
TINA Service Validation:

The ErnesTINA Project�

X. Logean F. Dietrich J.-P. Hubaux

Institute For Computer Communications and Applications
Swiss Federal Institute of Technology

Lausanne, Switzerland
http://icawww.ep
.ch

Abstract

While extensive work has been carried out with the goal of validating the

TINA architecture and the TINA documents, little has been done yet for the

validation of TINA services. This is the main focus of the ErnesTINA project.

In the ErnesTINA project, we propose an integrated approach to facilitate the

validation of TINA services by verifying at run-time that the service implemen-

tation has not violated and is not violating certain prede�ned properties. In this

paper, we present the speci�cation of the properties, the run-time observation

of the distributed environment, the validation of the properties and �nally the

implementation of the concepts in a prototype.

1 Introduction

The design and implementation of telecommunication services is a complex task. This
task is �lled with pitfalls causing errors which may only manifest themselves when
the �nal implementation is observed at run-time. Often, there are many less obvious
symptoms which pass unheeded by the human overseers whose job it is to constantly
watch for imminent disaster. Entire telecommunication systems can be brought to
their knees by an unintended feature interaction, or a misimplemented piece of the
greater puzzle. This puzzle, and thus the risk of errors, is likely to get more compli-
cated in the future.
The Telecommunications Information Networking Architecture (TINA) is being pro-
posed by a world-wide consortium to manage the complexity of designing and imple-
menting telecommunications systems safely.

Despite the advantages that can be realized by using the TINA architecture, there
have been few answers to the question: how can we be sure that a given TINA com-
pliant implementation behaves as expected?

In the ErnesTINA project we are developing a way to (semi)automatically gen-
erate an implementation that observes the dynamic behavior of a telecommunication
system, maintaining a notion of whether or not that behavior violates some prede�ned
properties. Therefore, we are concentrating on the twofold problem of speci�cation
and validation of telecommunication services under the TINA architecture; what be-
havior needs to be observed at runtime, how is that behavior speci�ed and how is the
automatization based on that speci�cation to be achieved?

�This research is being partially supported by Swisscom.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The remainder of this paper is structured as follows. In Section 2, we explain the
approach taken in the ErnesTINA project. In Section 3, we describe the properties
we are considering for validation. Section 4 illustrates how those properties can be
validated at run-time which is followed by a case study in Section 5. Finally, our
conclusions and an outlook on ongoing work is presented.

2 General Description

In our approach we express properties that the service should satisfy (i.e., desired
behavior) or not violate (i.e., unwanted behavior). Those properties are expressed in
an implementation language independent manner but validated at the implementation
level when the service is running. The link between the implementation language inde-
pendent character of the properties and the validation of those properties at run-time
is, in our work, provided by the Object De�nition Language (ODL) [9].
The TINA Consortium proposes ODL for the speci�cation of computational objects.
An ODL speci�cation provides an abstract view about the actual service implemen-
tation by specifying the object- and interface templates for that service. An ODL
speci�cation is platform- and implementation language independent.

We are using the ODL speci�cations to express our properties on them. Since
the ODL speci�cations are platform- and implementation language independent, the
property speci�cation also exposes this characteristic.

Most of the ideas described in this paper are also applicable to systems that are
based on an IDL (Interface De�nition Language) speci�cation. In that sense, our ap-
proach can be helpful for validation of distributed services in general.

If the service developer or the service tester wants to check for violations of a
property using our approach, he must �rst formally specify the property. The code
necessary for run-time observation and validation will be generated automatically. At
run-time, the events that form the property will constantly be observed and it will be
checked if the property was violated. In the case of a property violation, a noti�cation
will be given. Where, when and how the run-time observation and -validation of the
property is done, will be transparent to the person specifying the property.

The properties that we express should be satis�ed by every implementation based
on the given ODL speci�cation. When expressing the properties, we do not need to
worry (we do not even need to know) in which language the service will be implemented
and on which platform it will run.
Figure 1 depicts the service development process in the ErnesTINA project. As soon as
the ODL speci�cations are ready we can express properties on those speci�cations. We
elaborate on the property speci�cations in section 3. Based on the ODL speci�cation, a
code generation tool will generate some generic observation- and validation code which
needs to be linked to the actual implementation code. Details about the validation are
given in section 4. When running the service, we can feed the on-line validator with
our property speci�cation. Depending on the property, observation mechanisms will
be activated such that the validator will be noti�ed about all the events that might
possibly constitute a property violation.

Only the property speci�cation has to be derived manually. The generation of the
observation- and validation code, the examination of the observation messages and the
property checking will be done automatically.

Just as the DPE (Distributed Processing Environment) and the ODL compiler
hide distribution issues, the code generator and the on-line validator hide the valida-
tion problems.

2



Figure 1: The Framework

When expressing properties it is not necessary to give a complete and formal be-
havior speci�cation -this does not preclude the use of such speci�cations if they exist.
This contrasts with the approach described in [16] where ODL is extended with a
formal behavior description. A very important advantage of our property oriented ap-
proach is that it allows us to concentrate on a selected set of properties that we do not
want to be violated without requiring us to give the complete behavior speci�cation
of the system.
An important point, currently not covered in the project, is the selection of test sce-
narios. In the future we might also look into the possibility of automatically generating
test scenarios based on the property speci�cations.

3 The Properties

For expressing properties we provide a set of about twenty prede�ned events that
is appropriate to model industrial{strength object{oriented systems. This set has
been determined by collaborating with several industrial players and by taking into
account the tradeo�s between 
exibility and complexity of the model and the property
language. Behavior constraints are to be expressed by using these prede�ned events.
A detailed description of all events can be found in [3]. The set of events is chosen
very carefully, making it often possible to perform source code annotation for event
generation in an automatic manner.

We consider observable events at four di�erent levels: at the object level (e.g., the
event denoting the invocation or termination of an operation on an object), the thread
level (e.g., the assignment of a thread to an operation request), the process level (e.g.,
the arrival of an operation request at a process) and the system level (e.g., the creation

3



of a process). Objects, threads and processes can be dynamically created and deleted.
We use linear{time temporal logic to establish a temporal relationship between

events in the system.
By taking linear{time temporal logic for the speci�cation of behavior, we can ben-

e�t from the well{known solutions for constructing test oracles.

4 Validation

Most validation1 methods consist in either proving some sort of equivalence between
the implemented system and one of its speci�cations. Despite the obvious advantage
of capturing the requirements in a formal way, most methods we have seen used in the
case of telecommunications systems (by their nature complicated and extensive) seem
to su�er from a lack of e�ciency:

1. These methods require an extra language. Usually the designer of the service has
to specify the system twice: �rst with the use of the standard methodology of
design and second with the use of a formal method based on a formal language
such as SDL, LOTOS, etc.

2. The validation is usually based on state space exploration. As telecommunica-
tions services are enormous in the number of states to which they can evolve,
state space exploration becomes extremely di�cult due to state space explosion2.

3. The validation of a formal speci�cation does not guarantee an error-free imple-
mentation of the system. Even if the formal speci�cation of the system has been
validated, some errors can always be made when implementing the system. This
problem is accentuated if the formal description of the system is not directly
used as a basis for the implementation step.

The validation of properties is done at the implementation level, by observing
the system and retrieving the necessary information. This information is then used
to check the di�erent properties on-the-
y. No state space exploration is necessary
to validate the system and therefore, therefore the state space explosion problem is
minimized. When a property is violated an error is encountered.

Taking into account that we do not have to predict the output sequence of the
system (as in testing), it is possible to introduce random inputs to our system and
check if the properties are violated. Similar on-line validation approaches have been
undertaken by Etique [5] [4] for the Intelligent Network and Jard [8] for the dynamic
veri�cation of protocols.

Since the emergence of value-added services in telecommunication systems, the de-
tection of Feature Interactions3 has become a crucial problem. The validation method
presented in this paper can be used to detect feature interaction without needing ad-
ditional speci�cations. If a property upon a service has been veri�ed when the service
was working alone, this property can be violated when the service is sharing its envi-
ronment with other services. By detecting this violation a feature interaction has been
detected.

1\Validation is the process of determining the degree to which the requirements design, or imple-
mentation of a model are a realization of selected aspects of the system being modeled" [7]

2For instance, the speci�cation of the Call Forwarding service for the Intelligent Network brings
up more then 107 states [5]

3\Feature Interaction are understood to be all interactions that interfere with the desired operation
of the feature and that occur between a feature and its environment, including other features or other
instances of the same feature" [1]

4



Section 4.1 presents the concepts of observation and spying of a distributed system.
In section 4.2, the validation of the properties de�ned in Section 3 is explained.

4.1 Observing the Distributed System

Distributed platforms based on CORBA [15] (Common Object Request Broker Ar-
chitecture) are under investigation to be used as the TINA DPE. Among these dis-
tributed platforms, many o�er support for run-time observation. For example, Orbix
from IONA [13] provides the filtering mechanism. A �lter allows a programmer to
specify that additional code is to be executed before or after the normal code of an
operation. The CHORUS Cool distributed platform o�ers a mechanism similar to
Orbix �lters, termed interceptors. In our work we make the assumption that a run
time observation mechanism, that we term \Filter", is provided by the distributed
platform.4

Based on the Filters, there are di�erent approaches to achieving run-time observation
for speci�c properties:

� Based on the property speci�cations, the Filters are only put on the objects
and/or processes needed to check the prede�ned properties. This is very e�cient,
but this approach lacks 
exibility. Speci�cally, it requires that the code be
recompiled each time the property changes.

� Filters are put everywhere (around every object and every process) and all the
information passing through those �lters is collected. The relevant events are
masked out and the unneeded information discarded. This approach creates a
huge overhead and heavily in
uences the system but gives us a comprehensive
idea about what is going on.

� Filters are put everywhere but activated and parameterized as needed. This
would allow feeding the validator with properties at run-time without the need
to recompile the program.

Our approach is based on the last item since it gives the best compromise between

exibility and e�ciency. The �lters are activated and parameterized in the system
based on the ODL speci�cation and the properties. For instance, in the ODL speci�-
cation we �nd all the operations of an interface associated with an object and having
this information it is easy to construct a \programmable" �lter for that object which
will be able to select and to spy a speci�c operation. By activating and parameterizing
�lters, scope validation can be performed. The focus can be put only on one object of
the system in order to verify local properties of this object. Additionally, global prop-
erties can be de�ned and validated. This hierarchical validation allows us to validate
large scale systems.

Having the �lter, it is then easy to send noti�cations containing the observed
information to the validator.

Such observation mechanism can also be used for other purpose than validation:
e.g., management [2].

4This assumption is not restrictive. In the case that such a mechanism is not o�ered by the
distributed platform, a proxy object can be added for each object within the system playing the role
of the Filter.

5



4.2 Validating the Properties

Taking the last item of observation possibilities as a basis we have the following steps
for on-line validation as depicted in Figure 2.

Figure 2: Validation process

1. The formalized properties are �rst given to the validator. The properties are
interpreted and transformed into executable code via the transformation onto
automata. The syntax of the properties is not detailed in this paper but is mainly
following Linear Temporal Logic (LTL) [10], and tools are available to translate
LTL formula into Finite State Machines (FSM). Then FSMs are transformed
into executable code. The interested reader can refer to [6] or [11].

2. The validator identi�es the �lters which need to be activated and parameterizes
them, and sends an activation message to those �lters. That allows us to keep
the amount of validation-related tra�c in the system as low as possible.

3. The �lters deliver the requested information to the validator. Each time there is
an event in the system that is relevant for the property that we want to validate,
the validator is noti�ed. In some cases it is necessary to establish temporal
relations between the incoming events. Therefore the validator and the �lters
use some time-stamp method (e.g., [14]).

4. Based on the gathered information the validator executes the code representing
a FSM and is able to say if a property was violated or not. If there is a property
violation, an error message will be displayed5.

5 Case Study

The validation method proposed in the ErnesTINA project is currently applied in the
framework of the SPOT (Service Pilot On TINA) project [12]. The main focus of the
SPOT project are service integration and service platform interworking. The di�erent
partners of the UNISOURCE consortium and number of Telecommunications com-
panies (Alcatel Telecom, Ericsson) will deploy di�erent high performance multimedia
TINA services over the European ATM network and ensure their interoperability. In

5It is not yet in the scope of ErnesTINA to automatically handle some actions in the case of errors
detection.

6



this framework Swisscom provides a Desktop Video Conferencing Service (DVC). Our
validation methodology will be applied to the DVC service.

Figure 3: screen dump of the prototype

In order to facilitate the integration of our works in the SPOT platform, we are
currently working on a prototype implementing the logic of a simple basic TINA service
(Basic Call). This implementation is using the Object Request Broker (ORB) from
Orbix IONA [13] as a DPE. The Validator introduced in the distributed system is
divided into four parts. The Observation Manager is in charge of getting the di�erent
noti�cations from the �lters and restoring the causal order of the noti�cation in the
case of ordering problem. The Properties Manager handles the information retrieved
by the Observation Manager and gives them to the Properties Checker. The Properties
Translator transforms the properties expressed with formal syntax into executable code
and gives them to the Properties Checker. The Properties Checker is the heart of the
validation process since it checks for violation of the properties. It uses the information
given by the Properties Manager and signals each property violation.

In order to spy on the distributed system, we are using the �lteringmechanism provided
by Orbix, which is of two forms: per-process and per-object �ltering.

Per-process �lters monitor all incoming and out-going operations to and from an
address space; per-process �ltering is applied when an invocation leaves or arrives at
an address space. Per-object �lters apply to individual objects.

The observation is based on four forms of per process �lters: out request, in request,
out reply and in reply. The four di�erent �lters are respectively executed: before the
invocation has been transmitted, before the operation has been sent to the target
object, after the operation call has been processed and after the operation response

7



has arrived at the caller's address space.
In these �lters, we specify that additional code has to be executed at each event.

An event corresponds to one of the four points mentioned above where process �lters
can be activated. At each event (each �ltering point) a noti�cation is sent to the
Observation Manager of the Validator. The noti�cation is a \one-way" operation
invoked on the Observation Manager. The information carried by these noti�cations
is presented in Table 1.

Parameters Information

ProcId Identi�cation of the process

OpName Name of the operation invoked

OpParameters All parameters of the operation

OrigProcId ProcId of the initiator of the op.

EventId Filter identi�cation

Timestamp Time-stamp of the process

Table 1: Parameters of the Noti�cations

The �ltering mechanism o�ers the possibility of piggy-backing information with the
requests. For example, the `out request �lter' can add extra data to the request and
this data is removed by the `in request �lter'. We are using this mechanism to piggy-
back useful information such as the identity of the process sending the request and to
propagate the time-stamps stored at each process. These time-stamps are handle by
the per-process �lters of each process.

Although we have not yet implemented the entire validator, the current version is able
to check properties in LTL [10], such as: 2p, p) 3q, p) q U r. Such properties can
be de�ned thanks to a GUI. In Figure 3, we present the GUI of the prototype we have
implemented. Our prototype allows to monitor all the events occurring in the system
and to display them in a timeline diagram and/or a table. A special window is used
to specify the properties. The list of properties is shown in a window with the option
to select them for on-line validation.

After having implemented a more complicate TINA service and a whole Valida-
tor, we intend to measure the performance of our system and quantify the distortion
introduced by the observation mechanism added in the system.

6 Conclusions and Further Research

In this paper we have described an approach for the validation of TINA services. Our
ambition in the ErnesTINA project was to produce a practically feasible framework
for the validation of industrial strength TINA services.

Properties that are expressed independent of the actual implementation language,
are veri�ed at run-time. The service validation is transparent to the user (program
developer, tester). It su�ces to specify the property; an on-line observer/validator
will use this property speci�cation to check at run-time that it is not violated. The
generation of the observation- and validation code will be handled by a tool.

We have implemented a �rst prototype that is able to verify simple properties. The
prototype is currently being extended to handle more sophisticated properties.

8



The concepts, ideas and tools that are currently being developed in the framework
of the ErnesTINA project will be applied to an industrial-strength TINA service, i.e.,
the desktop video-conferencing system of the SPOT project.

7 Acknowledgements

The authors would like to thank Swisscom for many interesting discussions. We thank
S. Koppenhoefer and D. Hutchinson for their useful and constructive remarks. We are
grateful to H. Karamyan for his work on the prototype implementation.

References

[1] E.J. Cameron, N.D. Gri�eth, Y.-J. Lin, M.E. Nilson, W.K. Schnure, and
H. Velthuijsen. A feature interaction benchmark for IN and beyond. In Fea-
ture Interactions in Telecommuications Systems, pages 1{23. Bouma, L.G and
Velthuijsen, H., Amsterdam, IOS press edition, May 1994.

[2] J. A. G. de Queiroz and E. R. M Madeira. Management of corba object monitoring
for multiware platform. In Open Distributed Processing and Distributes Platforms,
pages 122{133. Chapman & Hall, 1997.

[3] F. Dietrich, X. Logean, S. Koppenhoefer, and J.-P. Hubaux. A temporal logic{
based approach to the design of object{oriented distributed systems. Technical
report, Swiss Federal Institute of Technology, Lausanne, 1998. Available from the
authors.

[4] P.-A. Etique, J.-P. Gaspoz, J.-P. Hubaux, et al. Validation of an object-oriented
service speci�cation for the Intelligent Network. In TINA'95, Integrating Telecom-
munications and Distributed Computing - from Concepts to Reality., volume 2,
pages 561{576, Melbourne, Australia, 1995.

[5] Pierre-Alain Etique. Service Speci�cation, Validation and Veri�cation for the
Intelligent Network. PhD thesis, Swiss Federal Institute of Technology Lausanne,
Telecommunications Laboratory, 1995.

[6] Pascal Grimont and Pierre Wolper. From Modal Logic to Deductive Database,
chapter 4 Temporal Logic, pages 165{233. Wiley, 1989.

[7] The New IEEE Standard Dictionary of Electrical and Electronics terms, volume 1.
Chistopher J.Booth, Ed., 5 edition, 1993.

[8] Claude Jard. V�eri�cation dynamique des protocoles, documents d'habilitation.
IRISA + IFSIC, 1994.

[9] B. Kitson, P. Leydekkers, N. Mercouro�, and F. Ruano. TINA Object De�nition
Language (TINA-ODL) Manual. TINA-C, June 1995. Version 1.3.

[10] Z. Manna and A. Pnueli. Temporal Veri�cation of Reactive Systems: Safety.
Springer-Verlag, 1995.

[11] H. McGuire. Two Methods for Checking Formulas of Temporal Logic. PhD thesis,
Department of Computer Science, Stanford University, Stanford, California, 1995.

[12] N Mercouro�, J. Bengtsson, P. Hellemans, and L. Lehmann. Implementation of
sevices for computer supported cooperative work on TINA : the SPOT project.
submitted to ISS Conference, 1997.

9



[13] Orbix 2, Distributed Object Technology. IONA Technologies Ltd., 1996.

[14] A. Schiper, J. Eggli, and A. Sandoz. A new algorithm to implement causal or-
dering. In Third Int'l Workshop Distributed Algortithm, pages 219{232, Berlin,
1989.

[15] Jon Siegel. CORBA, Fundamentals and Programming. John Wiley & Sons, Inc.,
1996.

[16] B. Stepien, K. Farooqui, and L. Logrippo. An experience modelling telecom-
munications systems using odp-dlcomp. In Stefani JB. Najm E., editor, Formal
Methods for Object-based Distributed Systems, London, 1996. Chapman & Hall.

10


