applications, Paris, France, November 1998.

[84] P. Zave. Secrets of call forwarding: A specification case study. In G. Bochmann,
R. Dssouli, and O. Rafiq, editors, Formal Description Techniques VIII, pages
169-184. Chapman & Hall, 1996.

[85] P. Zave. Formal description of telecommunication services in Promela and Z. In
Proceedings of the Nineteenth International NATO Summer School, 1999.

23

