
Time-Splitting Multiple-Access�

Bixio Rimoldiy

Mobile Communications Lab

Swiss Federal Institute of Technology

CH-1015 Lausanne

SWITZERLAND

email: bixio.rimoldi@epfl.ch

January 15, 1999

Abstract

It is shown that the encoding/decoding problem for any asynchronous M -user
memoryless multiple-access channel can be reduced to corresponding problems for
at most 2M � 1 single-user memoryless channels. This is done via a method called
time-splitting multiple-access which is closely related to a recently developed method
called rate-splitting multiple access. It is also related to to multilevel coding. The
practical interest for time-splitting multiple access is is that it reduces the seemingly
hard task of �nding good multiple-access codes and implementable decoders for such
codes to the much better understood task of �nding codes and decoders for single-
user channels. As a by-product, some interesting properties of the capacity region of
M -user asynchronous discrete memoryless channels are derived.

Key words: Multiple-Access, Successive Decoding, Asynchronous Capacity Region,
Dominant Face.

�Partial results were presented in [1].
yPart of this work has been supported by US National Science Foundation grants NCR-9357689 and

NCR-9304763.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I Introduction

This paper addresses the problem of approaching any rate in the capacity region of an
asynchronous M -user multiple-access channel via at most 2M�1 encoding/decoding oper-
ations for point-to-point channels. For notational simplicity only discrete-time memoryless
multiple-access channels are considered but extension to arbitrary input/output alphabets
is straightforward and channel memorylessness does not seems to be essential.

The proposed approach di�ers from standard approaches is that we consider multiple
encoders per user (but at most 2M �1 encoders totally). This twist eliminates the di�cult
task of �nding joint codes and the even more di�cult task of �nding implementable joint
decoders for such codes. Seen from a di�erent point of view, the twist of using multiple
codes per user allows one to brake the original multiple-access channel into essentially
independent point-to-point channels that are used in parallel. The method applies to any
rate tuple in the capacity region of the channel at hand.

The coding problem for point-to-point channel is better understood than that for mul-
tiple access channel. In fact, for the most important additive white Gaussian noise channel
it is now possible to approach its channel capacity with implementable complexity by means
of \turbo" codes [2]. Similar progress is being made in the area of binary input memoryless
channels (see [3] and references therein) using low-density parity check codes [4]. On the
other hand, to our knowledge the only multiple-access channel model with a nontrivial ca-
pacity region for which explicit codes have been constructed to achieve all rate points in the
capacity region is the collision channel without feedback studied by Massey and Mathys [5].
For the M -user synchronous binary-input real-adder channel, a family of asymptotically
optimal codes with two codewords per user has been constructed [6]. The channels in [5]
and [6] are noiseless. For a survey on codes for speci�c multiple-access channels see the
introduction in [7].

The receiver is based on successive decoding. The key idea behind successive decoding is
to decode one user at a time, using already produced codeword estimates as side information
to decode remaining users. This technique is also known as onion peeling, stripping, and
(not always appropriately) successive cancellation. It should be pointed out that successive
decoding is mostly known for additive channels where the channel impulse response is
known, like for the Gaussian multiple-access channel and its generalizations to additive
channels with non-trivial impulse response and Gaussian noise. For such channels the name
\successive cancellation" appropriately describes successive decoding. Indeed, for this case,
successive deciding consists in decoding a user, estimating this user's contribution to the
received signal, removing (canceling) its contribution from the received (sum) signal, and
repeating the operation with other users. What is not so well known is that successive
decoding applies in great generality. In particular, contrary to a widespread belief, for
fading channels one does not need to know the channel impulse response to do successive

2



decoding. But of course, if the channel impulse response is known then the channel has a
larger capacity region.

For a summary of multiple-access methods that allow one to approach any point in the
capacity region see e.g. the introduction in [8].

The approach used in this paper is related to rate-splitting multiple-access (see [10]
for Gaussian channels and [8] for general discrete memoryless channels). Yeh and Gallager
[11] have developed a related approach which requires up to 1

2
M log2M +M point-to-point

codes. Our apporach was motivated by [9].

The paper is organized as follows. Section II discusses time-splitting multiple-access
for single-user and for two-user channels. This two cases are treated separately since they
require little notation and are a good way to get started. They are also convenient to
compare the two versions of time-splitting multiple-access considered in this paper, namely
splitting by switching and generalized time-sharing. The single-user case is also interesting
to point out the relationship of time-splitting multiple access to multilevel coding. The
next two sections focus on splitting by switching. In Section III we show that one can
approach any rate tuple in the capacity region of any discrete memoryless multiple-access
channel by mans of at most 2M � 1 point-to-point encoder/decoder. On the way we learn
an interesting fact about the capacity region, namely that faces of the dominant face are
those points for which the decoding process can be decomposed into parts. In Section IV
we derive a closed-form expression to describe the achievable rates as a function of system
parameters. In Section V we show that the results of the previous two sections apply also
to generalized time-sharing.

II One and Two User Case

In this section we expose the main ideas by considering a general point-to-point channel
and a general 2-inputs multiple-access channel.

II-A Point-To-Point Channels

Consider a single use channel W : X ! Y and let PX be an arbitrary but �xed input
distribution which may or may not maximize I(X;Y ). We split X by means of a switch
as shown in Fig. 1(a). The box in Fig. 1(a) representing the original DMC indicates the
input distribution PX , the resulting mutual information I = I(X;Y ) in bits/use, as well
as the symbol-rate D in symbols/s. The switch has two inputs U and V , an output X,

3



and is controlled by a binary random variable S 2 f1; 2g. If S = 1 the switch output is
V , otherwise it is U . Notice that the input rate of the pair (U; V ) (in symbols per second)
is the same as the output rate of X. In other words, the switch does not serialize the two
input streams (we will consider a serializer later). Instead, when U is passed to the output,
V is dropped and vice-versa. Unless otherwise speci�ed we will always assume that the
scheduling sequence fSng1n=�1 is i.i.d., in which case the new channel with input (U; V ) and
output (Y; S) is a discrete memoryless channel. We will consider U and V as independent
inputs (i.e. inputs that are independently encoded). Accordingly, to the new channel we
assign the product input distribution PU;V (u; v) = PX(u)PX(v).

Since the switch drops half of the input symbols, it is somewhat surprising at �rst that
the mutual information1 I(UV ;Y S) between inputs and outputs of the new channel equals
I(X;Y ). Indeed, letting � = PrfS = 1g

I(UV ;Y S) = I(UV ;Y jS)

= �I(UV ;Y jS = 1) + (1� �)I(UV ;Y jS = 2)

= �I(X;Y ) + (1� �)I(X;Y )

= I(X;Y );

where the �rst equality holds since UV is statistically independent of S. Hence,

I(X;Y ) = I(UV ;Y S)

= I(U ;Y S) + I(V ;Y SU)

where in the second line we used the chain rule of mutual information and the fact that
U , V , and S are independent. The above relationship says that we can approach I(X;Y )
via stripping. Using the fact that I(V ;Y SU) = I(V ;Y U jS) = �I(V ;Y U jS = 1) =
�I(V ;Y jS = 1) = I(V ;Y S), we further simplify to obtain

I(X;Y ) = I(U ;Y S) + I(V ;Y S);

which says that one can decode inputs U and V independently (without stripping)2. This
and the fact that I(U ;Y S) = (1 � �)I(X;Y ) and I(V ;Y S) = �I(X;Y ) imply that the
channel of Fig. 1(a) may be thought of as consisting of two independent discrete memoryless
channels as in Fig. 1(b). From the outside we have split the original channel into two
independent channels. The maximal rates RU and RV for the two channels are plotted as
a function of � in Fig. 1(c).

In particular, letting PX be the capacity-achieving input distribution, the above shows
that by means of the switch we reduce a DMC of capacity C bits/use into two parallel
DMCs of capacity (1� �)C and �C, respectively. The original channel as well as the two

1For compactness it is often convenient to write Y S instead of Y; S.
2The last step does not generalize to an M -input channel, i.e., stripping is needed in general.

4



S-
?

-

-
SWITCH - DMC

PX ; I;D
- Y

S

U

V

X

(a) Original channel with split input.

DMC

PX ; (1 � �)I;D

DMC

PX ; �I;D

- -

- -

U

(Y; S)

V

(Y; S)

(b) Equivalent system of two parallel channels.

-

6

I

I
@
@
@
@
@
@
@
@

q

(RU ; RV ) = ((1� �)I; �I)

RU

RV

(c) RV vs RU , parameterized by �.

Figure 1: Single user case

5



resulting subchannels are used at the same symbol rate of D symbols/s. Conceptually, the
switch is useful to fully utilize the capacity of a DMC by means of lower rate codes.

The above construction should not be confused with that of taking two parallel symbol
streams and serializing them to form the input of a DMC. This seems to be a better idea
at �rst since no symbol gets lost. To emphasize the parallelism with the random switch
we could envision a random serializer which is also controlled by a random i.i.d. sequence
fSng. (a bu�er on each input is required to temporally store incoming symbols until
they are passed to the output). The result is equivalent to having two parallel DMC of
identical capacity as the original DMC and with symbol rates of �D and (1��)D symbols,
respectively. Hence the serializer is helpful if we do have a code of the desired rate of, say,
C bits/use but its implementation is too slow to produce symbols at the desired rate of D
symbols/s.

The parallelism between using a switch and using a serializer will be carried out
throughout the paper and the two techniques will be referred to as splitting by switching
and generalized time-sharing, respectively. The latter is a generalized form of time-sharing.
In fact, the usual form of time-sharing of codeword is subsumed by controlling the serializer
with a deterministic sequence fsng which changes the switch position at the end of each
codeword.

There is another way to describe what is going on in this point-to-point example
with the input switch. Namely, we can think of the switch as a device that performs the
operation of puncturing the two codewords entering the switch and interleaving (serializing)
the resulting symbol sequences. By puncturing a codeword of rate RU bits/symbol, one
produces a now code of rate RU=(1��), where (1��) is the fraction of retained codeword
symbols. At the same time, the symbol rate reduces from D to D(1 � �) symbols/s.
Similarly, by puncturing the codeword entering the other input we go from dimensionless
rate RV to RV =� and from symbol rate D to D�. Serializing the two resulting codeword
sequences produces a symbol rate of D symbols/s and a dimensionless rate of RU

(1��)
(1 �

�) + RV
�
� = RU + RV . While more elementary (since it does not require the notion of

mutual information), the point of view taken in this paragraph does not seem to extend
to the general case of M users. Moreover, to determine the maximal value for RU and RV

one has to resort to the mutual information as done in previous paragraphs.

It is of course straightforward to generalize the above to an L-way split where L is
an arbitrary positive integer. Speci�cally, consider a channel of capacity C. For any
set of coe�cients �1; �2; : : : ; �L such that

P
�i = 1, one can create parallel channels of

capacity �1C; �2C; : : : ; �LC and use the ith channel independently by means of a code of
rate arbitrarily closed to (but strictly less than) �C.

This idea of creating virtual inputs is related to multilevel coding [12, 13, 14, 15]

6



where one splits the channel input alphabet by means of some surjective function of many
variables. In this paper we \split" the time axis instead of the input alphabet. In all cases,
the motivation is to use various codes (generally of lower rate) as building blocks and to
decode sequentially thereby reducing decoding complexity.

II-B 2-Input Multiple-Access Channels

Consider a 2-input multiple-access channel W : X1 � X2 ! Y. Any approachable rate
tuple R = (R1; R2) 2 R

2 for which no component may be increased keeping �xed the other
components ful�lls

R1 � I(X1;Y X2); (1)

R2 � I(X2;Y X1); (1b)

R1 +R2 = I(X1X2;Y ); (1c)

for some product input distribution PX1PX2 . From (1b) and (1c) we obtain

R1 = I(X1X2;Y )�R2 � I(X1;Y ) + I(X2;Y jX1)� I(X2;Y jX1) = I(X1;Y );

where we used the chain rule of mutual information and the independence of X1 and X2.
Hence (1) is equivalent to the following conditions

I(X1;Y ) � R1 �I(X1;Y X2); (2)

R1 +R2 = I(X1X2;Y ): (2b)

We arbitrarily choose to split input X2 by means of switch as shown in Fig. 2 and de-
code in the order U , X1, V . By this we mean that while decoding U , X1, V we may assume
that the corresponding constituent decoder observes SY , SY U , and SY UX1, respectively.

3

By the coding theorem for (single-user) discrete memoryless channels the following rates
are approachable:

RU = I(U ;Y S) = (1� �)I(X2;Y ) (3)

RX1 = I(X1;Y SU) = (1� �)I(X1;Y X2) + �I(X1;Y ) (3b)

RV = I(V ;Y SUX1) = �I(X2;Y X1): (3c)

By varying � we can match RX1 to any desired R1 that ful�lls (2). Then RU + RV must
match R2 since

RU +RV +RX1 = (1� �)[I(X2; Y ) + I(X1;Y X2)] + �[I(X1; Y ) + I(X2; Y X1)]

= (1� �)I(X1X2; Y ) + �I(X1X2;Y ) = I(X1X2;Y )

= R1 +R2:

3In the next section we will consider the general case and discuss how to rigorously account for the fact
that a constituent decoder passes to the next decoder the estimates of (rather than the correct) channel
input symbols.

7



X1

V
U

-
-
-

SWITCH -X2
MAC

W
- Y

?

S 2 f1; 2g
- S

Figure 2: MAC with split input.

Hence any rate pair (R1; R2) that ful�lls (2) is approachable using a switch and single-user
coding/decoding techniques.

Now consider a serializer instead of a switch. All U inputs are send through the channel
and the channel that they \see" is a discrete memoryless channel of mutual information
I(X2;Y ). Since they get to use the channel only a fraction ��1) of time, their contribution
to the rate of user 2 is at most RU = (1� �)I(X2;Y ). Reasoning in this way for all of the
virtual input we see that we obtain the same rates as in (3), showing that also generalized
time sharing allows one to approach any rate pair (R1; R2) that ful�lls (2) via single-user
coding/decoding techniques.

In the next two sections we consider splitting by switching for the general M inputs
case.

III Splitting by Switching: From Rate Vectors to

System Parameters

In this section we show that, given an arbitrary rate tuple R in the capacity region of an
M -user multiple-access channel, there is a way to split M � 1 times by means of an input
switch, to choose the corresponding �s, and to choose the decoding order, in such a way that
the resulting rate tuple matches the desired rate R. The point is that no multiple-access
coding/decoding is needed. Instead, one uses up to 2M � 1 point to point codes.

We review a few facts and introduce some notation. An M -user discrete memory-
less multiple-access channel is de�ned in terms of M discrete4 input-alphabets Xi, i 2

4The discreteness of input/output alphabets is not essential. What we do in this paper works also for
continuous alphabets.

8



f1; � � � ;Mg, an output alphabet Y, and a stochastic matrix W : X1 �X2 � � � � � XM ! Y
with entries W (yjx1; x2; � � � ; xM) describing the probability that the channel output is y
when the inputs are x1; x2; � � � ; xM . For any product input distribution Px1 ; � � � ; PxM , de�ne
R = R[W ;Px1 ; � � � ; PxM ] to be

R = fR 2 RM+ : R(S) � I(XS ;Y jXSc); 8S � [M ]g; (4)

where we introduce the convenient notations

[i]
4

=f1; 2; � � � ; ig; (5)

R(S)
4

=
X
i2S

Ri; (6)

XS
4

=(Xi)i2S ; (7)

Sc
4

=[M ] n S; (8)

and R+ means the nonnegative reals. The capacity region depends on whether or not there
is synchronism. A discrete-time channel (the only type of channel considered in this paper)
is synchronous if transmitters are able to index channel input sequences in such a way that
all inputs with time index n enter the channel at the same time. If this is not the case,
meaning that there is an unknown shift between time indices, then the channel is said to
be asynchronous.

The capacity region for either the synchronous or asynchronous channel may be de-
scribed in terms of the region

C =
[

PX1
PX2

���PXM

R[W ;PX1
PX2

� � �PXM
]; (9)

where the union is over all product input distributions. The capacity region of the asyn-
chronous multiple-access channel with arbitrarily large shifts between time indices is the
closure of C [16, 17], whereas if shifts are bounded or the multiple-access channel is syn-
chronous then its capacity is the closure of the convex hull of C [18, 19].

In this paper we consider only asynchronous channels. It follows that any point in the
interior of the capacity region must be in R[W ;PX1

PX2
� � �PXM

] for some PX1
PX2

� � �PXM
.5

Hence we may (and will) assume that PX1
PX2

� � �PXM
is arbitrary but �xed and focus on

approaching any point in R[W ;PX1
PX2

� � �PXM
].

The dominant face D is the set of those rates in R which have maximum sum-rate,
i.e., R([M ]) = I(X[M ];Y ). Every point in R is dominated (componentwise) by a point in
D. Hence we may restrict our attention to points in D.

5If the point of interest is on the boundary of the capacity region then for any � > 0 we can �nd a point
in someR[W ;PX1PX2 � � �PXM ] which is within � of the point of interest.

9



A key tool in this paper is the chain rule for mutual information,

I(XL;Y ) = I(XM;Y ) + I(XLnM;Y jXM); (Chain Rule)

which holds for any M � L � [M ]. If X1; � � � ; XM are independent random variables
(which is always the case in this paper) then we obtain the alternative version

I(XL;Y ) = I(XM;Y ) + I(XLnM;Y;XM): (Chain Rule for Independent Inputs)

Both versions of the chain rule still hold if we condition each mutual information by XN

where N \ L = ;.

As a �rst application of the chain rule we verify that the following three descriptions
for the dominant face are indeed equivalent.

D = fR 2 RM+ : R(S) � I(XS ;Y jXSc); 8S � [M ] with equality for S = [M ]g;

D = fR 2 RM : I(XS ;Y ) � R(S); 8S � [M ] with equality for S = [M ]g; (10)

D = fR 2 RM : I(XS ;Y ) � R(S) � I(XS;Y jXSc) 8S � [M ]g:

The �rst one is the de�nition of R with the extra sum-rate constraint. The second is
obtained from the �rst as follow.

R(S) = R([M ])� R(Sc)

= I(X[M ];Y )� R(Sc) � I(X[M ];Y )� I(XSc;Y jXS) = I(XS;Y ):

The third is obtained by combining the �rst two.

In this paper we �nd it useful to use (10) as our working de�nition for D.

The \Lucky" Case: It is both convenient and instructive to consider �rst rates R on the
boundary of D.

De�nition 1 A rate tuple R 2 D lies in the boundary of D if there exists a proper subset
A � [M ] such that

R(A) = I(XA;Y ): (11)

For reasons that will become clear, a set A that satis�es (11) will be referred to as a splitting
set.

From our working de�nition of D one immediately sees that our the de�nition of
boundary does correspond to the geometrical interpretation of a boundary. Fig. 3 shows an
example of R and D for M = 3 inputs. The edges of D are labeled with the corresponding

10



R1
R2

R3

f1; 2g

f1g

f1; 3g

f3g

f2g

f2; 3g

D

Figure 3: Example of R, D, and splitting sets A for M = 3 inputs.

splitting set A. To verify that edges are labeled correctly, it is convenient to remember
that A labels the edge of D for which the rate R(A) is smallest. This is best seen from
our working de�nition of D. For instance, A = f3g labels the edge of D for which R3 is
smallest whereas A = f1; 2g labels the edge of D for which R1 +R2 is smallest.

Rates that are in the boundary of D are \lucky" since they are both \rare" (the
boundary has volume zero) and, as we now see, they have the desirable property that the
decoder can drastically cut decoding complexity. More speci�cally, if R is in the boundary
ofD andA is a corresponding splitting set, then we can decode (jointly) the subset of inputs
with index in A and subsequently decode (jointly) the subset of inputs with index in the
complement set Ac = [M ] n A. This cuts decoding complexity which grows exponentially
in the number of jointly decoded inputs.

By de�nition, for a point in the boundary there exists at least a splitting set A � [M ]
such that

R(A) = I(XA;Y ): (12)

From this and

R(L) � I(XL;Y ) 8L � A

(which indeed holds for all L � [M ] when R is in D), the de�nition of D (cf. (10)) implies

RA 2 D[WY jXA;PXA]; (13)

11



where D[WY jXA;PXA] is the dominant face of the channel

WY jXA =
X
XAc

WY jX[M]
PXAc :

The channel WY jXA is the one seen by inputs XA when the other inputs are considered as
\noise" with distribution PXAc .

The multiple-access coding theorem says that XA can be reconstructed by a joint
decoder that knows the codebook of users in A and is totally unaware of the structure of
the codebooks of users in Ac, provided that XAc looks like an i.i.d. random vector with
distribution PXAc . The main idea is depicted in Fig. 4.

PY jX[M]
XA

A

Y
X̂A

XAc

PY jXA

DECODER

Figure 4: Constituent decoder for a \lucky rate" with splitting set A: Part that decodes
XA.

Condition (12), the fact that R 2 D, and the chain rule imply

R(Ac) = R([M ])� R(A) = I(X[M ];Y )� I(XA) = I(XAc;Y XA): (14)

Moreover,

R(L) � I(XL;Y XA) 8L � Ac; (15)

which follows straightforwardly from the chain rule together with

R(L) = R(Ac)� R(Ac � L);

R(Ac � L) � I(XAc�L;Y XAXL);

and (14). From (14) and (15),

RAc 2 D[WY XAjXAc ;PXAc ]; (16)

where D[WY XAjXAc ;PXAc ] is the dominant face of the channel

WY XAjXAc = PXAWY jXAc = PXA
X
XA

WY jX[M]
PXA

12



when the input distribution is PXAc .

The multiuser coding theorem says that XAc is decodable reliably by an hypothetical
decoder that observes Y and XA. The receiver is hypothetical since it requires a "genie"
that tells constituent decoder Ac the exact value of XA. The idea is depicted in Fig. 5.

PY jX[M]

Y

XA

XA

XAc

PY XAjXc
A

X̂Ac

Ac

GENIE-AIDED

DECODER

Figure 5: Constituent decoder for a \lucky rate" with splitting set A: Part that decodes
XAc.

Putting the above two decoders together, we can decode users in A and users in Ac

independently by means of the hypothetical receiver shown in Fig. 6(a).

GENIE-AIDED

DECODER

DECODER

(a) (b)

GENIE-AIDED

DECODER

GENIE

DECODER

Y

X̂A

X̂Ac

Ac

A

Ac

XA

X̂Ac

X̂A

Y

A

Figure 6: (a) Hypothetical genie-aided decoder; (b) corresponding successive decoder.

Fig. 6 (b) shows a corresponding successive decoder. Corresponding constituent de-
coders in Fig. 6(a) and 6(b) are identical. It is a surprising fact that the genie can be
exorcized as in Fig. 6(b) without a�ecting the overall error probability or, equivalently, the
probability of deciding correctly de�ned as

Pc := PrfX[M ] = X̂[M ]g: (17)

13



This follows from the following simple argument �rst made in [10]. Since the top decoders
receive the same input, they make the same decision. In particular, if one is correct the other
is also correct. Conditioned on the top decoder being correct, also the bottom decoders of
both �gures observe the same input and thus make the same decision. From Bayes rule we
see that the probability of being correct is the same in both cases.

The relationship between the genie-aided decoder of Fig.6(a) and the successive decoder
of Fig.6(b) may be summarized as follows. The genie-aided decoder decodes users in A
and users in Ac in parallel and completely independently. The probability of error of each
constituent decoder can be computed using usual techniques. In particular, one can use
random coding techniques to bound their error probability. Unfortunately, the genie-aided
decoder can't be implemented. What we can implement is the successive decoder. Here
constituent decoders work in series. The delay accumulates and the error probability of the
bottom constituent decoder does depend on that of the top constituent decoder. Moreover,
even conditioning on the top decoder being correct, it would be hard to determine the
error probability of the bottom decoder. This is so since the fact that the top decoder is
correct implies that Y is in a certain decoding region: this changes the originally known
statistics of Y to some statistics that we don't know how to calculate. Fortunately, we
can analyze the genie-aided decoder and implement the successive decoder knowing that
their overall probability of error is identical. It remains to be argued that the overall joint
error probability (17) is a meaningful performance criterion. The reason for splitting the
decision about X[M ] in two (or more) steps is that what we would like to implement, namely
a maximum likelihood (joint) decoder, is too complex. For a joint decoder it is natural
to use (17) as performance criteria. The successive decoder of Fig. 6(a) is also a joint
decoder but of reduced complexity. Since it is a joint decoder and since we are interested
in comparing its performance to that of a maximum-likelihood decoder, it makes sense to
evaluate the successive decoder according to (17).

The Regular Case: This is the case when there is no (splitting) set A ful�lling (11).
We will now show how to create the previous situation (twice) by splitting an input using
the switch. We arbitrarily choose to split input M . The situation is that of Fig. 7. The
new inputs will be denoted by ZM+1 and ZM , respectively, and we assign to both of them
the the probability distribution PXM

of the split input. For notational convenience we also
de�ne Z[M�1] = X[M�1].

Let rM+1 and rM be the rates of ZM+1 and ZM , respectively. To be fair (to the user of
the split input), we require that

rM+1 + rM = RM : (18)

For notational convenience we also de�ne r[M�1] = R[M�1].

14



ZM+1

ZM

Z[M�1]

XM

X[M�1] WY jX[M]

YSWITCH
MAC

S

S

Figure 7: M -ary MAC with split input.

Next we assign

rM+1
!
= I(ZM+1;Y S) = (1� �)I(XM ;Y ); (19)

where � is the probability that the switch connects ZM to XM . We will determine the
actual value of � later. Regardless of the value for �, this choice for rM+1 allows virtual
input M + 1 to be decoded on its own, independently of other users. This follows from
the channel coding theorem for (point-to-point) discrete memoryless channels and the �rst
equality in (19).

The reader may wonder if the remaining inputs Z[M ] whose assigned rate is r[M ] (and
depends on � through the Mth component) is decodable regardless of �. The answer is no
but in the interest of continuity we will come back to this later. We will choose � carefully
to ensure that (i) the remaining inputs are decodable and (ii) that r[M ] be decodable in
two parts as in the \lucky" case. Without (ii) we would be back to the original situation of
having to decode M inputs jointly. The next Lemma guarantees the existence of a � that
ful�lls (i) and (ii).

To decode Z[M ] we temporarily use an hypothetical genie who knows ZM+1. As done
previously we can then remove the genie by decoding ZM+1 �rst and using the (possibly
wrong) estimate of ZM+1 without a�ecting the overall error probability. With the genie,
the channel seen by the decoder of Z[M ] is the discrete memoryless multiple access channel
WY SZM+1jZ[M]

de�ned by

WY SZM+1jZ[M]
= PZM+1

WY SjZ[M]
:

The existence of a � that ful�lls (i) and (ii) above is guaranteed by the following
Lemma.

Lemma 1 Let Z[M ], WY SZM+1jZ[M]
, and r[M ] be de�ned as above. There exists a � 2 (0; 1)

such that r[M ] is in the boundary of D[WY SZM+1jZ[M]
; PX1

; PX2
; : : : ; PXM ].

15



Proof It is su�cient to show that

r(L) � I(ZL;Y SZM+1) (20)

holds for all L � [M ] and that equality holds for L = [M ] and for some A � [M ]. First
assume that M 2 L. Then, regardless of �,

r(L) = R(L)� rM+1

� I(XL;Y )� I(ZM+1;Y S)
= I(ZL[fM+1g;Y S)� I(ZM+1;Y S)
= I(ZL;Y SZM+1)

with equality if L = [M ]. Now we consider the case M 62 L, i.e., when L � [M � 1]. For
this case r(L) = R(L) so that

r(A) > I(XAY ) 8A � [M � 1]; (21)

where equality is not possible since by assumption R is not a lucky rate of the original
channel. Moreover,

r(A) < I(XA;Y XM) (22)

for some A � [M � 1]. Indeed for A = [M � 1] we obtain

r(A) = R(A) = R([M � 1]) < I(X[M�1];Y XM) = I(XA;Y XM)

where the inequality has to hold since R 2 R and it has to be strict since equality would
again imply that R is a lucky rate of the original channel with splitting set [M � 1].

Let F � 2[M�1] be the set of subsets A for which (22) holds. For eachA 2 F , combining
(21) and (22) we obtain

I(XA;Y ) < r(A) < I(XA;Y XM):

Hence there exists a � 2 (0; 1), denoted �A to be explicit about its association to A, such
that

r(A)
!
= (1� �A)I(XA;Y ) + �AI(XA;Y XM) = I(ZA;Y SZM+1): (23)

Among all A 2 F we pick an A for which �A is smallest. Since the right side of (23)
is non-decreasing in �, choosing the smallest � ensures that (20) holds true for all L 2 F ,
with equality for L = A. If L 62 F then r(L) � I(XL;Y XM) by de�nition of F . But
I(XL;Y XM) = I(ZL;Y XM) = I(ZL;Y SZMZM+1) � I(ZL;Y SZM+1). 2

Arguing as we did earlier, instead of decoding ZfM+1g, ZA, and ZAc where Ac = [M ]nA
independently and in parallel with the decoder for A helped by a genie who knows ZM+1

16



and the decoder of Ac helped by a genie who knows both ZM+1 and ZA, we can decode
serially without genie and incur in the exact same probability of error.

The following is a \high level" view of what we have done so far in this section. If
R is not in the boundary of D then by splitting XM into ZM and ZM+1 we create a
degree of freedom in our ability to choose � while letting rM+1 = (1 � �)I(XM ;Y ). By
varying �, r[M+1] moves on a straight line between (R[M�1]; RM�I(XM ;Y ); I(XM ;Y )) and
(R[M�1]; RM ; 0). Notice that when � = 0 rM+1 is set to I(XM ;Y ) which is, in general,
larger than RM . If this is the case then rM is negative which is su�cient to preclude
r[M ] from being in the R of the corresponding channel. But this is a technical detail
which is avoided by letting � vary in the interval � = [�0; 1], where �0 is the � for which
rM+1 = RM (see also 19). With this restriction the trajectory of r[M+1] is always in
D[WY SjZ[M+1]

;PX1
; PX2

; : : : ; PXM ; PXM ]. Intuitively, this is the case since r[M+1] corresponds
to the original R[M ] which is an achievable rate tuple. On the other hand, when � 2 �
the tuple r[M ] moves on a straight line between (R[M�1]; 0) and (R[M�1]; RM). While the
starting point is in D(WY SZM+1jZ[M]

;PX1
; : : : ; PXM ), the ending point is outside in general

(and on the boundary otherwise). Hence, there exists a � 2 � for which r[M ] is on the
boundary of D(WY SZM+1jZ[M]

;PX1
; : : : ; PXM ). This makes r[M ] a \lucky rate," decodable in

two steps.

Now we reiterate the procedure. With the genie, the constituent decoders for ZM+1; ZA,
and ZAc see three independent multiple-access channels with 1, jAj, and jAcj inputs, respec-
tively. The above procedure can be applied without change to any of these subchannels. 6

At the end the genies are removed invoking the usual argument.

A question of interest is: In the worst-case scenario, how many virtual inputs do we
need to ensure that each of them is decodable independently? This question is answered
by the Corollary following next Lemma.

Lemma 2 For a given channel withM inputs, it su�ces to splitM �1 times to guarantee
that the resulting virtual inputs are decodable one by one.

Proof By induction on M . With M = 1 no split is needed and the claim is true.
Assume that the claim is true with less than M inputs and consider a situation with M
inputs. We split input M as done above and we create the situation depicted in Fig. 8.
Let m = jAj and M �m = jAcj. Since both m and M �m are less than M , we can apply
induction to each of the three groups of inputs. The resulting number of splits is at most

1 + 0 + (m� 1) + (M �m� 1) =M � 1;

6Even a virtual input that can be decoded on its own can further be split to create lower rate inputs as
explained for point-to-point channels in Section II.

17



where the �rst term accounts for the split required to create the situation of Fig. 8. 2

Ac = [M ]�A

A � [M � 1]

fM + 1g

Figure 8: Mnemonic representing the situation after a split.

Since at each split we create a new input, splittingM � 1 times creates 2M � 1 virtual
inputs. This is the number of encoders and decoders needed to achieve any desired rate
tuple in the asynchronous capacity region. We summarize:

Corollary 1 By splitting at most M � 1 of the M inputs of a multiple-access channel it
is possible to create a new multiple-access channel with at most 2M � 1 virtual input that
can be encoded by means of a code for a point to point channel and can decoded one by
one sequentially. 2

By the time we are done with the construction explained in this section, possibly carried
out to the point that each virtual user is decoded independently, original input i has been
split into some number Mi of virtual inputs. Fig. 9(a) shows an example where input i
is split 3 times, resulting in the equivalent 4-way split of Fig. 9(b). We can label virtual
inputs with elements of the set f(i; j) : i 2 [M ]; j 2 [Mi]g. The �nal decoding order is
described by a permutation K of this set. The fraction of time that virtual input (i; j) is
connected to input i is described by the probability mass function PSi(s) of the random
variable Si with support set [Mi]. Using vector notation we de�ne S = (S1; : : : ; SM) and
PS =

Q
PSi . The resulting rate tuple r depends on K and PS.

In this section we assumed that R was given and showed that it is possible to achieve
it by means of at most 2M � 1 point-to-point encoder/decoder pairs. In a more pragmatic
approach one may not start with a �xed rate tuple R in mind. Rather, a network provider
may dictate the splits, the associated �s, and the decoding order, and one would like to
know the resulting rate R as a function of K and PS. In the next section we derive a closed
form for the resulting rate as a function of K and PS.

18



(b)(a)

Si 2 f1; 2; 3; 4g

Xi

Xi; 4

Xi; 1 Xi; 1

Xi; 4

Xi

Figure 9: Example of three 2-way splits represented as a single 4-way split.

IV Splitting by Switching: From System Parameters

to Rate Vectors

In this section, as in the previous one, the channel input distribution is an arbitrary but
�xed product distribution. Channel input i (with assigned input distribution PXi

) has been
split Mi ways by means of a switch controlled by a sequence of i.i.d. copies of a random
variable Si 2 [Mi] with distribution PSi. When Si = j the switch connects virtual input
X(i;j) to (original) input Xi. Each of the Mi virtual inputs corresponding to original input
i are assigned the distribution PXi

. The random M tuple S = (S1; : : : ; SM) describing the
position of each switch has distribution PS =

Q
PSi. The decoding order is described by

K.

For each decoding order K and probability PS, there is a rate tuple, denoted 	 =
	[W ;P[M ];K;PS], which dominates all rate tuples consistent with the speci�ed parameters.
The primary goal of this section is to describe this rate tuple 	.

At any time, each original channel input has exactly one virtual input attached to it.
We will call this the active virtual input. The decoding order K orders virtual inputs.
However, exactly one virtual input per original input is active at any given time (and S
speci�es which). Hence, K and S also determine a decoding order on the original inputs.
Let the M -tuple v = v(K;S) be this decoding order. Let L(v; i) be the set of indices to to
the left of i in v. The inputs XL(v;i) are those decoded prior to Xi.

Example 1 If K = (21; 31; 11; 32; 22) and s = (1; 2; 1), then the active inputs are the bold
entries in K = (21; 31; 11; 32; 22). Hence v = (3; 1; 2), meaning that (original) input 3
is decoded �rst, input 1 second, and input 2 third. L(v; 1) = f3g;L(v; 2) = f3; 1g, and
L(v; 3) = ;. Notice that s 6= s0 does not necessarily imply v(K; s) 6= v(K; s0). For instance
if K = (21; 31; 22; 32; 11) then both s = (1; 1; 1) and s = (1; 2; 2) lead to v = (2; 3; 1).

19



Now we precoded to determine 	. We assume that each constituent decoder is helped
by the corresponding genie since we know that we can remove the genie in the usual way
without a�ecting the error probability.

Consider for a moment �xing S = s. Then, letting v = v(K; s), the active constituent
decoder of user i observes Y and XL(v;i). Hence, the active encoder of user i communicates
to the corresponding decoder through channel WY XL(v;i)jXi

. The mutual information of
this channel is I(Xi;Y XL(v;i)). The mutual information of the channel seen by all other
encoder/decoder pairs of user i is 0. Using the indicator function 1A(j)

1A(j) =

(
1 j 2 A

0 otherwise;

the mutual information of the channel seen be encoder/decoder pair (i; j) is I(Xi;Y XL(v;i))1fsig(j):

Now let v = v(K;S) be a random decoding order, selected via the i.i.d. random variable
S. This means that the encoder/decoder pair of user i sees a randomly selected channel.
As described in Appendix A, the resulting channel has the average mutual informationX

s

PS(s)I(Xi;Y XL(v(K;s);i))1fsig(j):

Adding over all j 2 [Mi] we obtain

	i =
X
s

PS(s)I(Xi;Y XL(v(K;s);i))
X
j2[Mi]

1fsig(j) =
X
s

PS(s)I(Xi;Y XL(v(K;s);i)): (24)

Passing to M -tuple notation, de�ning

	 =

0
BBB@
	1

	2
...

	M

1
CCCA and Iv =

0
BBB@

I(X1;Y XL(v;1))
I(X2;Y XL(v;2))

...
I(XM ;Y XL(v;M))

1
CCCA ;

we obtain

	 =
X
s

PS(s)Iv(K;s):

Iv is the vertex of R[W ;
Q
PXi

] when the decoding order is v. Since Iv(K;s) depends on
K and s only through v, we can also write

	 =
X
v

PV (v)Iv;

20



where we de�ned

PV (v) =
X

s:v(K;s)=v

PS(s):

We summarize:

Theorem 1 Let W : X1 � X2 � � � � � XM ! Y be a discrete memoryless multiple-access
channel equipped with: a product input distribution

Q
PXi

; an Mi way switch at input i,
i 2 [M ] controlled by a random variable Si 2 [Mi] distributed according to PSi; a decoding
order K. Then

	 =
X
s

PS(s)Iv(K;s) =
X
v

PV (v)Iv: (25)

2

The above theorem generalizes straightforwardly to memoryless channels with arbitrary
alphabets.

We give two examples to gain some intuition on what happens as we vary PS keeping
the decoding order K �xed.

Example 2 (Two Users) Consider a two user channel and an arbitrary product distribu-
tion PX1PX2 on its inputs. We arbitrarily choose K = (21; 11; 22) and de�ne PS2(1) = �.
This choice implies the existence of two codebooks for user 2, used a fraction � and 1� �
of time, respectively, and one codebook for user 1. The relationship between s, vs, and the
resulting PV are given in the following table:

s (1; 1) (1; 2)
v (2; 1) (1; 2)

PV (v) � 1� �

For this case the right side of (25) is

	 =
X
v

PV (v)Iv = �I(2;1) + (1� �)I(1;2)

By varying � 2 [0; 1] we sweep out the dominant face D of R shown in Fig. 10. 3

21



R1

I(1;2)

R2

I(2;1)
R

D

Figure 10: A two user example.

Example 3 (Three Users) Consider a three user channel and an arbitrary product distri-
bution PX1PX2PX3 on its inputs. Except for special cases in which a user does not interfere
with the other two (see e.g. [8]), the dominant face D of R[W ;

Q
PXi

] is an hexagon em-
bedded in R3 as shown in Fig. 11(a) where vertices are labeled by the corresponding input
decoding order v (see also Fig. 3). Hence D is a two dimensional convex polytope. To
label vertices it is convenient to keep in mind that if the label starts with i, i 2 [M ], then
user i is the �rst decoded and therefore his rate is smaller than for any other vertex. If
the label ends with i then the rate of user i is as large as possible. Now pick arbitrarily
K = (11; 21; 31; 22; 12), implying two codebooks per user for users 1 and 2, and a single
codebook for user 3. With this choice and de�ning PSi(1) = �i, i = 1; 2 and PS3(1) = 1,
the relationship between s, v, and PV becomes:

s (1; 1; 1) (2; 1; 1) (1; 2; 1) (2; 2; 1)
v (1; 2; 3) (2; 3; 1) (1; 3; 2) (3; 2; 1)

PV (vs) �1�2 (1� �1)�2 �1(1� �2) (1� �1)(1� �2)

Using the above table the right side of (25) becomesX
v

PV (v)Iv = �1�2I(1;2;3) + �1(1� �2)I(1;3;2) + (1� �1)�2I(2;3;1) + (1� �1)(1� �2)I(3;2;1)

= (1� �2)A + �2B;

where we de�ned

A = (1� �1)I(3;2;1) + �1I(1;3;2)

B = (1� �1)I(2;3;1) + �1I(1;2;3);

By varying �1 and �2 in [0; 1] we sweep out the shaded region in Fig. 11(b).

One can easily verify that with K = (21; 11; 22; 31; 12) and K = (11; 31; 21; 12; 22) we
obtain the triangle above and below the shaded area in Fig. 11(b), respectively.

22



(b)(a)

User 1 User 2

User 3

(3,2,1) (3,1,2)

(2,3,1) (1,3,2)

(1,2,3)(2,1,3)

User 1 User 2

User 3

(3,2,1) (3,1,2)

(2,3,1) (1,3,2)

(1,2,3)(2,1,3)

A

B

Figure 11: Dominant face.

More speci�cally, the following observations can easily be veri�ed. Let 	(K) be the
achievable region corresponding to a given K, i.e., the image of 	 as a function of �1 and
�2 when K is �xed. The achievable region is bounded by the image of 	 when one of the �s
is held �xed to either 0 or 1. For instance the upper boundary of the shaded region in Fig.
11(b) is the image of 	(K) as a function of �1 when �2 = 1. When �2 = 1, the entry 22 in
K is irrelevant. Hence we can think of the boundary under consideration as of the image of
	(K 0) where K 0 is K with entry 22 removed. Now let K 00 be K 0 with the entry 22 inserted
to the left. The image of 	(K 00) when �2 = 1 is also the image of 	(K 0). Hence the image
of 	(K) and that of 	(K 00) share a common boundary (namely the image of 	(K 0)). This
example shows how to change a K so that the new achievable region neighbors the old one.
In principle, this tells us how to change K repeatedly so as to cover the entire dominant
face. 3

V Generalized Time-Sharing

There is a tight connection between a switch and a corresponding serializer. In this brief
section we show that last Section's results apply also for serializers. That will prove that
in both cases the same choice for K and PS leads to the same rate tuple 	 and, indirectly,
that the results of Section III also apply for generalized time-sharing.

It is su�cient to show that the conclusion reached in (24), namely that

	i =
X
s

PS(s)I(Xi;Y XL(v(K;s);i)); (26)

23



holds also for a serializer. The rest of Section IV then follows by passing to vector notation.
As we did then, consider for a moment �xing S = s. Letting v = v(K; s), the active
constituent decoder of user i observes Y and XL(v;i). Hence, the active encoder of user
i communicates to the corresponding decoder through channel WY XL(v;i)jXi

. The mutual
information of this channel is I(Xi;Y XL(v;i)). Now let S be random and let us average over
the possible values of S conditioned on Si = j. Under this condition the channel seen by
encoder/decoder pair (i; j) is the same (at all times) for both the switch and the serializer.
This channel is a DMC of mutual informationX

s

PSjSi(sjj)I(Xi;Y XL(v(K;s);i)):

The di�erence between a switch and a serializer enters into play when Si 6= j. In the former
case, the mutual information of the channel seen by X(i;j) is 0. In the latter, the clock of
X(i;j) is not advanced. In both cases, the contribution to the average rate of information
going through virtual input (i; j) is the same and equal to the desired result (26).

We conclude this section on generalized time-sharing by pointing out two di�erences
with respect to the usual form of time thought in information theory as a method to
approach any point in the capacity region. The �rst di�erence is that the usual time-
sharing requires synchronization (even if it is done to achieve a point in the asynchronous
capacity region). The second is that the usual time-sharing requires up to M2 codebooks.
This is so since any point in the dominant face is in the convex hull of at most M vertices,
and to approach any vertex one needs M codebooks, one for each user. On the other hand
generalized time-sharing requires no synchronization and at most 2M � 1 codebooks.

VI Conclusion

We have introduced time-splitting multiple-access. The idea is to split one or more inputs
to a multiple-access channel7 to create multiple virtual inputs per original input. Each
virtual input is fed with symbols from an encoder. The virtual inputs take turns in using the
original input. We have discussed two versions, called splitting by switching and generalized
time-sharing, respectively. They di�er by what we do with codeword symbols of a virtual
input when such inputs do not have access to the original input. In the former case we
advance the clock and loose the symbols. In the latter we freeze the clock (i.e. store the
symbols) until they can be sent through the channel.

In all cases successive decoding is assumed. This implies the existence of a a constituent
decoder for each virtual input and an ordering telling in which sequence virtual inputs are

7point-to-point channels are included as as special case.

24



decoded. A constituent decoder receives, as side information, the estimates of all already
decoded virtual inputs.

The advantage of successive decoding is that one avoids the complexity of having to
decode all inputs simultaneously. The complexity of such a joint decoder could be the main
reason for the slow progress in the implementation of multiple-access techniques that are op-
timal in the usual information theoretic sense, i.e., in the sense of allowing one to approach
any rate in the capacity region of the channel at hand. It is the daunting complexity of an
optimal8 joint detector that has lead to the new research �eld of multiuser detectors [20].
It should be noticed that multiuser detectors are the multiple-access counterpart of hard
decoders used in point-to-point channels: such detectors decide on a symbol-by-symbol
basis neglecting coding. The performance of a multiuser detector is evaluated based on the
error probability. Being faced with the unmanageable complexity of the optimal decoder,
an alternative to multiuser detectors is that of suboptimal multiuser decoders. The goal
now is no longer that of guaranteeing certain error probabilities but it of guaranteeing that
the rate tuple of interest be inside the capacity region of the channel that incorporates our
engineering choices. As we have seen this can always be guaranteed via input splitting (as
done in this paper or as in [8]) and successive decoding. The Pe requirements can then be
ful�lled with su�ciently powerful point-to-point codes. It should also be pointed out that
trading an optimal decoder with a suboptimal decoder that does not reduce the capacity
region is an old trick that goes back to Shannon's original paper. Indeed Shannon's typical
sequence decoders is the best example of a suboptimal yet capacity achieving decoder (see
e.g. [21, Section 8] for an in-depth approach using typical sequence decoders.)

What about the impact of the side information on the decoding complexity? The
decoding complexity depends, of course, on the particular codes used by each virtual input.
If one uses a Viterbi decoder, then the complexity does not depend on the channel on
which the code is used (we are assuming memoryless channels). Nor does the decoding
complexity of the Viterbi decoder (measured as usual by the number of add select compare
operations) depend on the amount of side information received from the other decoders.
The side information merely changes the metric used to label trellis transitions. In this
sense the decoding complexity is linear in the number of virtual inputs which, as we have
seen, never needs to be more than 2M � 1, while M is the number of original inputs.

Time-splitting multiple-access is closely related to rate-splitting multiple-access [10,
22, 8]. There are (at least) two distinguishing features of time-splitting multiple-access.
The �rst is the simple relationship between the design parameter PS and the resulting rate
(see (25)). In particular, the portion of time that a virtual input is active acts linearly on
the resulting rate (see (25) and also Examples 2 and 3). The second is that time-splitting
multiple-access does not signi�cantly change the statistics of the original channel. This is
particularly true for generalized time-sharing and can be best seen considering a single-user

8In the sense of minimizing the error probability.

25



noiseless binary channel. As described in Subsection II-A, generalized time-sharing creates
two parallel channels which are identical to the original channel. Hence no coding is needed
before or after splitting. This is not the case with the splitting function used in [8] (see the
Noiseless Binary Channel example (Example 7) of [8]).

26



APPENDIX

A Review of Key Facts

(One more careful pass is needed).

When we do stripping (on a multiple access channel), we say that we consider other
users as \noise." The meaning of this is clear when the channel is the AWGN channel and
codewords are generated randomly from a Gaussian distribution. For the AWGN channel
it makes sense to view other users as noise even if we remove the assumption that the code
is random. This is so since one can show that to approach the capacity of the point-to-
point channel seen by each user, the process obtained by the transmitted codeword and
the additive white Gaussian noise is that of an i.i.d. Gaussian random variable.

For a general discrete memoryless multiple-access channel, what other users do to us
(the user of interest) is to select the point to point channel that we \see" at each instant
in time. Hence, viewing other users as noise means transmitting over a channel in which
the random event that maps inputs to outputs has been additionally \randomized" by the
selection made by other users. The purpose of this section is to investigate this phenomenon
in more details and derive the information theoretic limits associated with it. We use bold
letters to denote n-length sequences.

Fact 1 (The average DMC) Assume that a single-user DMC is selected at each time
from a parametric family of DMCs. Let the input and output alphabets be the same for
all channels in the family and assume that the selection is i.i.d. To be speci�c, consider
the family W := fWs(yjx) : s 2 Sg of channels and let

PrfY = yjX = x;S = sg =
Y
i

Wsi(yijxi)

be the channel transition probability for n-length sequences when the ith input sees channel
Wsi. If the channel sequence is selected according to a product distributionQ(s) =

Q
Q(si)

which is independent of the channel input sequence X, then the channel transition proba-
bility becomes

PrfY = yjXxg =
X
s

PrfS = sjX = xgPrfY = yjX = x;S = sg

=
X
s

Y
i

Q(si)Wsi(yijxi) =
Y
i

X
si

Q(si)Wsi(yijxi)

=
Y

W (yijxi)

27



whereW (yjx) =
P

s2SWs(yjx)Q(s). Hence the channel is a DMC with transition probabil-
ityW (yjx). What we see is the average DMC, averaged over the selection process. The cod-
ing theorem for DMCs asserts that the supremum of all achievable rates is maxP I(P;W ).
Observe that this is less than the average mutual information in general. This follows from
the convexity of I(P ;W ) with respect to W :

I(X;Y ) = I(P ;W ) �
X

Q(s)I(P ;Ws):

(Notice that it is not a problem if the constituent channels do not have the same output
alphabet since we may always extend the output alphabet of each constituent channel to
be the union of all output alphabets.)

Fact 2 (Receiver Side Information) Now consider the same situation but assume that
the i.i.d. random sequence S is known at the receiver (but unknown at the transmitter).
Now the channel is characterized by

PrfY = y;S = sjX = xg = PrfS = sjX = xgPrfY = yjS = s;X = xg

= Q(s)PrfY = yjX = x;S = sg

=
Y

Q(si)Wsi(yijxi)

=
Y

Q(si)W (yijxi; si)

=
Y

W (yi; sijxi);

where we de�ned W (yijxi; si) = Wsi(yijxi) and W (yi; sijxi) = Q(si)W (yijxi; si). Again,
this is a DMC. The mutual information between input and output is determined by

I(X;Y S) = I(X;S) + I(X;Y jS) = I(X;Y jS) =
X

I(P ;Ws)Q(s) (27)

where we used the fact that X and S are independent random variables and thus I(X;S) =
0. The key point is that if the channel-selecting random variable is available at the receiver,
then the receiver sees the constituent DMCs rather than just the average DMC and the
supremum of the achievable rates becomes the average mutual information.

Fact 3 (Transmitter and Receiver Side Information) A third and best situation (in
terms of maximizing the throughput) arises when the transmitter is also informed of the
channel parameter. In this case the transmitter sees a number jSj of channels and gets to
use channel Ws with probability Q(s). On channel Ws one can achieve maxPs I(Ps;Ws).
Hence the maximal achievable rate becomesX

s

Q(s)max
Ps

I(Ps;Ws): (28)

To approach this rate one in general needs jSj codebooks. If the maximizing distribution
Ps is the same for all s, or if we are forced to use constant composition codes and the

28



composition has to be the same for all codebooks, then knowing the channel selection
parameter s at the transmitter does not increase the rate at which reliable transmission is
possible. The above expression may be rewritten in various formsX

s

Q(s)max
Ps

I(Ps;Ws)

=
X
s

Q(s) max
P (xjs)

I(X;Y jS = s)

= max
P (xjs)

X
s

Q(s)P (xjs)I(X = x;Y jS = s)

= max
P (xjs)

I(X;Y jS):

Notice that in both of the last two situations the quantity of interest is I(X;Y jS):
when only the receiver knows the channel selection then we maximize over P (x) whereas if
the transmitter and the receiver know the channel selection then we maximize over P (xjs).

References

[1] B. Rimoldi, \Generalized time sharing for multiple access channels," in IEEE Inter-
national Symposium on Information Theory, (Ulm, Germany), p. 26, June 29 - July 4
1997.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, \Near Shannon limit error correcting
coding and decoding: turbo-codes," in Proceeding of ICC '93, (Geneva), pp. 1607{
1070, May 1993.

[3] T. Richardson and R. Urbanke, \The capacity of low-density parity check codes under
message-passing decoding," tech. rep., Bell Labs, Lucent Technologies, 1998.

[4] R. G. Gallager, Low-density parity-check codes. Cambridge, Massachusetts: M.I.T
Press, 1963.

[5] J. L. Massey and P. Mathys, \The collision channel without feedback," IEEE Trans.
Inform. Theory, vol. IT{31, pp. 192{204, Mar. 1985.

[6] S. C. Chang and E. J. Weldon, \Coding for T-user multiple-access channels," IEEE
Trans. Inform. Theory, vol. IT{25, pp. 684{691, Nov. 1979.

[7] P. Mathys, \A class of codes for a T active users out of N multiple-access communi-
cation system," IEEE Trans. Inform. Theory, vol. IT{36, pp. 1206{1219, Nov. 1990.

29



[8] A. Grant, B. Rimoldi, R. Urbanke, and P. Whiting, \Rate-splitting multiple access for
discrete memoryless channels," IEEE Trans. Inform. Theory, To appear.

[9] A. J. Grant and L. K. Rasmussen, \A new coding method for the asynchronous multi-
ple access channel," in Proceedings of the 33d Allerton Conference on Communication,
Control, and Computing, (Monticello, IL), 1995.

[10] B. Rimoldi and R. Urbanke, \A rate-splitting approach to the Gaussian multiple-access
channel," IEEE Trans. Inform. Theory, vol. IT{42, pp. 364{375, Mar. 1996.

[11] E. M. Yeh and R. G. Gallager, \Achieving the multiple access capacity region via
projective time sharing," in Proceedings 1998 IEEE International Symposium on In-
formation Theory, (M.I.T, Cambridge, MA USA), p. 213, 16-21 August 1998.

[12] L. Duan, B. Rimoldi, and R. Urbanke, \Approaching the AWGN channel capacity
without active shaping," in IEEE International Symposium on Information Theory,
(Ulm, Germany), p. 374, June 29 - July 4 1997.

[13] J. G. D. Forney, \Approaching the capacity of the AWGN channel with coset codes
and multilevel coset codes," IEEE Trans. Inform. Theory, 1996. Submitted.

[14] Y. Kofman, E. Zehavi, and S. S. (Shitz), \Performance analysis of a multilevel coded
modulation system," IEEE Trans. Commun., vol. 42, pp. 299{312, Feb. 1994.

[15] J. Huber and U. Wachsmann, \Capacities of equivalent channels in multilevel coding
schemes," Elect. Lett., vol. 30, pp. 557{558, Mar 1994.

[16] G. S. Poltyrev, \Coding for channel with asynchroneous multiple access," Probl.
Peredachi Informatsii, vol. 19, pp. 12{21, 1983.

[17] J. Y. N. Hui and P. A. Humblet, \The capacity region of the totally asynchronous
multiple-access channel," IEEE Trans. Inform. Theory, vol. IT{31, pp. 207{216, Mar.
1985.

[18] R. Ahlswede, \Multi-way communication channels," in Proc. 2nd Int. Symp. Inform.
Theory, (Tsahkadsor, Armenian S.S.R., 1971), pp. 23{52, 1973. Hungarian Academy
of Science.

[19] H. Liao, Multiple Access Channels. PhD thesis, Department of Electrical Engineering,
University of Hawai, 1972.

[20] S. Verdu, Multiuser Detection. Cambridge University Press, 1998.

[21] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley,
1991.

30



[22] A. Grant, B. Rimoldi, R. Urbanke, and P. Whiting, \On single-user coding for the
discrete memoryless multiple-access channel," in Proceedings 1995 IEEE International
Symposium on Information Theory, (Whistler, B.C. Canada), p. 448, September 17-22,
1995.

31


