
Modelling and Testing Object-Oriented Distributed Systems

with Linear-time Temporal Logic

F. Dietrich, X. Logean, S. Koppenh�ofer, J.-P. Hubaux

Institute for computer Communications and Applications (ICA)
Swiss Federal Institute of Technology, CH-1015 Lausanne

Abstract

Numerous proposals for applying temporal logic to the
speci�cation and veri�cation of object-oriented systems
have appeared in the past several years. Although var-
ious temporal models have been proposed for the re-
quirements analysis of object-oriented distributed sys-
tems, there is no similar amount of work for the design-
and implementation phase. We present a formal model
for the design- and implementation stage which re
ects
practical requirements and is yet su�ciently general to
be applied to a wide range of systems. In our model,
which relies on event-based behavioral abstraction, we
use linear-time temporal logic as the underlying formal-
ism for the speci�cation of behavioral constraints. We
show that although temporal logic is a powerful tool for
behavior speci�cations, it does not have the expressive
power required for non-trivial object systems. Speci�-
cally, in an object-system it is often essential to express
procedural dependencies rather than simple temporal re-
lationships for which we introduce two novel operators.
In a case study we demonstrate the practical relevance

and applicability of our model.

Keywords

object-orientation, event-based behavioral abstraction,
temporal logic, procedural dependencies

1 Introduction

The use of temporal logic to reason about concurrency
was �rst advocated by Pnueli [38]. Since then, a sub-
stantial amount of research has been carried out and
the results have become signi�cantly broader leading to
sound and well-understood foundations [41].
Linear-time Temporal Logic (LTL) [31], on which we

focus in this paper, has proven to be an expressive and
natural language for the speci�cation and validation of
concurrent systems. This fact has become very clear
over the past decades and is well-documented in the lit-
erature. Similarly, object-oriented programming has be-
come increasingly popular due to the advantages in soft-
ware development and maintenance productivity and it

seems to pay o� at the level of software speci�cation
and design. However, even though object-orientation is
a well-researched domain, which has long made its way
into industrial software development, research on tem-
poral logic in object-oriented frameworks is still in its
early stages. Recent research has led to a few proposals
establishing a link between time, e.g. temporal logic,
and object-orientation. Proposals were made in di�er-
ent domains like object-oriented database systems [2],
information systems [23], object-oriented real-time sys-
tems [35], and object-oriented distributed applications
[14]. These proposals { developed for di�erent areas of
application and di�erent stages in the software develop-
ment cycle { di�er considerably, especially in the nature
of their assumptions and imposed restrictions.

Although various temporal models have been pro-
posed for the requirements analysis of object-oriented
systems [21, 39, 9, 42, 10, 23, 5] there is no similar
amount of theoretical work for the design- and imple-
mentation phase. While the requirements analysis deals
with the question \what is a system supposed to do?",
the design stage is concerned with how it is to be imple-
mented.
Most current temporal logic-based proposals for the

design stage of software development, e.g. [33], do not
consider object-systems. The application of research
stemming from protocol design (e.g. research based on
LOTOS, Estelle and Promela) to object-oriented sys-
tems is often based on assumptions and restrictions
which put these proposals beyond the reach of industrial
software development. In particular, little attention is
paid to the fact that, in general, the set of objects in a
system changes over time. Similarly, in industrial sys-
tems, processes are often generated and deleted dynami-
cally as opposed to having an in�nite lifetime. Threads,
even though widely used in industrial applications, are
hardly considered in formal models.

Thus, the extension of established foundations in the
temporal logic domain still needs deeper investigation
for industrial-strength object-oriented distributed sys-
tems (OODS). Even though there are a few success sto-
ries of temporal logic in the industry, e.g. [18] and [20],

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a survey on the use of formal methods [37] revealed that
temporal logic receives only marginal attention. After
twenty years of research, the overall impact of temporal
logic on mainstream software design has been limited.

In this paper we present a formal model for the design
stage of object-oriented distributed system development
that accounts for a large set of phenomena associated
with industrial systems, which has not yet been ade-
quately addressed in other proposals.
Our model is founded on event-based behavioral ab-

straction with a prede�ned set of events. The idea of
event-based behavioral abstraction has been frequently
used, e.g. for testing [7] and debugging [1]. In gen-
eral, when the events generated by a system are to be
observed and analyzed, most proposals rely on man-
ual source code annotations for event generation. Some
proposals, e.g. [1], allow for the de�nition of arbitrary
events using an event description language.
For our model, we decided to follow another avenue.

We provide a set of prede�ned events that is appro-
priate to model industrial-strength object-oriented sys-
tems. This set has been determined by collaborating
with several industrial players and by taking into ac-
count the trade-o�s between
exibility and complexity
of the model and the property language. Behavior con-
straints (also called properties) are to be expressed by
using these prede�ned events. The set of events is cho-
sen very carefully, often making it possible to perform
source code annotation for event generation in an auto-
matic manner. In our model, we use linear-time tempo-
ral logic for the speci�cation of behavior and study its
feasibility in an object-oriented environment. We keep
the model quite general trying to impose as little restric-
tions as possible, thus allowing the model to be tailored
for several needs.

The three major design goals for the model were: (i)
to construct a model which re
ects to a large extent the
abstraction level found in today's industrial distributed
systems; (ii) to provide a model that can be applied to a
wide range of executable formal speci�cations and real
implementations; (iii) to provide an aid for testing of
distributed applications.
Towards the �rst goal, we consider systems with ob-

jects, processes and threads where all these items can be
dynamically created and deleted. In considering the sec-
ond goal, we express behavioral constraints independent
of a speci�c implementation language by relying com-
pletely on a set of prede�ned observable events. The ab-
straction level we achieve in our proposal through event-
based system modelling makes it often straightforward
to link our model both to executable formal speci�cation
languages and real implementations. Finally, related to
the third goal: we take advantage of the fact that by
using LTL for the speci�cation of behavior, we can ben-
e�t from the well-known solutions for constructing test
oracles.

This paper is structured as follows: Our formal model
for object-oriented distributed systems is introduced in
the next section. We de�ne a set of observable events
that we feel is appropriate to model industrial-strength
object-oriented distributed systems. We point out an ex-
pressive handicap in LTL for the speci�cation of object
systems and introduce two novel operators to overcome
this handicap. The practical relevance and applicability
of our model are illustrated in a case study in Section 3.
Section 4 reviews related work and positions our pro-
posal with respect to other past and ongoing research.
Finally, our conclusions and an outlook on on-going and
future work are presented. The most frequent notations
used in this paper are summarized in the appendix.

2 A formal model for OODS

In this section we will de�ne our proposed model for
object-oriented distributed systems (OODS). This sec-
tion is divided into three subsections covering the no-
tions of object/class, thread/process and OODS.
We will de�ne, step by step, our model and identify

the observable events, which we think to be useful for the
speci�cation of behavioral properties in such systems.

2.1 Classes and objects

According to common terminology, objects are abstrac-
tions of real-world entities. Each object has a unique
object identi�er which is assigned automatically by the
system upon object creation and remains immutable for
the whole life of the object. An object has a set of op-
erations and attributes. The e�ect of an operation can
depend on the operation arguments and the state of the
object.
The state of an object serves as a local memory that

is shared by the operations on it and can be character-
ized by the cumulative e�ect of its experience. In our
approach, the object state is determined by the history
of observable events on the object. A few words about
the notion of observable event are in order. The local
activity of an entity (e.g. a process or an object) can
be described as a set of local events which can be par-
titioned into two subsets: (i) the set of internal events
and (ii) the set of external (observable) events. The
notion of an observable event can be seen as a screen
�ltering out all events that are irrelevant at the given
level of abstraction. In this paper, we consider observ-
able events at four di�erent levels: the object-, thread-,
process- and system level. An observable event occurs
instantaneously and is atomic.

We give more formal de�nitions of the concepts of ob-
ject and object class, starting with some basic de�nitions
that will be refered to later.
We assume a set of class names, denoted CN . This

set is constant, e.g. no new class names appear over the

2

lifetime of the system.

De�nition 1 (Value types)
The �nite set of value types VT contains the types
integer, real , character , bool , string and all the class
names cn from the set of class names CN :

VT = finteger ; real ; character ; bool ; stringg [CN

These value types have the usual meaning. By consid-
ering the set of class names as a subset of value types
VT , we allow objects to keep references to other objects
as attributes and we allow to pass object references as
parameters.
In order to simplify the presentation we do not con-

sider structured value types such as sets, lists and
records in this paper.

De�nition 2 (Legal type values)
For each of the value types there exists a set of values
denoted as dom(VT).

The set of legal values for the value types integer , real ,
character , bool and string is de�ned as usual. For in-
stance, the domain of the value type bool is the set
ftrue; falseg.
The set of legal type values for value types cn 2 CN

is the set of object identi�ers OID .

De�nition 3 (Class signature)
A class signature is a triple (cn, Sattr , Smeth) where

� cn 2 CN is the class name.

� The set of attributes, Sattr, contains an ele-
ment for each attribute of the class. Each ele-
ment in this set describes an attribute as a triple
(a name; a char ; a type); a name is the name of
the attribute, a char is the attribute characteris-
tic and a type is the attribute type. An attribute
characteristic is an element of the set freadonly ;
readwriteg that indicates whether the attribute is
read-only, or both readable and writable. The set
of attribute types equals the set of value types.

� The set of methods Smeth contains an element for
each method of the class. Each element in this
set is a pair (m name;m sign); m name is the
name of the method, m sign is the signature of the
method expressed as a list of parameter character-
istics, parameter types and parameter names. The
parameter characteristic is an element of the set
fin; out; inoutg that indicates whether the param-
eter is read, written, or read and written by objects
of this class. The set of parameter types equals the
set of value types.

Class signatures are assumed to be immutable over time,
e.g. an attribute of type bool cannot be changed to type
integer .

Example 1 We describe a class signature printer with
two attributes and two methods.

cn=printer,

Sattr={(status,readwrite,bool),

(counter,readwrite,integer)}

Smeth={(submit,((in,string,txt),

(out,integer,id))),

(cancel,((in,integer,id)))}

To simplify the modelling of behavior, attributes are
mapped to one or two operations, read a to read the
value of the attribute a and write a to write the value
of attribute a. An attribute a maps to a single opera-
tion read a if it is characterized as readonly , otherwise
it maps to two operations. These operations constitute
the only possibility to read and write the values of at-
tributes.

De�nition 4 (Operation request)
An operation request is a quadruple (src, tgt, oper,
param list) where

� src 2 OID is the object identi�er for the source
object, i.e. the object that requests the execution of
an operation on another object.

� tgt 2 OID is the object identi�er for the target ob-
ject, i.e. the object that executes the operation.

� oper is the name of the called operation.

� param list is a list of parameter values of the op-
eration where each item has to be in the domain of
its corresponding parameter type.

The execution of an operation (as seen at the object
level) involves four observable events, each of these four
events describes a di�erent stage during the execution.

De�nition 5 (Observable object event)
An observable event at the object level is represented as
a pair (o type, op req) where

� o type is an element of the set of object events
(object event types) OET = fo outReq, o inReq,
o outRep, o inRepg.

{ An event of type o outReq occurs when an ob-
ject is sending a request to execute an opera-
tion on another object.

{ An event of type o inReq occurs when an ob-
ject starts executing an operation as requested
by another object.

{ An event of type o outRep occurs when an ob-
ject is sending the result of an operation back
to the object that requested the execution of the
operation.

{ An event of type o inRep occurs when an ob-
ject receives the reply for the execution of an
operation from the called object.

� op req is an operation request (see De�nition 4).

3

These four events are illustrated in Figure 1. The num-
bers in this �gure indicate the order in which these
events occur during the execution of the operation of-
fered by object o2 and invoked by object o1.

o_outRep

(1)

o1

(4)

(2)

(3)

o2

o_outReq

o_inRep

o_inReq

Figure 1: Observable object events

In this paper we shall not consider one-way operations
(noti�cations), i.e. operations that do not return any
result to the calling object and that therefore do not
block the client object. However, our model is easy to
adapt to account for noti�cations by extending the class
signature so that it can identify operations as being one-
way. One-way operations would obviously not comprise
o outRep- and o inRep-events.

De�nition 6 (Observable event occurrence)
An observable event occurrence is an instance of an ob-
servable event.

An observable event occurrence at the object level is
therefore an instance of an observable object event.
We assume that each event occurrence can be distin-

guished from other event occurrences of the same event.
This can be done by using a unique event occurrence
identi�er. However, an event occurrence identi�er is not
part of the event's tuple notation. Distinct event occur-
rences can obviously have the same event tuple.

Example 2 Consider two objects o1 and o2. Object o2
o�ers an operation oper which is called by object o1. Op-
eration oper has two parameters of type integer, the �rst
is an in-parameter while the second is an out-parameter.
Assuming that object o2 does not call other operations on
other objects during the execution of the operation, the
observable object events at these two objects could be as
follows:

at object o1
1. (o outReq; (o1; o2; oper; (4; �)))
4. (o inRep; (o1; o2; oper; (�; 23)))

at object o2
2. (o inReq; (o1; o2; oper; (4; �)))
3. (o outRep; (o1; o2; oper; (�; 23)))

Throughout this paper we use \�" to denote that a
value is unrestricted or irrelevant. In the above ex-
ample, the value of the out-parameter of the operation
is obviously irrelevant for the two events o outReq and
o inReq , while the value of the input parameter is irrel-
evant for the two other observable events.
Furthermore, in some cases we might not be interested

in specifying the source object of an operation request,

either because it is irrelevant from which object the re-
quest is coming or because the request does not come
from another object but from the system's environment.
For example, if an object o receives an operation request
from another object and we do not need to explicitly
identify the object that has sent the request nor do we
need to specify the parameters of the request, then this
event can be speci�ed as

(o inReq ; (�; o; oper; �))

De�nition 7 (Object behavior)
The object behavior O Behav is expressed as a structure
hOEO ;O BehavRi where

� OEO is a set of observable event occurrences.

� O BehavR � OEO�OEO is a partial order on the
set of observable event occurrences.

In the case that at most one operation is executed on an
object at a given time, object behavior can be described
with a total order of observable event occurrences.

De�nition 8 (Object)
An object hOID ;O Behav i is a pair (oid, o behav)
where

� oid is the object identi�er of the object

� o behav is the object's behavior.

We introduce a function
 : OID ! CN , returning the
class name for a given oid ; For each oid 2 OID ,
(oid)
is the class name cn for the class that the object with
the identi�er oid is instantiated from.

The de�nition of an object does not explicitly specify
the attributes nor does it explicitly specify the value of
the attributes. Note that the attributes can be derived
from the class signature and the values of the attributes
can be derived from the object behavior.

Example 3 Consider the printer class signature from
Example 1. In the following we describe an object of
this class. The operation write status has been invoked
twice on the object leading to four observable event oc-
currences at this object. The object is described by its
oid = oidp1 and its behavior behp1 = (Ep1 ;Rp1). where
Ep1 = fe1; e2; e3; e4g, Rp1 = f(e1; e2); (e1; e3); (e1; e4);
(e2; e3); (e2; e4); (e3; e4)g and the observable event oc-
currences e1 : : : e4 are as follows:

e1 = (o inReq ; (�; oidp1;write status; (true))); 1,
e2 = (o outRep; (�; oidp1;write status; (�))); 2,
e3 = (o inReq ; (�; oidp1;write status; (false))); 3,
e4 = (o outRep; (�; oidp1;write status; (�))); 4

De�nition 9 (Object class behavior)
The object class behavior c behavcn is the set of possible
behaviors of objects whose class name equals cn, i.e.,

c behavcn =
[

o behav i with
(i) = cn

4

De�nition 10 (Object class)
An object class o cls is a pair (c sign; c behav) where

� c sign is the class signature and

� c behav is the object class behavior.

Objects can be dynamically created and deleted. We
elaborate on the construction and deletion of objects be-
low. However, it can already be noted that the creation
and deletion of objects is not observable at the object
level. This is motivated by the fact, that an object can-
not observe its own birth or death just as a new-born
child cannot observe his/her own birth. This observa-
tion has to happen at a higher abstraction level; in our
model, object creation and deletion can be observed at
the process level (See Section 2.2).

For the speci�cation of behavioral constraints we ad-
vocate the use of linear-time temporal logic. Holzmann
[18] points out that a major engineering discipline dis-
criminates between requirements and implementations.
While many FDTs like LOTOS or SDL allow to write
(executable) formal speci�cations, they provide no sup-
port to express correctness requirements. In several (in-
dustrial) projects like [4] [18] and [20], temporal logic
has been successfully used for the speci�cation of be-
havioral constraints that should be satis�ed by some
executable speci�cation. We feel that especially LTL
with its well-understood theoretical foundations has the
potential to serve as a suitable vehicle for expressing
behavioral properties.

LTL formulae are interpreted over an in�nite sequence
of states � = s0; s1; : : :. Given a state sequence � and a
temporal formula p, (�; j) j= p denotes that p holds at
position j � 0 in �.
In this paper we restrict ourselves to the use of the fol-

lowing future temporal operators: 2 (always), 3 (even-
tually) and U (Until) which are de�ned as follows:

� (�; j) j= 2p() 8k � j; (�; k) j= p;

� (�; j) j= 3p() 9k � j; (�; k) j= p and �nally

� (�; j) j= p U q () 9k � j; (�; k) j= q and
8i; j � i < k; (�; i) j= p.

In this paper we will use the notation �e to denote that
an event e just happened, i.e. (�; j) j= �e i� event e
just happened.

Let us now consider a few temporal logic expressions.
We start with a simple temporal relationship. Let o
be an object which o�ers two operations, named use
and activate . A property that we might want to spec-
ify is that we have to call the activate operation be-
fore we can call the use operation. More generally,
this property simply requires one event to happen be-
fore another event; the two events refering to the same

object. To formally express this property, we must
�rst �nd a formal representation for each of those two
events. Let us require that the activate operation has
to complete execution by the time that the use opera-
tion takes place. The invocation of the use operation is
characterized by the event (o inReq ; (�; o; use; �)) while
the termination of the activate operation is speci�ed as
(o outRep; (�; o; acticate ; �)). The formal representation
of the property would then look like follows:

: � (o inReq ; (�; o; use; �)) U
�(o outRep; (�; o; activate; �))

Frequently one wishes to express properties referring
to intervals. Let us consider the case where some-
thing must happen in an interval, e.g. in the interval
between the invocation of an operation op1 on object
o1, (o inReq ; (�; o1; op1; �)), and the termination of the
same operation (o outRep; (�; o1; op1; �)), object o1 di-
rectly calls operation op2 on another object o2. This
property could be represented as

2(�(o inReq ; (�; o1:op1; �))!
:� (o outRep; (�; o1:op1; �)) U
�(o outReq; (o1; o2; op2; �)))

Let us examine the problem of properties referring to
attributes and look at two examples: (1) The value of
attribute a is never equal to 0. (2) Whenever we invoke
operation op on object o, the value of attribute a (at ob-
ject o) must be equal to zero. With our approach, those
properties have to be translated into a form that is based
on observable events. Remember that, for the modelling
of behavior, attributes are mapped to operations.
Let us �rst look at property (1) which can be trans-

lated into an \event-based property" stating that there
is never an event setting the attribute to zero:

2(: � (o inReq; (�; o; write a; (0))))

However, expressing property (2) is already more com-
plex and requires a reference to three observable events:
the setting of the attribute to zero, the setting of the
attribute to any other value and the invocation of the
operation op, These three events are abbreviated as fol-
lows:

e1 = (o outRep; (�; o; write a; (0)))
e2 = (o outRep; (�; o; write a; (6= 0)))
e3 = (o inReq ; (�; o; op; �))

Let s1, s2 and s3 be states such that s1 j= �e1, s2 j= �e2
and s3 j= �e3. Then, property (2) could be expressed
as:

2(s2 ! :s3 U s1) _ (2(:s2) ^ :s3 U s1)

This property is comprised of two parts connected by
logical or. Informally, the �rst part says that each time
that a is set to non-zero, the operation op will not be
invoked unless a has been reset to zero beforehand. The
second refers to the case where a is never set to non-zero
and requires that operation op is not invoked before the
attribute has been set to zero.

5

So far, the considered sample properties have mostly
referred to single objects. Let us now look deeper at
properties which relate observable events on di�erent
objects.

2o1
(1) (2)

o

Figure 2: Two observable events

Figure 2 depicts two objects o1 and o2. Object o1
o�ers an operation op1 whereas object o2 implements
operation op2. We formally specify that, whenever we
invoke operation op1 on o1, operation op2 will be invoked
on o2 as a result. Object o1 does not necessarily invoke
op2 directly. In Figure 2 this is depicted by the three
objects in the cloud between o1 and o2 which represent
an arbitrary structure between those two objects. The
actual path leading from the invocation of op1 to the
invocation of op2 is irrelevant at this point.

To express that op2 on o2 will always be called as a
result of the operation invocation op1 on o1 one might,
using temporal logic and the syntax described earlier,
unwisely specify

2(�(o inReq ; (�; o1; op1; �))!
3� (o inReq ; (�; o2; op2; �)))

but this formula inaccurately re
ects our intent for the
property; it provides no guarantee that the second event
is procedurally related to the �rst event. The following
formula shows an improvement by its use of the Until
operator U .

2(�(o inReq ; (�; o1; op1; �))!
:� (o outRep; (�; o1; op1; �)) U
�(o outRep; (�; o2; op2; �)))

Although this last formula speci�es that event
(o inReq ; (�; o2; op2; �)) must happen in the interval be-
tween the instant o1 receives the operation request for
op1 and the instant o1 returns the result for op1, it still
does not guarantee that the operation request at object
o2 is procedurally related to the operation invocation on
o1.
As we are considering a concurrent system, we have

to deal with several control
ows. There can be many
objects in the system, invoking operation op2 on object
o2 and an observed invocation might not be procedurally
related to event (o inReq ; (�; o1; op1; �)).

In Figure 3 we illustrate the same problem on a dif-
ferent example1 and from a di�erent perspective. This

1Object o1 and o2 in Figure 2 are not the same as objects o1
and o2 in Figure 3.

3u u o o o21 1 2

Figure 3: Two procedurally unrelated operations

�gure depicts the observable events (denoted as circles)
in a system (represented by three objects o1, o2 and o3)
that interacts with two users (u1 and u2). The observ-
able events that are procedurally caused by the opera-
tion invoked by user u1 reside on the dotted lines while
the observable events procedurally caused by the op-
eration invoked by user u2 reside on the dashed lines.
Let us require that each time user u1 invokes an oper-
ation on object o2 this operation invocation will trigger
an operation invocation on object o3 (which is not the
case in Figure 3). The two relevant observable events
are highlighted in the �gure by means of �lled circles.
Even though there is an operation invocation on object
o3 in the interval between the operation request and the
termination of the operation, this operation invocation
is not procedurally related to the operation invoked by
user u1. However, those two events are causally related.

None of the currently existing approaches, which allow
specifying temporal logic-based properties for object-
systems, pays attention to procedural dependencies.
However, many of the interesting properties in object-
systems involve procedural dependencies rather than
simple temporal or causal relationships. Obviously, the
establishment of a partial order between two states is not
su�cient to determine whether or not the two states are
procedurally dependent.
Procedural dependencies (PDs) cannot be directly ex-

pressed in LTL but are highly relevant in real systems.
Thus, in order to render temporal logic useful in such
frameworks, we need to extend it with operators to ex-
press procedural dependencies.

For the rest of section 2.1 we impose the restriction
that each object can only process one operation at a

6

given time. Let us �rst informally explain what exactly
we mean by procedural dependencies. For illustration
we will use Figure 4 which depicts three objects. Object
o1 invokes an operation on object o2 which, in order to
satisfy the request, requires invoking two operations on
object o3.

3
o

1

a

b

c

d

i

e

j

f

k

g

h

l

o
2

o

Figure 4: Procedural dependency

Our formal de�nition of procedural dependencies in-
troduced later will be based on the following intuitive
points:

1. An event occurrence e is procedurally dependent
on an o outReq-event occurrence, if the event oc-
currence e is necessary to successfully complete the
execution of the operation called with the o outReq
event. Similarly, a state s is procedurally depen-
dent on a state led into by an o outReq-event, if
the state s is necessary to successfully complete the
execution of the operation called with the o outReq
event.

In Figure 4, the arrival at states a, d and f indi-
cates that an o outReq-event just happened. To
successfully complete the operation invoked with
the o outReq-event leading to state a, we need to
go through states c; d; i; : : : ; g; h; b. To successfully
complete the operation called with the o outReq-
event leading to state d, we need to go through
states i; j and e. However, state k is procedurally
independent of d since k is not necessary to com-
plete the operation called with the event leading to
state k.

2. Procedural dependencies should be transitive, i.e.,
if state s3 is procedurally dependent on state s2 and

s2 is procedurally dependent on state s1, then s3 is
procedurally dependent on s1.

3. An o outRep-state (a state led into by an o outRep-
event) is procedurally dependent on the correspond-
ing o inReq-state (a state led into by an o inReq-
event).

In Figure 4, state h is procedurally dependent on
state c, j is procedurally dependent on i, and l is
procedurally dependent on k.

4. Receive-states, i.e. states indicating that either
an o inReq- or an o inRep-event just happened,
are procedurally dependent on their corresponding
send-states, i.e. states indicating that either an
o outReq- or an o outRep-event just happened.

In Figure 4, state c is procedurally dependent on
state a, i is procedurally dependent on d etc.

Let us brie
y recall some basic concepts: Let S be a
countable set and let R be a binary relation over S. Let
R� be the re
exive-transitive closure of the relation R.
The relation R is reduced if for each (s; t) 2 R; (s; t) =2
(Rn(s; t))�. The relation R, representing the temporal
relationships between states, is a partial order if R is
re
exive, transitive and antisymmetric. The relation R
is a causal order if R is antisymmetric and reduced. We
use � to denote a causal order, and � to denote the
corresponding partial order, i.e. its re
exive-transitive
closure. Let s and t be two states. If s � t or t � s, then
s and t are said to be (causally) dependent. If neither
s � t nor t � s, then s and t are said to be concurrent,
written s k t. A partial order � is a total order if for
every two elements s and t, either t � s or s � t.

We introduce two relations, a direct procedural de-
pendency (DPD) relation R2 and a (general) procedu-
ral dependency (PD) relation R0. The DPD relation
R2 is a binary relation over S. Let s and t be states.
Then (s; t) 2 R2 indicates that t is directly procedu-
rally dependent on (directly procedurally caused by) s.
Each state t is directly procedurally dependent on at
most one other state s but a state s can directly cause
more than one state. To determine whether two states
are (directly or indirectly) procedurally dependent, it
su�ces to generate the transitive closure of the direct
procedural relation which we will denote with R0. If
(s; t) 2 R0, then state s is said to procedurally cause
state t and t is said to be procedurally dependent on
(procedurally caused by) s.

De�nition 11 (DPD structure)
A DPD structure DPDS = (O;S; �;R2) consists of

� a set O of objects.

� a set S of states.

� a mapping � that assigns each state s 2 S an object
o 2 O such that �(s) identi�es the object state s
refers to.

7

� a direct procedural dependency (DPD) relation R2

Example 4 The complete DPDS for the graph in Fig-
ure 4 would be as follows:

� O = fo1; o2; o3g,

� S = fa; b; c; : : : ; lg,

� �(a) = �(b) = o1; �(c) = �(d) = : : : = �(h) =
o2; �(i) = �(j) = �(k) = �(l) = o3.

The direct procedural dependency relation R2 for this
example is as follows:

R2 for Figure 4
a b c d e f g h i j k l

a 1
b
c 1 1 1
d 1
e
f 1
g
h 1
i 1
j 1
k 1
l 1

Indeed, the transitive closure of R2 really gives us the
procedural dependencies for all states such that the in-
tuitive points discussed earlier are satis�ed.

R0 for Figure 4
a b c d e f g h i j k l

a 1 1 1 1 1 1 1 1 1 1 1
b
c 1 1 1 1 1 1 1 1 1 1
d 1 1 1
e
f 1 1 1
g
h 1
i 1 1
j 1
k 1 1
l 1

In the following we formally introduce the two new oper-
ators summarized in Table 1 which can be used to spec-
ify procedural dependencies and which put the DPD-
and the PD-relation on a formal basis. Let s and t be
states. Then s 2 t (reads \s procedurally causes t di-
rectly") and s 0 t (reads \s procedurally causes t") are
formulae.
For the de�nition of the direct PD operator, we dis-

tinguish four cases which are described below. Let o1, o2
and o3 be objects and op2 and op3 operations o�ered by
objects o2 and o3 respectively. Just as the temporal op-
erators from LTL, the two new operators are interpreted
over the state sequence �.

Operator Name

2 direct PD operator

0 (general) PD operator

Table 1: PD operators

1. (�; i) j= s 2 t if

� s = �(o outReq; (o1; o2; op2; �)) and

� t = �(o inReq ; (o1; o2; op2; �)) and

� (�; i) j= s! 9j > i such that (�; j) j= t.

From a procedural point of view, an o outReq-event
for a given operation request directly causes an
o inReq-event for that operation request. In Fig-
ure 4, a 2 c, d 2 i and f 2 k.

2. (�; i) j= s 2 t if

� s = �(o inReq; (o1; o2; op2; �)) and

� t = �(o outRep; (o1; o2; op2; �)) and

� (�; i) j= s! ((9j > i; (�; j) j= t and
@k; i < k < j; (�; k) j= s))

An o inReq-event procedurally causes the response
to the operation request. In Figure 4, c 2 h, i 2 j
and k 2 l.

3. (�; i) j= s 2 t if

� s = �(o outRep; (o1; o2; op2; �)) and

� t = �(o inRep; (o1; o2; op2; �)) and

� (�; i) j= s! 9j > i such that (�; j) j= t.

The sending of a reply procedurally causes the ar-
rival of the reply. In Figure 4, h 2 b, j 2 e and
l 2 g.

4. (�; i) j= s 2 t if

� s = �(o inReq; (o1; o2; op2; �)) and

� t = �(o outReq; (o2; o3; op3; �)) and

� ((�; i) j= s ! (9j > i; (�; j) j= t and @k; i <
k < j; (�; k) j= �(o outRep; (o1; o2; op2; �)))

An o inReq-event is the only event that can directly
cause more than one event. As a result of an oper-
ation invocation represented by the o inReq-event,
we will have an o outRep-event indicating the com-
pletion of the operation (see 2nd point), but it could
also be necessary that we need to invoke other oper-
ations on other objects before completing the opera-
tion. Then, the o inReq-event procedurally causes
the o outReq-events for the necessary operations.
For Figure 4, the DPD relations covered by the
fourth item are c 2 d and c 2 f .

8

De�nition 12 (Direct PD operator 2)
(�; i) j= s 2 t i� any of the four above-listed formulae
evaluates to true.

De�nition 13 (PD operator 0)

(�; i) j= s 0 t i�
((�; i) j= s 2 t)
or
((�; i) j= s and 9j > i; (�; j) j= t and
9z:s 0 z and z 0 t)

Theorem 1 The procedural dependency relation is a
subset of Lamport's happened-before relation [25], i.e.
R0 � R!.

Proof of Theorem 1 The proof is straightforward to
construct. It su�ces to show that each of the four items
in the de�nition of the DPD operator and the transitiv-
ity are also covered by Lamport's happened-before def-
inition2. Lamport's happened-before relation [25] be-
tween two events in a distributed system can be de-
scribed as follows:
The activity of a process Pi is perceived as a set of

local atomic events Ei, totally ordered by a local prece-
dence relation <i. This set Ei can be partitioned into
two subsets:

� Ii: the set of internal events of Pi (resulting from
internal actions);

� Xi: the set of communication events of Pi (send
and receive events).

The set E =
S

iEi of all the events produced by the
distributed execution is partially ordered by Lamport's
relation called happened-before or causal precedence, de-
noted by !L :

8x 2 Ei; y 2 Ej : x!L y =def8<
:

or
or

i = j and x <i y
x is sending of a msg & y its reception
9z : x!L z and z !L y

The behavior of each object Oi can be regarded as a pro-
cess Pi where the communications (observable events)
of this process are the observable object events. In our
model, the set of internal events, Ii, is empty.
An event e1 procedurally causes event e2, if any of

the �ve conditions from the de�nition holds. Each
of these �ve conditions implies Lamport's happened-
before relation: (1) e1 = (o outReq ; (o1; o2; op2; �))
and e2 = (o inReq ; (o1; o2; op2; �)): Then e1 is
the sending of a message and e2 is its recep-
tion. (2) e1 = (o inReq ; (o1; o2; op2; �)) and
e2 = (o outRep; (o1; o2; op2; �)): Then both e1

2Please note that Lamport de�ned the happened-before rela-

tion to be irre
exive, while the de�nition for causality as used in

today's literature is normally de�ned to be re
exive. Our procedu-

ral dependency relation R0 is, just as Lamport's happened-before

de�nition, irre
exive.

and e2 refer to the same object o2 and they
are ordered by the local precedence relation:
e1 <o2 e2. (3) e1 = (o outRep; (o1; o2; op2; �))
and e2 = (o inRep; (o1; o2; op2; �)): Then e1
is the sending of a message and e2 its recep-
tion. (4) e1 = (o inReq ; (o1; o2; op2; �)) and
e2 = (o outReq ; (o1; o2; op2; �)): Then both e1 and
e2 refer to the same object o2 and they are also ordered
by the local precedence relation: e1 <o2 e2. (5)
9z:e1 0 z and z 0 e2: This case matches the transi-
tivity part of Lamport's happened-before de�nition:
9z:x!L z and z !L y.
Each of the �ve items from the PD de�nition im-

plies Lamport's happened before relation, thus the PD-
relation is a subset of Lamport's happened-before rela-
tion. �

However, if two events are ordered by Lamport's
happened-before relation then we cannot conclude that
they are procedurally dependent. Procedural depen-
dency is thus more restrictive.

Example 5 Let us review Figure 2. We are now able
to specify that each operation invocation on object o1
procedurally causes the operation invocation on object
o2. Let op1 and op2 be operations o�ered by objects o1
and o2 respectively. The property can then be expressed
as:

2(�(o inReq ; (�; o1; op1; �)) 0 �(o inReq ; (�; o2; op2; �)))

Please note that this formula does not put any restriction
on which object actually invokes operation op2. Object
o1 may directly invoke op2 on o2, but there could also
be an arbitrary number of intermediate objects, which
are involved in the execution of the operation originally
invoked on o1.

2.2 Threads and processes

Distributed applications are often implemented using
some kind of client/server model. For some servers, it
may be satisfactory to accept one request at a time and
to process each request to completion before accepting
the next. However, it is often necessary to process a
number of requests in parallel. Multi-threaded servers
are commonly used in practice to achieve this. Paral-
lelism may be possible because a set of clients can con-
currently use di�erent objects in the same server process,
or because some of the objects in the server process can
be used concurrently by a number of clients.
In this paper, we consider only multi-threaded servers

but not multi-threaded clients, i.e. operation calls are
always assumed to block the client.

De�nition 14 (Process signature) A process signa-
ture is a triple (pn, t min, t max), where

� pn 2 PN is the process name for that process.

9

� t min 2 N+ is the number of threads that are at-
tributed to the process when the process is created
and which do not get deleted over process lifetime.

� t max 2 N+ speci�es the upper limit of threads sup-
ported in the process.

Each process contains a non-empty set of threads. In
practice, the number of possible thread con�gurations
is enormous. In our model, we are therefore focusing on
a selected subset of these possibilities. For the sake of
simplicity we assume that incoming operation requests
are processed according to the FIFO policy. The thread
con�guration is speci�ed by attributing values to t min
and t max .
We assume that an incoming request is assigned to

an arbitrary thread in the given process if a thread is
available (not busy). If no thread is available but the
maximum number of threads does not yet exist, we cre-
ate a new thread dynamically, assign it to the request
and delete it when the request has been processed to
completion. If the number of threads in the process has
already reached t max then the request is queued.

Let us quickly illustrate the above ideas by discussing
a few thread con�gurations: Consider the example of a
simple threading model where a thread is created auto-
matically for each incoming operation/attribute request
and deleted when the request has been processed to com-
pletion. Such a thread con�guration is described by set-
ting t min to 1 and t max to 1.
A single-threaded process, i.e. a process which can

only process one request at a time can be described by
setting both t min and t max to one.
Let us �nally consider the speci�cation of a partic-

ularly relevant thread con�guration, namely that of a
thread pool. Such a con�guration is frequently being
applied in real-time systems where the dynamic creation
of threads has to be avoided due to the time-consuming
character of such creations. In such a case, both t min
and t max should be set to n where n is the number of
threads forming the thread pool.

Before an operation request is assigned to a thread,
it arrives at the corresponding process. The arrival of
an operation request at a process is characterized by
an observable event. There can be a signi�cant delay
between the arrival of the request at the process and
moment the object starts executing the requested oper-
ation, e.g. if the request has to be queued. Due to this
delay it is necessary to di�erentiate between the event
denoting the arrival of an operation request at a process
(p inReq) and the event denoting that an object starts
executing the operation (o inReq).

De�nition 15 (Operation request arrival)
An event denoting the arrival of an operation request at
a process is a pair (p inReq ; op req) where

� The event type p inReq indicates the arrival of an
operation request at a process.

� op req is an operation request.

A server process is normally implemented so that it
initializes itself and creates an initial set of objects.
These objects are not ready to accept operation re-
quests unless the initialization process has been com-
pleted. When an object is ready to accept operation re-
quests, it can be registered to the system, thereby mak-
ing it possible for other objects to invoke operations on
it. The registration (and deregistration) of an object is
characterized by an observable event.

De�nition 16 (Object (de-)registration event)
An object registration (deregistration) event is a pair
(p RT ; oid) where

� p RT is an element of the set fp oReg ; p oDeregg
denoting an object registration or -deregistration
event respectively.

� oid is the object identi�er of the object being regis-
tered or deregistered.

De�nition 17 (Valid/invalid object reference)
An object reference is valid at a given instant, if and
only if the referenced object exists at that instant and it
is registered, otherwise the object reference is invalid.

In a system where objects can be dynamically deleted,
an object reference may become invalid when the refer-
enced object is deleted. An object reference is also in-
valid if the referenced object still exists but it has been
deregistered. The existence of an invalid object refer-
ence does not constitute a problem, as long as it is not
used.

De�nition 18 (Thread/Object lifecycle event)
An observable thread/object lifecycle event is a pair
(p type lc; id) where

� p type lc is an element of the set fp newO; p delO;
p newT; p delTg indicating the type of the event.

{ An event of type p newO occurs when the cre-
ation of an object takes place.

{ An event of type p delO occurs when an object
is deleted.

{ An event of type p newT occurs when the cre-
ation of a thread takes place.

{ An event of type p delT occurs when a thread
is deleted.

� id 2 OID [TID is the object or thread identi�er for
the object/thread that is being created or deleted.

10

Example 6 Let us consider a property referring to all
objects of a given class, e.g. on all objects of a class
with classname CN the activate-operation has to com-
plete execution before we are allowed to invoke the use-
operation:

2((�(p newO ; oid) ^
(oid) = CN)!
:� (o inReq ; (�; oid ; use; �)) U
�(o outRep; (�; oid ; activate; �)))

In a system where an object can be dynamically created,
other objects have to be able to obtain a reference to the
newly created object at run-time. An object reference is
requested by specifying a process name and/or an object
class name. An object reference request is characterized
as observable event:

De�nition 19 (Object reference request event)
An object reference request event is a 6-tuple (p reqRef ,
pid ; cn; pn;n;m) where

� p reqRef indicates that an object reference is re-
quested.

� pid 2 PID is the process identi�er for the process
requesting the object reference.

� cn 2 CN speci�es the class name for the class the
requested object is derived from.

� pn 2 PN indicates the process name the object
should reside in.

� n 2 N and m 2 N are used to identify speci�c
objects.

An object reference request returns an object identi�er
based on the provided class name and/or process name.
For each cn 2 CN , pn 2 PN and n;m 2 N , it returns
the object reference to the n-th object of class cn in the
m-th instantiation of the process with process name pn .

Example 7 The observable event of getting a reference
to an arbitrary object of the class with class name cn
without putting any constraint on the process in which
the object is to be found, can be described as:

(p reqRef ; pid ; cn; �; �; �)

De�nition 20 (Object reference receive event)
An object reference receive event is a triple (p recRef ;
pid ; oid) where

� p recRef identi�es the observable event as an object
reference receive event.

� pid 2 PID is the process that receives the object ref-
erence.

� oid 2 OID is the object reference returned.

We do not de�ne what happens when an object reference
to an non-existing object is requested. It is, for example,
imaginable that the system automatically instantiates a
given process if there is currently no instance of this
process running and we request an object reference to
an object in such a process. In any case, the behavior of
the system when non-existing references are requested
could also be described in terms of observable events.

De�nition 21 (Observable process event)
An observable process event is an operation request
arrival event, an object (de-)registration event, a
thread/object lifecycle event, an object reference request
event or an object reference receive event.

De�nition 22 (Observable thread event)
An observable event at the thread level is a triple (t type,
tid , op req) where

� t type 2 TET is an element of the set of thread
event types TET = ft assThr , t relThr , t outReq,
t outRep; t inRepg indicating the event type.

{ An event of type t assThr occurs when an op-
eration request is assigned to a thread.

{ An event of type t relThr occurs when a thread
becomes idle after processing an operation re-
quest to completion.

{ An event of type t outReq occurs when, during
the execution of an operation request, a request
to invoke another operation on another object
is being sent.

{ An event of type t outRep occurs when a
thread completes the execution of an operation,
i.e. when the result of the operation is being
sent back to the calling object.

{ An event of type t inRep occurs when the re-
sponse for a previous t outReq arrives and the
thread continues to execute the original opera-
tion.

� tid is the thread identi�er for the thread at which
the event happens.

� op req is an operation request.

De�nition 23 (Thread behavior) The thread behav-
ior T Behav is a structure hTEO ;T BehavRi where

� TEO is a set of observable thread event occurrences

� T BehavR � TEO � TEO is a total order on the
set of observable event occurrences.

De�nition 24 (Thread)
A thread is a pair (tid ; t behav) where

� tid 2 TID is the thread identi�er.

� t behav is the thread behavior.

11

Each thread has a unique thread identi�er tid and each
thread belongs to exactly one process.

Example 8 Let o1 and o2 be objects, op2 an operation
o�ered by o2 and let t be a thread which resides together
with o2 in the same process with process identi�er p.
Object o1 invokes operation op2 on o2. We look at the
observable events for t and p during the execution of the
operation. First, the operation request arrives at p (1)
and is assigned to t (2). Then, the thread returns the
result (3) and is �nally released (4):

1 (p inReq ; (o1 ; o2 ; op2 ; �))
2 (t assThr ; t ; (o1 ; o2 ; op2 ; �))
3 (t outRep; t ; (o1 ; o2 ; op2 ; �))
4 (t relThr ; t ; (o1 ; o2 ; op2 ; �)).

Similar to [13] we refer to the number of event occur-
rences of type � by writing #[�] which is de�ned as
follows:

De�nition 25 (Number of event occurrences)

#[�](�;n)=

8>><
>>:

0 if (�; 0) 2 �
1 if (�; 0) � �
#[�](�;n�1) if n > 0 ^ (�; n) 2 �
#[�](�;n�1)+1 if n > 0 ^ (�; n) � �

Example 9 Using temporal logic and the observable
events introduced so far we can specify reliable commu-
nication, i.e. the fact that no messages will get lost.
This can be formally expressed with the following two
formulae, referring to the operation requests and replies
respectively:

23(#[�(p inReq ; (o1; o2; op2; �))] =
#[�(t outReq; �; (o1; o2; op2; �))])

23(#[�(t inRep; �; (o1; o2; op2; �))] =
#[�(t outRep; �; (o1; o2; op2; �))])

To express that no messages (operation requests and
replies) are arti�cially introduced into the system, i.e.
each received message has previously been sent, we can
specify:

2(#[�(t outReq; �; (o1; o2; op2; �))] �
#[�(p inReq ; (o1; o2; op2; �))])

2(#[�(t outRep; �; (o1; o2; op2; �))] �
#[�(t inRep; �; (o1; o2; op2; �))])

Example 10 Let us consider an operation invocation.
We assume two objects o1 in process p1 and o2 in pro-
cess p2, object o1 calling operation oper on object o2.
Object o1 has the reference to the remote object. The
server process (p2) creates a thread for each incoming
request which is deleted after the execution. The opera-
tion invocation yields the observable events as listed in
Table 2: The three dots indicate that the object could call
other operations on other objects in order to successfully
complete the operation.

at observable event
1 o1 (o outReq; (o1; o2; op; �))
2 t1 (t outReq ; (o1; o2; op; �))
3 p2 (p inReq; (o1; o2; op; �))
4 p2 (p newT ; t2)
5 t2 (t assThr ; t2; (o1; o2; op; �))
6 o2 (o inReq; (o1; o2; op; �))

: : :
7 o2 (o outRep; (o1; o2; op; �))
8 t2 (t outRep; t2; (o1; o2; op; �))
9 t2 (t relThr ; t2; (o1; o2; op; �))
10 p2 (p delT ; t2)
11 t1 (t inRep; t1; (o1; o2; op; �))
12 o1 (o inRep; (o1; o2; op; �))

Table 2: Example

De�nition 26 (Process behavior) The behavior of a
process P Behav is a structure hPEO ;P BehavRi where

� PEO is the set of observable process event occur-
rences which comprises all observable event occur-
rences for this process and the event occurrences for
all objects and threads in this process.

� P BehavR � PEO �PEO is a partial order on the
set of observable event occurrences.

De�nition 27 (Process) A process is a pair (pid ,
p behav) where

� pid 2 PID is the process identi�er.

� p behav is the process behavior.

Each process has a unique process identi�er pid . We
introduce a total function � : TID ! PID returning the
process identi�er for a thread with the thread identi�er
tid ; For each tid 2 TID , �(tid) is the process identi�er
pid for the process that the thread with the identi�er tid
belongs to. Furthermore, we introduce a total function
� : PID ! PN returning the process name for a given
process identi�er pid ; For each pid 2 PID , �(pid) is the
correspinding process name pn.

Each process is comprised of a set of objects and a set
of threads. These two sets can change over time. The
elements of these sets can be derived from the observable
behavior of the process.

The lifetime of threads and objects is limited to the
lifetime of their corresponding process, i.e. the deletion
of a process implies the deletion of all threads and ob-
jects contained in this process.

De�nition 28 (Program behavior)
The program behavior m behavpn is the set of possible

12

behaviors of processes whose process name equals pn,
i.e.,

m behavpn =
[

p behav i with �(i) = pn

De�nition 29 (Program)
A program p prg is a pair (p sign; p behav) where

� p sign is the process signature and

� m behav is the program behavior.

2.3 OODS

Similar to the object-, thread- and process level we will
now de�ne the observable events at the system level.
At the system level we have only two observable events
denoting the creation and deletion of processes:

De�nition 30 (Observable system event)
An observable event at the system level is a pair (s type,
pid) where

� s type is an element of the set SET = fs newP,
s delPg indicating the event type.

{ An event of type s newP occurs when the cre-
ation of a process takes place.

{ An event of type s delP occurs when the dele-
tion of a process takes place.

� pid is the process identi�er for the process getting
created or deleted.

De�nition 31 (System behavior)
The system behavior S Behav is a structure hSEO ;
S BehavRi where

� SEO is the set of observable system event occur-
rences which comprises all observable event occur-
rences for the system and the event occurrences for
all of its processes.

� S BehavR � SEO� SEO is a partial order on the
set of observable event occurrences.

Finally, we are ready to give a formal de�nition of an
object-oriented distributed system (OODS):

De�nition 32 (OODS)
An object-oriented distributed system (OODS) can be
represented by a model M = hO Cls ;P Prg ;S Behav i
which is given by the following components:

� O Cls: The (�nite and non-empty) set of object
classes.

� P Prg: The (�nite and non-empty) set of programs.

� S Behav : is the behavior of the system.

This de�nition captures the abstraction level that is use-
ful for �lling the needs of todays industrial software
development. With the property language advocated
in this paper (its syntax and semantics is summarized
in the appendix), it is possible to express a multitude
of behavioral properties, which can later be checked at
run-time. Event-based behavioral abstraction makes the
model applicable to a wide range of systems. The ob-
servable events we have introduced in this paper are
summarized in Table 3.

Name Description
o outReq outgoing operation request
o inReq incoming operation request
o outRep outgoing operation reply
o inRep incoming operation reply
p inReq incoming operation request
p oReg object registration
p oDereg object deregistration
p newO object creation
p delO object deletion
p newT thread creation
p delT thread deletion
p reqRef request for an object reference
p recRef receive of an object reference
t assThr thread assignment
t relThr thread release
t outReq outgoing operation request
t outRep outgoing operation reply
t inRep incoming operation reply
s newP process creation
s delP process deletion

Table 3: Observable events: Summary

As we will show in the next section on the example of
the CORBA platform, our model can easily be mapped
to an industrial context.

3 Case study

Industry frequently argues that most of the current re-
search on formal methods is out of touch with reality,
\misguided and useless", mostly applied to \toy exam-
ples" and \intellectually interesting but industrially ir-
relevant problems" [40]. In this section we show how the
\theoretical" model introduced in the previous section,
maps to reality: (i) Considering the Common Object Re-
quest Broker Architecture (CORBA) as the underlying
platform and development environment for distributed
object-oriented services, it is shown how our model can
be integrated into the service speci�cation- and testing
process. (ii) Taking an industrial service and its informal
speci�cation as a basis, we show how formal properties
can be derived for this service. (iii) We brie
y describe
a tool that we have developed for specifying, observing
and validating LTL properties. Finally, we discuss our

13

experience.

3.1 CORBA

In the following we will look at the applicability of our
model by showing how it maps onto a distributed plat-
form in the industrial context. We establish a link be-
tween our event-based model and \real" implementa-
tions and show how the events that our model is based
on can be generated in a CORBA framework, thereby
answering the question: Given a CORBA implementa-
tion, how can we, at system run-time, observe and col-
lect the information that is relevant for the checking of
the formally speci�ed properties?
It turns out that the observation process for a large

subset of our observable events is quite simple and does
not even imply modi�cations to the implementation
code, thus providing a strong argument for formal prop-
erty speci�cations in our framework.
The construction of automata or test oracles from

the temporal logic property speci�cations is well-
understood. We refer the interested reader to [34, 6].
The selection of test scenarios remains for further study.

The Common Object Request Broker Architecture
(CORBA) version 2.0 [36] from the Object Manage-
ment Group forms the basis of our platform. CORBA
provides a platform independent model. CORBA is a
standardized architecture for object-oriented distributed
systems with transparent distribution and easy access to
components. CORBA requires that every object's inter-
face be expressed in the Interface De�nition Language
(IDL). Clients see the object's interface but never any of
the implementation details (Figure 5). Every invocation
of a CORBA object is passed to the Object Request Bro-
ker (ORB); even when an object in one process invokes
an operation on another object in the same process. All
distribution issues like parameter transfer to the remote
object, are handled by the ORB.

Figure 5: CORBA's client/server model

An IDL speci�cation provides a representation of the
system that is independent of the implementation lan-
guage. Speci�cally, it provides the interface templates
that the objects in the distributed system support.

There exist several well-de�ned and standardized map-
pings from IDL to implementation languages like C++
and JAVA. Note that the mapping only de�nes the in-
terface to be used in the implementation language. The
information given in the IDL speci�cation is closely re-
lated to the class signature in our model.

Figure 6: General Framework

Consider Figure 6 for an overview about the develop-
ment process of distributed applications in the CORBA
framework. The white boxes depict the normal develop-
ment process of distributed applications; the gray boxes
describe the extensions related to this paper. Normal
boxes denote some kind of speci�cation and rounded
boxes denote tools.
In the normal development process, the IDL speci-

�cation of the interfaces is passed to an IDL compiler
which generates stub code and header �les, which are
then linked to the actual implementation code, thereby
shielding the developer of the distributed application
from the di�cult task of handling distribution issues.
In addition to passing the IDL speci�cations to the

IDL compiler, we can feed a code generator with the
IDL speci�cations. This code generator tool generates
some generic observation- and validation code, which
also needs to be linked to the actual implementation
and forms the on-line observer and -validator part of
the implementation.
When running the distributed application, we can

pass the implementation- and platform independent
properties to the on-line validator, which will then ob-
serve the system at run-time and report all property

14

violations.
The formal behavioral constraints we express on the

system should be derived from the informal service spec-
i�cation.

In order to express properties in our model, we can, to
a large extent, rely on the information given in the IDL
speci�cation. An IDL speci�cation is written at a level of
abstraction that makes it particularly suitable for pro-
viding a basis on which to express behavioral proper-
ties. The advantages of expressing properties at the ab-
straction level given by IDL are appealing: a property,
making reference to the items of an IDL speci�cation,
inherits the implementation language independent char-
acter from IDL. The standardized mapping from IDL to
implementation languages enables us to automate the
process of �nding all the IDL information at the imple-
mentation level. Therefore, when expressing properties
at the IDL level, we do not need to have any informa-
tion about the actual implementation. How the opera-
tions are implemented is irrelevant when expressing the
properties. It is not even necessary to know the actual
implementation language.

A wide-spread CORBA-compliant platform is the Or-
bix implementation from IONA [19]. Using the �lter
mechanism provided by this CORBA implementation,
we can spy on the distributed system. Filters allow ex-
ecuting additional code for each �ltered event. Orbix
o�ers two kinds of �lters: process �lters and object �l-
ters. A process �lter intercepts all incoming and outgo-
ing operation requests for a given process. When objects
inside a process invoke an operation on an object in the
same process, then these invocations are also fully vis-
ible in the process �lters. Object �lters are executed
before and after each operation invocation on an object.

Figure 7: Orbix Filters

Figure 7 depicts an operation invocation between two

distributed objects and enumerates the �lter operations
in the order they execute. According to this �gure, we
have six �lters which can be mapped to our observable
events as indicated in Table 4.

Orbix �lter level Event
1 process t outReq
2 process p inReq
3 object o inReq
4 object o outRep
5 process t outRep
6 process t inRep

Table 4: Mapping Orbix �lters to events

Furthermore, the Orbix run-time system delivers a
few noti�cations as default. These noti�cations and
their mapping to the observable events in our model are
summarized in Table 5.

Noti�cation Event
New Connection (server ready) s newP
End of Connection s delP

Table 5: Mapping Orbix messages to events

Many other events from our model can be mapped in
a straightforward way to speci�c Orbix functions. For
example, in Orbix there exists a function bind() which
�nds a particular object and sets up a proxy for it in
the client's address space. It is possible to specify the
exact object required or, by using default parameters,
Orbix may be allowed certain degrees of freedom when
choosing the object. This function corresponds to our
t reqRef - and t recRef -events.

The generation of the observation code can { in our
approach { be largely ignored by the application tester.
This contrasts with [7] where traces are obtained by
manually instrumenting Ada source programs and ex-
ecuting it on a uniprocessor and where delay statements
were inserted to introduce di�erent behaviors. Simi-
larly, in [1], event-instance-generating code fragments
are added manually to the code.

A major advantage of our event-based behavior speci-
�cation is that it is largely independent of the target sys-
tem and that, for many systems, event-generating code
fragments can be constructed and inserted in the origi-
nal code in an automatic manner. This is basically due
to a very carefully selected set of prede�ned events.

3.2 An industrial service

We will now examine a concrete, industrial service and
show how the de�ned events, temporal logic and the two
novel operators can be used to specify properties.

15

Linear-time temporal logic has already been used in
several industrial projects to express properties that the
software under construction should satisfy. However,
there is only limited information in the literature about
the complexity of the properties as they arise from in-
dustrial software development. In most papers, the com-
plexity of the properties in real systems remains unclear.
In [32], Manna and Pnueli give three classes of prop-

erties that are believed to cover the majority of prop-
erties one would ever wish to specify (and verify): in-
variance (2p), response (2(p ! 3q)) and precedence
(2(p! q U r)).
Holzmann [18] followed the argumentation of Manna

and Pnueli and considers only the three above-
mentioned classes. In a similar project [20], only safety
properties (invariance properties) were considered.
In our work it turned out that safety and precedence

properties cover a multitude of properties as they are
stated upon industrial systems. However, the complex-
ity of the system we had to deal with was such that
some properties we needed to express, did not fall into
any of the three property classes highlighted by Manna
and Pnueli.

To e�ectively evaluate the practical feasibility of our
approach we were not allowed to hand-pick a suitable
application. The target application, a Desktop Video
Conference (DVC) System, was provided by Swisscom.
The DVC service under consideration had been designed
and implemented by Swisscom in a collaborative project
with Alcatel Alstholm Research, Paris, and Telia Re-
search.
We were given the informal service speci�cation doc-

uments [15] [16] and the implementation code once the
service had been developed by Swisscom. This con-
trasts with many other case studies for formal methods
projects from the literature. We were confronted with
two major handicaps: (i) The persons formally specify-
ing the properties on the service had not been involved
in designing and implementing the service. (ii) The ser-
vice had been developed without paying any attention
to formality. Furthermore, the target application was,
even though de�nitely not from an industrial viewpoint
but still from an academic viewpoint large.

We show, taking the DVC service as basis, how for-
mal property speci�cations can be derived from infor-
mal speci�cations. We discuss our experience, identify
the strengths of our approach and also clearly state the
constraints and limits when using it.

Let us look at an extract from the DVC service
speci�cation which is listed in Figure 8. It de-
scribes two constrains that objects of a given class
(DVC UAPSessionReq) shall satisfy. These two prop-
erties can be expressed as simple safety properties.
The IDL speci�cation for DVC UAPSessionRequest

(Figure 9) points to the two operations involved in

It is the responsibility of the DVC UAPSessionReq
component to check the consistency of a number of
end-user requirements, such as

� don't add the same party twice to same session

� don't add more users than the prede�ned maxi-
mum

Figure 8: DVC Speci�cation

the two above properties: add dvc parties and re-
move dvc parties.

interface DVC UAPSessionReq

f
void add dvc parties(inout int userId);

void add dvc video(in ServiceQoS videoQoS);

void delete dvc video();

void remove dvc parties(in int userId);

void transfer ownership(in int userId);

void delete dvc session();

void exit dvc session();

g;

Figure 9: DVC UAPSessionReq IDL speci�cation

To formally specify the �rst property we need to iden-
tify the event that denotes the addition of a party to
a session. Based on the syntax described earlier and
the IDL speci�cation for the DVC UAPSessionReq in-
terface, this event can be described as:

(o inReq ; (�; oid ; add dvc parties ; (uid)))

Our �rst attempt at describing the property was as fol-
lows:

8o 2 DVC UAPSessionReq :
2(#[(o inReq ; (�; o; add dvc parties ; (uid)))] < 2))

However, even though at �rst glance this property seems
to give a correct formal representation of the informal
property, deeper investigation reveals that it is not the
property we intended.
If a user joins the session, leaves it and joins it again,

the number of join-operations is equal to two and the
property is violated. However, the formal property ex-
actly expresses what the informal property states which
means that the informal property is not free of ambigu-
ity. To rectify the formal expression we changed it to
read as follows:

8o 2 DVC UAPSessionReq :
2(#[(o inReq ; (�; o; add dvc parties ; (uid)))]�

#[(o inReq ; (�; o; remove dvc parties ; (uid)))] < 2))

This shows that although it can seem to be a staightfor-
ward process to translate informal properties to formal
properties, the process can lead to erroneous expressions
in the sense that they do not express what the informal
property was supposed to express.

16

The prede�ned maximum of users that can be added
to a session is a constant that is de�ned in the IDL
speci�cation:

const short MaxDVCParties = 4 ;

Paying attention that the number of users in a session is
not just equal the number of users that have been added
but that it is equal the number of users added minus the
number of users that left the session, we can specify the
property as follows:

8o 2 DVC UAPSessionReq :
2(#[(o inReq ; (�; o; add dvc parties ; �))]�

#[(o inReq ; (�; o; remove dvc parties ; �))]
� MaxDVCParties)

Scenarios are frequently used in informal speci�ca-
tions to illustrate certain aspects of behavior. Behav-
ioral constraints as they can be derived from scenarios,
can very often be expressed by using precedence proper-
ties. Consider Figure 10 for a scenario for adding parties
to a video conference session. It is relatively straightfor-
ward to derive LTL properties from such scenarios. The
entire scenario can be expressed using LTL. Let us con-
sider one part of this scenario which requires that when
DVC parties are added, the DVC status has to be set
to LOCKED before any other action can be taken. A
�rst property that one might to express is that we al-
ways have to set the DVC status to LOCKED before we
can call the list dvc parties-operation: Each time we call
add dvc parties, we will not call list dvc parties unless
we have set the DVC status to LOCKED before.

8o 2 DVC UAP REQ :
2((o inReq; (�; o; add dvc parties ; �))!
:(o inReq ; (o; �; list dvc parties ; �)) U
(o inReq ; (o; �; set dvc status; (LOCKED))))

Let us �nally consider a more complicated property of
the DVC service. It states that the creator of a DVC
session who becomes automatically the chairman of the
session, is not allowed to exit the session (by calling the
exit dvc session operation) unless he/she has transfered
the session ownership to another person. At �rst glance
the formalization seems to be straightforward. However,
�nding a correct formal representation turns out to be
quite di�cult. A person is automatically chairman of a
session if he has requested the session creation by call-
ing the request service operation. We now identify the
events that we need for expressing the property.

e1 = (o inReq ; (�; oid; request service ; (�; uid1 ; �; �)))

This �rst event denotes the invocation of the re-
quest service-operation. We skip the details of the oper-
ation and only note that it takes four parameters; only
the second and fourth parameter is of interest for the
speci�cation of the property. The second parameter
speci�es the user id for the user requesting the service.

e2 = (o outRep; (�; oid; request service ; (�; �; �; i req)))

User GUI

oid i_ref

request_service
exit_dvc_session

transfer_ownership

Figure 11: DVC Property

The second event denotes the termination of the
request service-operation. This operation returns an ob-
ject reference as out parameter. The object reference
returned by this operation identi�es the object that the
user can use to add parties to the requested session, to
transfer the ownership of a session, to exit the session
etc.

e3 = (o inReq ; (�; i req ; exit dvc session ; �))

The third event describes the invocation of the
exit dvc session operation, i.e. the operation that the
chairman is not allowed to call.

e4 = (o inReq ; (�; i req ; transfer ownership ; (uid2)))
^ (uid2 6= uid1)

e5 = (o inReq ; (�; i req ; transfer ownership ; (uid2)))
^ (uid2 = uid1)

The fourth event descibes the transfer of the session
ownership from one user to another user while the �fth
event describes the case where the ownership is not
changed (it is transfered from a user to that user).
Having described these �ve events we are now pre-

pared to give the formal representation of our property:

2((e1 ! 3e2)! ((:e3 U e4) ^ (2(e5 ! :e3 U e4))))

We agree with Lamport [26] that purely temporal spec-
i�cations are often hard to understand. However, in our
approach these di�culties are compensated by the pos-
sibility to automate several steps in the testing process.
Furthermore, it turns out that many properties, as they
are derived from industrial speci�cations, can be classi-
�ed and there is a set of property structures that occur
frequently. Based on this observation it is possible to
o�er a graphical userinterface to the property speci�er
where he only has to select a property class from a list
and then �ll out the missing elements. This is exactly
the approach we followed with MOTEL, our MOnitoring
and TEsting tooL.

3.3 MOTEL

We have developed MOTEL, a MOnitoring and TEsting
tooL. A screendump is given in Figure 12. Brie
y, LTL

17

add_dvc_parties

userIdList

inout: userId List

DVC_GUI

DVC_GUI_STUB

set_dvc_status(LOCKED)

list_dvc_parties()

out: dvcPartyInfoList

add_party(userId)

out: partyId

Interface
REQ

DVC_UAP UAP Access
Client

REQ Intf

GSEP

Itf
Access

Itf
ReqAPI

USS/GSS
DVC

DVC_Fact

set_dvc_status(UNLOCKED)

return add_parties

Figure 10: Add Parties Scenario

properties can be speci�ed and activated (Window enti-
tled \Properties") and relevant events can be observed
(window entitled \MOTEL"). Test oracles for the prop-
erties are automatically generated (bottom window).
The observed events are analyzed and property viola-
tions are reported to the user (window entitled \Prop-
erty violation"). For a detailed description of MOTEL
we refer the interested reader to [28].

All properties are expressed independent of an imple-
mentation language. When expressing the properties,
observing the events and analysing the observations, the
tool user does not need to have any information about
the implementation language. We have decoupled the
property expressions from the implementation language.

A major advantage of our tool is that it encapsulates
formal methods concepts, thereby hiding these issues.
A tool user does not need to know that and how the
automata are created from the speci�ed properties.

3.4 Discussion

There are many solid theoretical foundations related to
testing and formal approaches which often lack the inte-
gration into the mainstream testing process. Formality
is particuliarly di�cult to justify in industrial projects.
Hiding part of the formality and automating parts of
the testing process can break some psychological barri-
ers currently present.

In our approach, only the property speci�cation has
to be derived manually. The derivation of observation-
and validation code, the selection of relevant �lters, the
examination of the observation messages and the check-
ing of properties are all automated.

We identi�ed several weaknesses of our property lan-
guage. First, the property language does not allow for
expressing properties on complex data structures like
lists and various records that are somewhere de�ned
in the program and later used as parameters. Since
most operations use these complex data structures, ex-
pressing properties on parameters is hardly possible with
our property language which considers only simple data
types like integers.
Second, it is not always easy to come up with a tem-

poral logic formula for complex properties. While many
properties can be speci�ed relatively easily, there are
some more complex properties which require a good deal
of experience in developing LTL formulas.

Other problems arise from the informal documenta-
tion. In many cases, the informal documentation gives
only limited information about the properties that need
to be speci�ed. While many properties can be derived
from the SPOT documentation, the practical relevance
of the speci�ed properties remains unclear. However, we
assume that the persons writing such an informal docu-
mentation and the persons designing and implementing
the service could derive useful properties relatively eas-
ily.
Another problem results from the use of scenarios in

the documentation. Since they are supposed to re
ect a
single system run, they do not, in general, give enough
information about special cases that might be encoun-
tered.

4 Related work

In this section, we discuss related research and elabo-
rate on the relationship between our proposed model
and other proposals.

18

Figure 12: MOTEL screen dump

Table 6 summarizes the approaches closely related
to our proposal by giving the reference, the name of
the corresponding language or model (if available) and
the area of application the proposal targets. The do-
mains are abbreviated as follows: DS=Distributed Sys-
tems, DB=Databases, IS=Information Systems. For
distributed systems and information systems it is ad-
ditionally indicated whether the proposals focus on
the requirements analysis (A) or the design stage (D)
in the software development process. The table also
lists whether or not the approach considers object-
orientation and/or temporal logic.

Most of the basic research in the temporal logic do-
main does not consider object-oriented systems and it
is pointed out in [8] that the object-oriented approach,
while successful in practice, �nds more scepticism than
enthusiasm among theoreticians. In the past few years,
however, there has been an e�ort in applying temporal
logic to object-oriented systems. Quite di�erent goals
and motivations behind these proposals and the result-
ing di�erent underlying assumptions, restrictions and
limitations make it di�cult to compare and judge them.

Furthermore, some work in the temporal logic do-
main has been carried out without initially considering

Ref Name Appl. O-O TL
[21] DisCo DS/A yes yes
[17] Promela DS/D no yes
[33] SPL/FTS DS/D no yes
[14] N/A DS/D yes yes
[24] N/A DB yes yes
[2] T Chimera DB yes no
[23] TROLL IS/A yes yes
[35] TRIO+ IS/A yes yes
[39] OSL IS/A yes yes
[42] Templar DS/AD no yes
[29] Rapide DS/AD yes no

Our model DS/D yes yes

Table 6: General comparison of our model

object-orientation, but later extending it to cover object
systems. This is, for example, the case for the TRIO
language [12], and its object-oriented extension TRIO+
[35]. The other avenue has been followed by the authors
of the DisCo language [21], an object-oriented speci�ca-
tion language for reactive systems; after the de�nition of
the language, the relationship between DisCo and tem-

19

poral logic, in this case with Lamport's Temporal Logic
of Actions (TLA) [27], has been investigated in [22].
Similarly, the object-oriented data model Chimera has
later been augmented with a temporal extension called
T Chimera [2]. Especially the extensions of existing ap-
proaches, be it an object-oriented approach extended
with temporal components or a temporal logic-based
approach extended to object-oriented systems, provide
some evidence that a combination of object-orientation
and temporal logic is worth being investigated.

DisCo [21] (standing for DIStributed COoperation)
is an object-oriented speci�cation language for reac-
tive systems where objects are structured as hierarchical
state-transition systems and where explicit control
ow
is replaced by so-called joint actions. In [22] the authors
investigate the relationship between DisCo and Lam-
port's TLA, thereby establishing a relationship between
object-orientation and temporal logic. Unlike DisCo and
other TLA-based approaches, we only specify externally
observable behavior; no internal states or internal tran-
sitions are used to express behavior in our model. We
agree with Lamport [26] that internal states may sim-
plify the speci�cation of properties and that purely tem-
poral speci�cations are often hard to understand. How-
ever, in our approach these di�culties are compensated
by a signi�cantly simpli�ed mapping of our model to
arbitrary implementation languages.

Manna and Pnueli [33] use temporal logic for the spec-
i�cation of properties of reactive systems in a framework
where the simple programming language (SPL) is used
as system description language and temporal logic as
property speci�cation language. The Stanford Tempo-
ral Prover (STeP) [3], being developed at Stanford Uni-
versity, is a tool to verify concurrent systems speci�ed in
SPL. Manna and Pnueli's approach su�ers from a num-
ber of drawbacks: It can only be applied to already ex-
isting complete programs and it generally requires a lot
of detailed and tedious working in all but the simplest
cases, as pointed out in [11]. Naive attempts to extrap-
olate their approach to complex systems seem doomed
to fail as the system to be analyzed is described in terms
of individual program instructions (in form of an SPL
program). Furthermore, no attention is paid to object-
oriented systems.

By considering only the external (observable) behav-
ior of individual entities (like objects and processes) we
signi�cantly raise the abstraction level. No system im-
plementation needs to be speci�ed to express properties.

Holzmann [17] developed the software package SPIN
that supports the formal veri�cation of distributed sys-
tems. SPIN can be used to trace logical design errors
in distributed systems design. To verify a design, a for-
mal model is built using Promela, the PROcess MEta
LAnguage. The language can model dynamically ex-

panding and shrinking systems: New processes and mes-
sage channels can be created and deleted on the
y.
Correctness properties can be speci�ed as linear tem-
poral logic requirements, either directly in LTL, or indi-
rectly as B�uchi automata (expressed in Promela syntax
as Never Claims). However, the Promela language lacks
an object-oriented component. Similar to SPL, Promela
[17] requires a system to be speci�ed in terms of individ-
ual program instruction before temporal logic properties
can be expressed.

The TROLL language [23] is a language for the con-
ceptual modelling or requirements speci�cation phase in
system development. In TROLL, properties of objects
are speci�ed using formal languages based on temporal
logic. TRIO+ [35], an object-oriented temporal logic-
based language for system speci�cation, also focuses on
the requirements speci�cation and is therefore not able
to catch the abstraction level considered in our model.
Similarly, Tuzhilin [42] describes a language called Tem-
plar which is based on temporal logic and can be used
as high-level speci�cation language.

In Table 7 we compare di�erent proposals by list-
ing, whether or not the proposal considers objects, the
dynamic creation and deletion of objects, processes,
the dynamic creation and deletion of processes and, in
the last column, whether or not the proposal considers
threads.

Ref Name obj d.o. pr d.pr thr
[33] SPL no no yes no no
[14] N/A yes no no no no
[17] Promela no no yes yes no
[21] DisCo yes no yes no no
[10] FUS++ yes yes yes no no
[23] TROLL yes yes no no no
[29] Rapide yes yes yes no no
[2] T Chimera yes yes no no no

Our model yes yes yes yes yes

Table 7: Detailed comparison of our model

For example, Gotzhein [14] describes a linear-time
temporal logic for the speci�cation of object behavior.
However, in the underlying model, objects have an in�-
nite lifetime; Gotzhein's logic does not permit specifying
the dynamic creation and deletion objects.

In [24], the dynamic creation and deletion of objects
is addressed by making class membership a time vary-
ing relationship. Therefore, the problem of creating and
deleting objects can be mapped to the question, whether
or not an object with a given identity exists or not.
As the work described in [24], the temporal object-

oriented data model proposed in [2] is targeted at the
database domain. In this model, classes and objects can

20

be dynamically created, objects can change classes and
migrate. However, there is only a limited overlapping
between a model for database systems and a model for
object-oriented distributed applications. Some points,
while relevant and possible in object-oriented database
systems, e.g. objects changing classes over time, are
irrelevant in object-oriented applications. On the other
hand, modelling of object-oriented distributed systems
requires looking at certain aspects that are irrelevant in
databases.

Many of the mentioned approaches can not be easily
extrapolated to complex, industrial-strength systems.
This is speci�cally the case for proposals in which formal
reasoning is used to verify system speci�cations.
In our discussions with industry it has been stressed

frequently that proving the correctness of properties in
highly abstract models does not seem to pay o� because
those proofs provide no guarantee that the properties
will be preserved at the implementation. The genera-
tion of correctness-preserving implementations from val-
idated design speci�cations has not yet matured to a
level that satis�es industry's requirements.
In contrast, in this paper we assume that a given exe-

cutable speci�cation (including implementations in pro-
gramming languages like C++, JAVA, etc.) gives us
the observable event occurrences when the system is be-
ing executed. These observable event occurrences can
then be checked to see whether or not they satisfy the
speci�ed behavior constraints. This analysis does not
constitute a veri�cation of the system. However, com-
bined with a good test-case generation method and tool
support, it can be very useful in revealing faults.

The bene�ts that can be derived from the formal
speci�cations are listed in Table 8. We use the follow-
ing abbreviations: FR=Formal Reasoning, MC=Model
Checking, SI=Simulation, TE=Testing. An item in
parentheses indicates a potential bene�t that has not
yet been explored.

Ref Name Bene�ts Tools
[33] SPL FR, MC STeP [3]
[14] N/A (FR) -
[17] Promela MC, TE SPIN [17]
[27] TLA FR -
[39] OSL FR -
[29] Rapide SI, TE yes

Our Model TE, (FR) MOTEL [28]

Table 8: Bene�ts

We conclude this section with a critical evaluation of
our model. Several limitations need to be pointed out.
Some of them are quite obvious, others are more subtle:
One of the obvious limitations results from our design

goal of expressing behavioral constraints independent of
a given implementation language. Because an object is
only characterized by the behavior that can be observed
at its interface, internal object events cannot be handled.

Furthermore, the set of events was chosen so that
behavioral constraints for general object-oriented dis-
tributed systems can be speci�ed and later be checked
when the system is running. OODS with special require-
ments like real-time constraints have not been taken into
consideration. The problem of inheritance and polymor-
phism is for further study.

5 Conclusions

The need for a continuous assessment and comparison
of models with the reality they are supposed to re
ect
is well-known [30]. We believe there is a strong need
for more work on formal methods which re
ect, to a
large extent, the abstraction level found in today's in-
dustrial implementations. Our main motivation behind
the model introduced in this paper, was to contribute
towards this goal. We developed a formal model for
the development and for the testing of object-oriented
distributed systems at the design- and implementation
stage, which is based on event-based behavioral ab-
straction. Our model takes into consideration the dy-
namic structure of distributed systems: objects, threads
and processes can be dynamically created and deleted.
We identi�ed the events that are appropriate to model
industrial-strength object-oriented distributed systems.

Linear-time temporal logic seems to be a powerful tool
for the speci�cation of behavioral properties but needs
to be augmented. Speci�cally, in an object-model, it is
essential to express procedural dependencies rather than
simple temporal relations. We introduced two operators
to specify procedural dependencies.

We demonstrated the practical relevance of our model
in a case study. It is relatively straightforward to map
it onto industrial software development.

Several issues are currently under investigation: The
observable events we were considering are primitive
events (as opposed to aggregate events). The speci�-
cation of aggregate events could be used to facilitate
the speci�cation of more complicated properties.

The observer tool we have developed for CORBA-
based applications will be extended. The basic observa-
tion mechanism has already been implemented (includ-
ing dynamic activation/deactivation of event-generating
code fragments, time-stamping- and reordering mecha-
nism etc.). The implementation of the test oracles, to
check whether or not the observed behavior violates the
speci�ed properties, remains to be done but is basically a
straightforward implementation of known concepts. To
better address the problem of scalability we are also in-
vestigating distributed observers.

21

In order to tackle speci�c problems in distributed ap-
plications, we are currently tailoring and extending our
model for the two areas of fault tolerance and security.
For example, additional events, e.g. for check-pointing
and node crashes, will make our model applicable for
the speci�cation of a large number of properties related
to fault tolerance.

Acknowledgements

This work is being partially supported by Swisscom. We
would like to thank C. Delcourt and S. Grisouard at Al-
catel Alsthom Research, Marcoussis, and P.-A. Etique at
Swisscom, Bern, for many interesting discussions on in-
dustrial software development and formality. We thank
H. Karamyan and F. Pont for their work on the CORBA
observer implementation and H. Tews for his comments
on an earlier version of this paper.

A The property language

The behavioral constraints (properties) speci�ed in this
paper are based on the following syntax and semantics:

A.1 Syntax

Propositions p and formulae � of our property language
are inductively de�ned as follows:

nb := n j #[e] j nb1 � nb2 j nb1 + nb2
pc := nb1 < nb2 j nb1 > nb2 j nb1 = nb2
p := �e j pc j � e1 2 �e2 j � e1 0 �e2
� := p j :p j p ^ q j p _ q j 2p j 3p j p U q

where e is an observable event at any level (object-,
thread-, process- and system-level) as de�ned in this pa-
per and n 2 N is a natural number.

A.2 Semantics

The formulae are interpreted over an in�nite state se-
quence �.

� #[e], see de�nition 25.

� (�; i) j= �e i� event e just happened.

� (�; i) j= pc is de�ned as usual.

� (�; i) j= e1 2 e2, see de�nition 12.

� (�; i) j= e1 0 e2, see de�nition 13.

� :, ^, _, 2, 3 and U are de�ned as usual.

B Notations used in this paper

Table 9 summarizes the major notations and symbols
used in this paper.

Notation Expl.
cn , CN a class name and the set of

class names
pn , PN a process name and the set of

process names
oid , OID an object identi�er and the set of

object identi�ers
tid , TID a thread identi�er and the set of

thread identi�ers
pid , PID a process identi�er and the set of

process identi�ers
Sattr ;Smeth set of attributes and methods
o cls , O Cls object class and set of object

classes
p prg , P Prg process class and set of process

classes
O Behav object behavior
O BehavR object behavior relation
T Behav thread behavior
T BehavR thread behavior relation
P Behav process behavior
P BehavR process behavior relation
S Behav system behavior
S BehavR system behavior relation
VT the set of value types
OET , OEO the set of event types (and event

occurrences) at the object level
TET , TEO the set of event types (and event

occurrences) at the thread level
PET , PEO the set of event types (and event

occurrences) at the process level
SET , SEO the set of event types (and event

occurrences) at the system level

(oid) classname for object oid
�(tid) process id for thread tid
�(pid) process name for process pid
event counter
� in�nite state sequence
PDS procedural dependency structure
2 direct PD operator
0 general PD operator
R� causal relation
R� partial relation
R2 direct PD relation
R0 PD relation
R! Lamport's happened-before relation
2;3;U LTL operators

Table 9: Notations

22

References

[1] P. Bates. Debugging heterogeneous distributed sys-
tems using event-based models of behavior. ACM
Transactions on Computer Systems, 13(1):1{31,
February 1995.

[2] E. Bertino, E. Ferrari, and G. Guerrini. T Chimera:
A temporal object-oriented data model. Theory and
Practice of Object Systems, 3(2):103{125, 1997.

[3] N. Bj�rner, A. Browne, E. Chang, M. Col�on, A. Ka-
pur, Z. Manna, H. Sipma, and T. Uribe. STeP
{ The Stanford Temporal Prover, Educational Re-
lease, Version 1.1. Stanford University, March
1996.

[4] W. Bouma, W. Levelt, A. Melisse, K. Middel-
burg, and L. Verhaard. Formalization of prop-
erties for feature interaction detection: Experi-
ence in a real-life situation. In H.-J. Kugler,
A. Mullery, and N. Niebert, editors, Towards a
Pan-European Telecommunication Service Infras-
tructure { IS&N'94, number 851 in Lecture Notes in
Computer Science, pages 393{405. Springer-Verlag,
1994.

[5] G. Denker, J. Ramos, C. Caleiro, and A. Sernadas.
A linear temporal logic approach to objects with
transactions. In M. Johnson, editor, Proceedings
of the Sixth International Conference on Algebraic
Methodology and Software Technology, AMAST'97,
December 1997.

[6] L. Dillon and Y.S. Ramakrishna. Generating ora-
cles from your favorite temporal logic speci�cations.
In Proceedings of the 4th ACM SIGSOFT Sympo-
sium on Foundations of Software Engineering, Oc-
tober 1996.

[7] L. Dillon and Q. Yu. Oracles for checking temporal
properties of concurrent systems. In Proceedings
of the 2nd ACM SIGSOFT Symposium on Foun-
dations of Software Engineering, volume 19, pages
140{153, December 1994.

[8] H.-D. Ehrich. Object speci�cation. Technical Re-
port Informatik-Bericht 96-07, TU-Braunschweig,
Germany, 1996.

[9] H.-D. Ehrich and P. Hartel. Temporal speci�cation
of information systems. In A. Pnueli and H. Lin,
editors, Logic and Software Engineering, Interna-
tional Workshop in Honor of C.S. Tang, Beijing,
pages 43{71, 1995.

[10] P.-A. Etique. Service Speci�cation, Veri�cation and
Validation for the Intelligent Network. PhD thesis,
Swiss Federal Institute of Technology, Lausanne,
1995.

[11] A. Galton. Temporal logic and computer science:
An overview. In A. Galton, editor, Temporal Log-
ics and Their Applications, chapter 1, pages 1{52.
Academic Press Limited, London, 1987.

[12] C. Ghezzi, D. Mandrioli, and A. Morzenti. TRIO: A
logic language for executable speci�cations of real-
time systems. Journal of System Software, pages
107{123, 1990.

[13] R. Gotzhein. Formal de�nition and representa-
tion of interaction points. Computer Networks and
ISDN Systems, 25(1):3{22, August 1992.

[14] R. Gotzhein. Towards a basic reference model of
open distributed processing. Computer Networks
and ISDN Systems, 27(8):1287{1304, July 1995.

[15] P. Hellemans, P. Buck, M. Cadorin, and C. Wuer-
gler. Service Pilot on TINA (SPOT-A), External
Service Speci�cations, Desktop Video Conference.
Alcatel Telecom, Swiss Telecom, Telia, February
1997.

[16] P. Hellemans, M. Cadorin, and C. Wuergler. Service
Pilot On TINA (SPOT-A), Service Platform De-
sign, Desktop Video Conference Components. Alca-
tel Telecom, Swiss Telecom, Telia, November 1996.

[17] G. Holzmann. Design and Validation of Computer
Protocols. Prentice-Hall, 1991.

[18] G. Holzmann. The theory and practice of a for-
mal method: NewCoRe. In Proceedings of the IFIP
World Computer Congress, volume I, pages 35{44,
Hamburg, Germany, August 1994. North-Holland
Publ., Amsterdam, The Netherlands.

[19] IONA Technologies PLC. Orbix 2: Programming
guide, Version 2.2, March 1997.

[20] L. Jagadeesan, C. Puchol, and J. Olnhausen.
A formal approach to reactive systems software:
A telecommunications application in ESTEREL.
Journal of Formal Methods in System Design, 1995.

[21] H.-M. J�arvinen, R. Kruki-Suonio, M. Sakkinen, and
K. Syst�a. Object-oriented speci�cation of reactive
systems. In Proceedings of the 12th International
Conference on Software Engineering, pages 63{71.
IEEE Computer Society Press, March 1990.

[22] H.-M. J�arvinen and R. Kurki-Suonio. The DisCo
language and temporal logic of actions. Technical
Report 11, Tampere University of Technology, Soft-
ware Systems Laboratory, September 1990.

[23] R. Jungclaus, G. Saake, T. Hartmann, and C. Ser-
nadas. TROLL { a language for object-oriented
speci�cation of information systems. ACM Trans-
actions on Information Systems, 14(2):175{211,
April 1996.

23

[24] F. Kesim and M. Sergot. A logic programming
framework for modeling temporal objects. IEEE
Transactions on Knowledge and Data Engineering,
8(5):724{741, October 1996.

[25] L. Lamport. Time, clocks and the ordering of events
in a distributed system. Communications of the
ACM, 21(7):558{565, July 1978.

[26] L. Lamport. A simple approach to specifying con-
current systems. Technical report, Digital Equip-
ment Corporation, SRC, 1988.

[27] L. Lamport. TLA in pictures. IEEE Transactions
on Software Engineering, pages 768{775, Septem-
ber 1995.

[28] X. Logean. MOTEL { MOnitoring and TEsting
tooL for distributed applications. Technical report,
Swiss Federal Institute of Technology, 1998. Avail-
able from the authors.

[29] D. Luckham. Rapide: A language and toolset for
simulation of distributed systems by partial order-
ings of events. In DIMACS Partial Order Methods
Workshop IV, Princeton University, July 1996.

[30] Z. Manna and A. Pnueli. On the faithfulness of
formal models. In Mathematical Foundations of
Computer Science, number 520 in Lecture Notes
in Computer Science, pages 28{42. Springer-Verlag,
1991.

[31] Z. Manna and A. Pnueli. The Temporal Logic of
Reactive and Concurrent Systems. Springer-Verlag,
1991.

[32] Z. Manna and A. Pnueli. Tools and rules for the
practicing veri�er. Technical report, Stanford Uni-
versity, June 1991.

[33] Z. Manna and A. Pnueli. Temporal Veri�cation of
Reactive Systems: Safety. Springer-Verlag, 1995.

[34] H. McGuire. Two Methods for Checking Formu-
las of Temporal Logic. PhD thesis, Department of
Computer Science, Stanford University, Stanford,
California, 1995.

[35] A. Morzenti and P. Pietro. Object-oriented logical
speci�cation of time-critical systems. ACM Trans-
actions on Software Engineering and Methodology,
3(1):56{98, January 1994.

[36] OMG. CORBA 2.0 Speci�cation, Technical Docu-
ment PTC/96-03-04, 1996.

[37] G. Parkin and S. Austin. Overview: Survey of
formal methods in industry. Technical report, Na-
tional Physical Laboratory, Teddington, Middlesex,
U.K., May 1993.

[38] A. Pnueli. The temporal logic of programs. In
Proceedings of the 18th Annual Symposium on the
Foundations of Computer Science, pages 45{57,
1977.

[39] A. Sernadas, C. Sernadas, and J. F. Costa. Object
speci�cation logic. Journal of Logic and Computa-
tion, 5(5):603{630, 1995.

[40] IEEE Computer Society. Computer magazine,
April 1996.

[41] C. Stirling. Modal and temporal logics. In
S. Abramsky, D. Gabbay, and T. Maibaum, editors,
Handbook of Logic in Computer Science, volume 2,
pages 477{563. Claredon Press, Oxford, 1992.

[42] A. Tuzhilin. Templar: A knowledge-based lan-
guage for software speci�cations using temporal
logic. ACM Transactions on Information Systems,
13(3):269{304, July 1995.

24

