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Abstract

We present a parametrised Preisach-type model that describes the hysteresis exhibited by the high temperature
superconductors (HTSC); hysteresis is the main cause for losses in the subcritical domain. The parametrised model, in
combination with electrical measurements, is independent of geometry, number of �laments and other physical measures,
and is identi�ed by a novel method that uses electrical lock-in (loss) measurement technique, which greatly enhances
the signal to noise ratio. Identi�cation results from measurements on Bi-2223 multi-�lamentary tapes are presented.
We have further derived exact models for the hysteretic losses in strip and elliptic geometry strips, where the energy
losses were calculated by Norris. The paper contains analysis of the Preisach model, of its losses and of the suggested
parametrisation.

I. Introduction

HTSC is a new material with characteristics di�ering totally from conventional metallic conductors.
The material is not fully free from losses, where the hysteretic losses are the main contribution at
low-frequency (50-60 Hz) AC subcritical currents, subcritical temperatures and subcritical magnetic
�elds, see for instance [1].
It has been shown by Dejan Djukic [2]-[3] that the hysteresis in the HTSC tapes is conceptually

similar to ferro-magnetic hysteresis and that it is therefore well described by the Preisach-type hys-
teresis model [7], concluded from the description of hysteresis in [8]. Arguments for the use of the
Preisach model are also given in [9]-[10]. We have used the losses expressed by the Preisach model to
derive exact models for the cases of strip and elliptic cross-section superconductors, whose losses were
calculated by Norris [11]. All analytically known losses can also be used to calculate exact models by
an expression given in the paper. The Preisach model further allows simulations of output voltage and
losses for arbitrary input signals.
The model we propose in this paper is a parametrised Preisach model, which, in combination with

electrical measurements, is independent of the many physical aspects of the HTSC tapes such as ma-
terial, number of �laments, geometrical shape, coupling between �laments and so forth. Conventional
�rst-transition curve identi�cation (described in [9]) cannot be applied, so a novel method for the
identi�cation of the parameters from electrical lock-in (loss) measurements has been developed using
sinusoids as input, however di�erent from the identi�cation method in [12]. The identi�cation from
losses is unique since Bean's model [13] implies an one-dimensional Preisach weighting function. The
parametrisation further makes the model concise, accurate and quick in comparison with a memory
consuming table look-up.
The standard electrical lock-in measuring technique greatly enhances the signal to noise ratio and

is used to calculate the losses in the HTSC strip. These measured losses make the identi�cation of the
parametrised Preisach model possible. A parameter for a linear term in the model is used to comply
it to the reactive part of the measurements. The paper presents the results of parametrisation and
identi�cation for measurements on Bi-2223 HTSC multi-�lamentary tapes.
The paper begins by describing the hysteresis that is exhibited by HTSCs. The following section

presents the Preisach model and why it is useful in this case. It also describes how losses can be
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calculated and especially the special case of a sinusoidal input. It contains the exact models for strip
and elliptic geometry tapes as well. The lock-in measurement techniques used for the identi�cation part
is described in the next section, which also explains how losses and reactive part can be extracted. We
�nally show how the parametrisation and identi�cation are carried out by this measurement technique.
Part of the results for the parametrised Preisach model was �rstly presented in [3], but are here

given an improved and extended description.

II. Hysteresis in HTSCs

A. Hysteresis

The main source of the energetic losses in HTSC at low frequencies (up to 200 Hz), are the losses
due to magnetisation hysteresis. In this section, we brie
y discuss the hysteresis in HTSC.
All known HTSCs have physical properties of the superconductors of the type{II. Although the

physical mechanisms related to the HTSC are not yet fully understood, some of their physical properties
have been predicted, explained by theory and subsequently observed in measurements [4]{[6].
The main di�erence between the superconductors of the type{I and the type{II is their behaviour

in presence of a magnetic �eld. This di�erence has its origins in the di�erent ways the volume of
a body with a non-zero demagnetising factor geometry is divided in domains in normal state and in
superconducting state. In type{II superconductors, this division produces a mixed state: a state where
the bulk of the body is in superconducting state which is transpierced by the 
ux tubes or vortices.
The 
ux tubes are the domains in normal state which are in the form of microscopically thin threads
or tubes. Each of the tubes carries a magnetic 
ux of exactly one 
uxon (�0 =

h
2e
). The appearance

of the 
ux tubes is observed macroscopically as the partial penetration of the 
ux into the volume of
a superconducting body.
The imperfections of the crystal grid of the body have the property of attracting the 
ux vortices.

The vortex which is attracted to a grid imperfection is held immobile by a force called the pinning
force, and such a vortex is said to be pinned. The importance of the pinning forces is that the 
ux
vortices remain immobile even under the in
uence of the Lorentz force, due to a magnetic �eld or a
transport current. If the Lorentz force is weaker than the pinning force, the 
ux tube does not move,
which means that no energy dissipation takes place. Hence, in the HTSC, the Meissner e�ect does not
take place, yet the electrical resistance of such a body is zero for constant currents.
However, the pinning of the 
ux vortices means that the vortices that appear under the in
uence

of a non-zero magnetic �eld will not disappear even if the �eld itself is removed. Since the body
transpierced with 
ux vortices is macroscopically magnetised, the magnetisation of a HTSC shows
hysteretic behaviour.

B. Model Limits

The hysteresis exhibited in HTSCs is present in the subcritical region and does not exist above the
critical current according to the models in [8] and [13]. Therefore the hysteresis model is only valid
for such currents. Physically, there is no abrupt limit but a gradual change from hysteretic losses to
other sorts of losses. In fact, already at 0.8Ic 
ux creep losses start to appear for some samples [14],
so that the pure hysteresis model is only valid up to such currents. Nevertheless, even if the physical
grounds for the model is slightly violated, the parametrised Preisach model that we present in this
paper is able to model losses up to the critical current. Allowing this extension makes it useful in a
wider range. In the view of design purposes, it is also good that the model does not break down when
it passes the limit of critical current, which is demonstrated in Section V.

III. The Preisach Model

Hysteresis can generally be described as a hysteresis transducer with an input signal u(t) and an
output signal y(t). The Preisach model of hysteresis described here is slightly changed compared to
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Fig. 1. The output due to the simplest hysteresis operator �L� is a rectangular loop in the output-input diagram which
possesses an `up'-switch at � and a `down'-switch at L.
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Fig. 2. Geometric interpretation of the Preisach model. The half-plane � � L is divided by C(t) into two parts where
�L� is positive and negative respectively.

what can be found in the literature [9], but is conceptually the same. A more substantial description
is given in [15].
The Preisach model consists of a superposition of an in�nitely number of simplest hysteresis operator

�L�, each representing a rectangular loop in the output-input (y � u) diagram, see Fig. 1. The output
of the simplest hysteresis operator can take values �1=2 only, where � and L correspond to the `up'
and `down' switching, respectively. In the sequel, it is assumed that � � L. Each �L� is weighted by
an arbitrary weighting function w(L;�), leading to the following expression for the output:

y(t) =
ZZ

w(L;�)�L�[u(t)]d�dL (1)

The Preisach model can be interpreted geometrically since there is a one-to-one correspondence
between �L� and the point (L;�). There is a subdivision of the L� � plane into S+(t) and S�(t), the
two parts where �L� is positive and negative respectively. This division depends on extrema of historic
input and on the present input, and consists of a line of vertices C(t), see Fig. 2. The output of the
hysteresis transducer then takes the following form:

y(t) =
1

2

ZZ

S+(t)

w(L;�)d�dL�
1

2

ZZ

S�(t)

w(L;�)d�dL : (2)

since �L�[u(t)] is �1=2 in S+(t) and S�(t). The erasing of extrema and the congruency of minor loops
are the necessary and su�cient properties of a physical hysteresis to be described by the Preisach
model, and the HTSC possesses these [10].
A HTSC has not got a saturation mode, but the weighting function w(L;�) increases within the

model limits, i.e. as long as the current in the HTSC is inferior to the critical current Ic (de�ned
by the 1 �V/cm rule). The lack of saturation implies that the proposed estimation of w(L;�) from
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Fig. 3. The triangle that is limited by L=� and the coordinate (l; 
) as in the �gure de�nes the surface over which the
weighting function is integrated to form the function W (l; 
).

�rst-order transition curves in [9] cannot be applied. Instead, we propose here estimations from lock-in
measurements, described in Section V
Instead of the weighting function w(L;�), we can use the function W (l; 
) which is the integral of

w(L;�) over a triangular domain T (l; 
) as the one presented in Fig. 3,

W (l; 
)
def
=

ZZ

T (l;
)

w(L;�)d�dL : (3)

The weighting function w(L;�) can be extracted from W (l; 
) by taking the derivative, �rst with
respect to l and then with respect to 
 in (3) when the input is increasing,

w(L;�) = �
@2

@�@L
W (L;�) ; (4)

and the reverse order of the derivatives when decreasing. There are certain advantages for the use of
W (l; 
), such as the calculation of double integrals is replaced by the calculation of �nite sums [9],[15].
On physical grounds (symmetry considerations), it can be expected that the decreasing and increas-

ing transition curves are congruent, which then has the consequence that

W (l; 
) = W (�
;�l) and w(L;�) = w(��;�L) : (5)

The symmetry relation (5) is used to simplify expressions of the energetic losses, presented later in
this section.
The Preisach model, as described above, is written in a general form and we continue in that way

in the sequel, unless the model is specially applied, as in the HTSC case. In that case the output from
the model, denoted by y(t) above, corresponds to the 
ux

�(t) = y(t) (6)

that is induced by the input transfer current i(t) in the superconductor. This transfer current i(t)
corresponds to the input denoted u(t) in the general model above. Often the voltage v(t) produced by
the 
ux �(t) is measured instead of the 
ux itself, whereby the voltage is calculated as

v(t) =
d�(t)

dt
=

dy(t)

dt
: (7)

A. Energy Losses

It is well known that hysteresis phenomena are associated with some energy dissipation. Returning
to the simplest hysteresis operator �L� and its representation in the output-input diagram (Fig. 1), it



is realised that the horizontal lines are reversible and hence give no energy loss. Therefore, the `up'
and `down' switching contains all energy dissipation [9]. Symmetry considerations leads to assigning
equal loss per switching,

q =
1

2
(�� L) : (8)

The energy loss for any closed loop of a monotonically increasing and then monotonically decreasing
input between the values u� and u+ has the following expression

Qc(u
�; u+) =

ZZ

T (u�;u+)

w(L;�)(�� L)d�dL ; (9)

where T (u�; u+) is the triangular surface in the L�� plane swept by the input signal during one cycle,
c.f. Fig. 3. An inverse formula can be derived from (9) by which the weighting function w(L;�) can
be calculated from a known energy loss per cycle [2]:

w(L;�) = �
1

�� L

@2

@L@�
Qc(L;�) (10)

The formula (10) tells us that when the energy losses can be expressed analytically for a loop, the
Preisach model can be derived with exact losses. The energy losses have been calculated for the cases
of a sinusoidal transport current and superconductors with strip (index s) and with elliptical (index e)
cross-sections by Norris [11]. The corresponding weighting functions w(L;�) for these two cases then
becomes [3]

ws(L;�) =
�0
4�Ic

x

1� x2
; (11)

we(L;�) =
�0
8�Ic

1

1� x
; (12)

where x =
�� L

2Ic
; (13)

and �0 is the permeability in free space. Fig. 4 presents these one-dimensional weighting functions.
The models can equally be described by the alternative weighting functions

Ws(L;�) =
�0Ic
2�

[(1� x) ln(1� x)� (1 + x) ln(1 + x) + 2x]; (14)

We(L;�) =
�0Ic
2�

[(1� x) ln(1� x) + x]; (15)

The above weighting functions w(L;�) and W (l; 
) enable simulations of these two special cases.
The expression for the energy loss over a triangle T (u�; u+) (9) can be re-written as a function of

W (l; 
) [9] and takes the following form:

Qc(u
�; u+) = (u+ � u�)W (u�; u+)�

u+Z

u�

W (l; u+)dl �

u+Z

u�

W (u�; 
)d
 : (16)

In the case when the loop is between two input values that are symmetrically placed around zero,
e.g. in the case of the sinusoidal input signal with peak value U0,

u(t) = U0 cos(!0t) ; (17)
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Fig. 4. Exact weighting functions for the cases of strip and elliptical cross section geometry superconductors. Solid and
dotted lines correspond to (11) and (12), respectively

and symmetry (5) applies, the hysteretic losses of a full loop can be expressed by

Qc(�U0; U0) = 2U0W (�U0; U0)� 2

U0Z
�U0

W (l; U0)dl : (18)

The above formula is useful when relating a parametrised W (l; 
) and measured energy losses, so that
the parameters can be identi�ed as seen in Section V

IV. Measurements

The measurements are carried out on mono- and multi�lamentary tapes at a temperature of 77 K
where the injected sinusoidal current i(t) and the voltage v(t) induced by self-�eld are registered at
a sample frequency of 10 kHz. The data are full of noise and their quality is enhanced by using the
lock-in technique.

A. Lock-in Measurements

The lock-in technique enhances the quality of measurements and yields the in-phase and the quadra-
ture signals so that the amplitudes for input and output (I0 and V0) and the phase-di�erence between
the input and output ('V � 'I) are retrieved for the input frequency !0 over the measured length lt.

i(t) = I0 cos(!0t+ 'I) (19)

v(t) = V0 cos(!0t+ 'V ) (20)

These measurements can be carried out for longer time intervals so that the in-phase and quadrature
signals can be averaged. Hence, they yield results with a better quality.
The quantities retrieved by the lock-in technique enable us to calculate the power losses per cycle

and unit length:

^̂
Qc(�I0; I0) =

�I0V0
!0lt

cos('V � 'I) (21)

Note that the energetic losses are determined by the fundamental frequency of the output only, since
the integration over a cycle for the higher harmonics gives zero.



The lock-in technique further allows us to retrieve the reactive amplitude, which is the part of the
measured voltage v(t) that has no contribution to the losses. Hence, it has an exact phase of �=2 after
the input current, which can be expressed as

^̂vr(I0) =
V0
lt
sin('V � 'I) ; (22)

normalised with respect to the length over which the voltage measurement took place lt. The above
measure is used to adjust the suggested model to the reactive part of the measured voltage, see the
following section.

V. Parametrisation and Identification

A. Parametrisation

We saw in Section III that it is better to use W (l; 
) instead of w(L;�) for implementation reasons.
The integrated weighting function W (l; 
) can easily include the modelling of a part that is reactive
only, as will be clari�ed later in this section. Therefore, we will mainly be considering W (l; 
).
The exact weighting functions for the cases of strip and elliptic cross-section superconductors given

in (14) and (15) can also be expressed as Maclaurin-series of the variable x = ��L
2Ic

:

Ws(L;�) =
�0Ic
�

1X
k=1

x2k+1

(2k + 1)2k
(23)

We(L;�) =
�0Ic
2�

1X
k=1

xk+1

(k + 1)k
: (24)

It is clear that a subcritical input current,

i(t) = I0 sin(!0t) (25)

I0 < Ic ; (26)

implies an x inferior to one, so that a truncation of the series gives small errors, especially far away
from x = 1. Our approach to parametrise the weighting function then becomes

W (L;�; �) = Ic
KX
k=1

ak
��� L

2Ic

�k
; (27)

where � denotes the parameters gathered in a column vector,

� = [a1; a2; : : : ; aK]
T : (28)

It is also possible to select a parametrisation that uses every second term in (27), which re
ects the
sum in (23). We have, however, chosen to include all the terms since a parametrisation by every second
term has not revealed any advantages in our investigations. Another issue is the choice of number of
parameters, K. A large number assures that the true system can well be �tted in the model set, but on
the other hand, a smallerK might be necessary to have statistical signi�cance in the parameters. With
a pragmatic approach, the agreement of simulated losses and measured data is of larger importance
than the parameter variance. Note that K may also be bounded by the numerical stability of the
estimation procedure.
For completion, we express the parametrised weighting function (27) in w(L;�) by applying (4),

which then takes the form

w(L;�; �) =
a1
4Ic

�+
��� L

2Ic

�
+

1

4Ic

KX
k=2

ak k(k � 1)
��� L

2Ic

�k�2
: (29)



where �+(x) 8x 6= 0 and
R
1

0 �+(x)dx = 1. Here, the Dirac function has been added so that this
weighting function gives the same output as for (27). Below, we will derive how a1 contributes to
reactive power but not to hysteresis losses, which can be utilised for modelling of the reactive power
in the measurements.

B. Model limits

The parametrised weighting function (27) is derived by assuming a subcritical input current (26) to
avoid an in�nite response of the weighting function. Now, having the parametrised version , that is
no longer a necessity, since W (L;�; �) does not take in�nite values for bounded L and �. Hence, the
model does not beak down for currents superior to Ic, which is a desired behaviour.

C. Losses

Our approach is to estimate the parameters from loss measurements using the lock-in technique.
Such an estimation also makes sense since a purpose with the model is to predict hysteretic losses. The
lock-in technique gives better quality to the measurement results than time-series, and good estimates
of the losses per cycle can, hence, be retrieved by applying (21). Noteworthy is that the suggested
estimation method also give correct outputs as 
ux �(t) and voltage v(t) (including reactive part,
see sequel). The reason is that Bean's state model implies a weighting function that depends on the
di�erence (�� L), meaning a one-dimensional weighting function that is completely described by its
parameters � (and Ic).
Now we use the parametrisation in (27) to calculate the losses with the expression (18). This yields

the following formula

Qc(I0; �Q) = 2Ic
2

KX
k=1

ak
k � 1

k + 1

�I0
Ic

�k+1
: (30)

Note that the �rst parameter a1 has no contribution to the losses, and therefore we exclude it from
the parameter vector

�Q = [a2; : : : ; aK ]
T : (31)

It is thus clear that a1 cannot be identi�ed from loss measurements. We remark that the parametrised
expression for the losses (30) is linear in the parameters so that it can be written as a linear regression

Qc(�I0; I0; �Q) = 'T (I0) �Q (32)

with the regression vector

'(I0) =
�
1

3

�
I0
Ic

�3

;
2

4

�
I0
Ic

�4

; : : : ;
K � 1

K + 1

�
I0
Ic

�K+1 �T
: (33)

Hence, we can estimate the parameters �Q as the Least Square Estimate (LSE) [16]:

�̂Q = argmin
�Q

X
I0

�(I0) (
^̂
Qc(I0)� 'T (I0) �Q)

2 (34)

where we also include a possibility to put a weight �(I0) to each measurement point.
The quality of the identi�cation results depends on the number of parameters, K, and on the chosen

weighting, �(I0), where a bad choice can produce bizarre results such as simulated losses that are
negative. To choose an appropriate model (K and �(I0) in this case), it is important to remember
the purpose of the model, including in what region of I0=Ic we want to use it. When we simulate, we



TABLE I
Estimated Parameters from Loss Measurements

and Their Confidence Intervals

Param. Estimated value 95% Con�dence Interval

â2 �1:6093 � 10�7 �2:4517 �10�7 ! �7:6684 �10�8

â3 1:8463 � 10�6 1:0994 �10�6 ! 2:5931 �10�6

â4 �8:4199 � 10�6 �1:1813 �10�5 ! �5:0268 �10�6

â5 2:2484 � 10�5 1:3606 �10�5 ! 3:1361 �10�5

â6 �3:4628 � 10�5 �4:8558 �10�5 ! �2:0699 �10�5

â7 2:9986 � 10�5 1:7035 �10�5 ! 4:2937 �10�5

â8 �1:3293 � 10�5 �1:9872 �10�5 ! �6:7151 �10�6

â9 2:3420 � 10�6 9:3526 �10�7 ! 3:7488 �10�6

Using loss measurements, the identi�ed parameters âk all have signi�cant contribution to the parametrised model. The table
contains the estimated values and the calculated 95 % con�dence intervals in the case of K = 9. No con�dence interval includes
zero, so each parameter is signi�cant for the model in this case.

would like indications on the hysteretic losses. It is therefore important with a good correspondence
between modelled and measured losses in regions where losses are important, i.e. for large I0. It is
clear that the di�erence between modelled and measured losses

"(I0; �Q) =
^̂
Qc(I0)� 'T (I0) �Q (35)

grows quickly with input current I0, meaning that larger I0 naturally get more weight in the estimation
procedure (34). To achieve a better model for small input currents, the extra weighting �(I0) can be
applied. Such a weight that increase the importance for smaller currents is chosen to be (Ic=I0)

2,
which corresponds to a weighting with the noise-to-signal ratio (NSR), approximately. [Note the
contradiction to [3].]
A measure of the model goodness is the mean square error

MSE =
1

N

NX
i=1

"2(I0
(i); �Q) (36)

where N is the total number of data. However, this value always decreases with increasing number of
parameters K. There exists a number of methods to choose a `best' K in the sense that more param-
eters do not improve the model signi�cantly for its purposes. Such methods, that introduces penalty
terms for model complexity, are for instance Akaike's Information theoretic and �nal prediction-error
criteria and Rissanen's minimum description length [16]. We have, however, chosen to formalise the
selection of K by considering the parameter variances and carrying out standard statistical tests, or
equivalently, computing con�dence intervals [17]{[18], as well as a more pragmatic approach, where
we have relied on visual inspection of convergence between graphs of measured and estimated losses.
To make the statistical tests, we compute the con�dence interval for the estimated parameters. If it

contains zero, we could consider to remove this parameter from the model, since it has no signi�cance
for the model. The 95% con�dence interval for each of âk is presented in Table I, with K = 9 and
uniform weighting �(I0) = 1, showing that all âk are signi�cant. The simulated losses from the
estimated weighting function W (L;�; �) has also a good agreement with the measured losses, except
for small currents, see Fig. 5. The �gure also shows that the losses coincide even better when �(I0)
is chosen to (Ic=I0)

2 (NSR). The con�dence in the parameters are then, however, reduced. With a
pragmatic engineering approach, such a weighting function is nonetheless acceptable.
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Fig. 5. Measured and estimated losses per cycle. Results depend on parametrisation (K=9) and if weighting (none
or noise to signal ratio, NSR) is applied in the identi�cation procedure. Good results are also retrieved by using
parameters ak, k = 1; 4; 5 : : : ; 10 with signi�cance in the parameters.

Other choices of parameters are possible. For instance it is found, by removing parameters with large
con�dence intervals, that the use of the parameters ak, k = 1; 4; 5; : : : ; 10 (�(I0) = 1) gives satisfactory
results, see Fig. 5. Furthermore, the parameters are all statistically signi�cant and the mean square
error (36) is smaller than for K = 9.

D. Reactive part

We have just concluded that the parameters in the parametrised Preisach model can be identi�ed
from loss measurements with one exception, a1, since it has no contribution to the losses. We show here
how it contributes to the reactive part of the output voltage and it can, therefore, also be identi�ed
from lock-in measurements.
The technique to estimate the parameter a1 from lock-in measurements is to consider the voltage

contribution at a phase �=2 after the input current i(t), which is calculated from the lock-in measure-
ments according to (22). An expression for the same quantity using the Preisach model is retrieved
by taking the derivative of the model output (d�(t)=dt in the HTSC case) when the increasing input
current is equal to zero, since that corresponds to where the reactive voltage vr has its maximum, see
Fig. 6. That corresponds to an integration of w(L;�) over a small strip as in Fig. 7, or equally to the
time derivative of W (�I0; i(t)):

vr(I0) =
d�(t)

dt

���
i(t)=0

=
d

dt
W (�I0; i(t))

���
i(t)=0

(37)

The calculus when applied to the parametrised weighting function (27) leads to the following expression

vr(I0; �) =
d

dt
Ic

KX
k=1

ak

�
I0 sin(!0t)� (�I0)

2Ic

�k����
t=0

(38)

=
!0I0
2

KX
k=1

ak k
�
I0
2Ic

�k�1

; (39)

and we realise that all the parameters � contribute to the reactive amplitude. In principle, we could
estimate all the parameters from (39), but since a correct hysteretic dissipation is desired, we insert
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Fig. 6. The reactive part of the output voltage (dashed) is at a phase delay of �=2 after the input current (solid). The
maximum of the reactive part is hence when the increasing current is zero.
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Fig. 7. The integration of the weighting function w(L;�) over a small strip as in the �gure corresponds to the maximum
reactive part of the output voltage. By using the derivative of W (�I0; i(t)) we include the parameter a1.

the parameters �Q identi�ed from losses and retrieve

vr�(I0; �Q) =
�
vr �

!0I0
2

KX
k=2

âk k
�
I0
2Ic

�k�1�
=

!0I0
2

a1 : (40)

The formula (40) allows us to use the LSE technique to identify the parameter a1,

â1 = argmin
a1

X
I0

�(I0) (^̂vr�(I0)�
!0I0
2

a1)
2 ; (41)

where ^̂vr�(I0) is retrieved by replacing vr by ^̂vr in (40). The con�dence interval calculations can then
be carried out, see Table II, where �(I0) was taken to be uniform.
The estimated reactive amplitude, using the described method, coincides very well with measured

^̂vr, as can be seen in Fig. 8, where the relative error is also shown. Note, that the graph of the reactive
amplitude has a nonlinear shape. We conclude from the above discussion that a1 can be used to
conform the modelled output to have a correct reactive part.

VI. Conclusions

We have analysed the Preisach Model for hysteresis, which can be applied in regions of subcritical
transport current, temperature and external magnetic �eld, where hysteresis contributes the most to



TABLE II
Estimated a1 from Reactive Measurements

and Its Confidence Interval

Param. Estimated value 95% Con�dence Interval

â1 1:1983 � 10�6 1:1853 �10�6 ! 1:2114 �10�6

The parameter â1 estimated from the reactive part of lock-in measurements has statistical signi�cance, which is shown by the
95 % con�dence interval in the table.
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Fig. 8. The estimated reactive amplitude (�=2 after input current) (dashed in �gure) �ts very well with measured
data (solid) when the parameter a1 has been used to adjust the output, here with K = 9 and NSR weighting at
estimation. Note that the graph is nonlinear c.f. (39). The relative error (dash-dotted, right scale) is below 1.8 %
for this parametrisation.

dissipations in a HTSC tape. Exact models have been derived for the cases of strip and elliptic cross-
section geometries. Furthermore, we have parametrised the model in such a way that it can easily
be identi�ed from high quality lock-in measurements, which makes the model independent of physical
measures as geometry and number of �laments. The developed identi�cation method ensures a correct
modelling of losses in the HTSC and the parametrisation also allows for adjustments to the reactive
part of the measured data.
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