
Testing Temporal Logic Properties

in Distributed Systems

F. Dietrich�, X. Logean, J.-P. Hubaux

Institute for computer Communications and Applications (ICA)
Swiss Federal Institute of Technology (EPFL), Lausanne

Tel: +41 21 693 52 57, Fax: +41 21 693 6610

Abstract

The concept of event-based behavioral abstraction (EBBA) is shown to fa-
cilitate the Design For Testability (DFT) if the set of events is well-chosen. We
provide a prede�ned set of events which, together with linear-time temporal logic,
can be used for expressing behavioral properties in object-oriented distributed
systems. This allows automizing several steps in the testing process: instrument-
ing the source code, constructing test-oracles and generating an observer. Taking
an industrial example as basis, we discuss how our proposal can be integrated
into the software design- and testing process.

Keywords

Design for Testability (DFT), Event-based behavioral abstraction (EBBA), Linear-
time Temporal Logic (LTL)

1 Introduction

We describe a way to automatically generate an implementation that observes the
dynamic behavior of an object-oriented distributed system, maintaining a notion of
whether or not that behavior violates some prede�ned properties. Therefore, we are
concentrating on the twofold problem of speci�cation and testing of object-oriented
distributed services; what behavior needs to be observed at runtime, how is that
behavior speci�ed and how is the automatization based on that speci�cation to be
achieved?

Event-based behavioral abstraction is being frequently used during testing [4] and
debugging [1]. However, when the events generated by a system are to be observed and
analyzed, most proposals rely on manual source code annotations for event generation.
Some proposals, e.g. [1], allow for the de�nition of arbitrary events using an event
description language.

In this paper, we follow another avenue. We provide a set of prede�ned events that
is appropriate for expressing properties of object-oriented distributed systems. This
set has been determined by collaborating with several industrial players and by taking
into account the tradeo�s between
exibility and complexity of the property language.
The set of events is chosen very carefully, often making it possible to perform source
code annotation for event generation in an automated manner.

�falk.dietrich@ep
.ch

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In our framework, behavioral constraints (also called properties) are to be expressed
using these prede�ned events and Linear-time Temporal Logic (LTL) [13]. By using
LTL as property language we can bene�t from the well-known solutions for construct-
ing test oracles.

Testing is still a human intensive activity, thus error-prone. This is to a certain
extent due to a lack of formality which would otherwise allow testers to do their
job e�ciently and to take advantage of powerful tools. To make the use of formal
approaches more appealing to software designers and testers, it is bene�cial to encap-
sulate formal methods concepts and/or algorithms: users do not have to know how
it works, or even that it is there [5]. By using the approach advocated in this paper
several important steps in the testing process, namely the source code annotation,
the generation of test oracles, the test trace collection and test trace analysis can be
automated and hidden from the service designer and tester.

We informally describe the set of events and, taking an industrial service as an
example, demonstrate how properties can be expressed with these events and LTL.
We show how the automatization of parts of the testing process can be achieved and
brie
y describe MOTEL, a MOnitoring and TEsting tooL, being developed by our
institute.

The remainder of this paper is structured as follows: In Section 2 we describe
the set of events that is appropriate for expressing behavioral properties of object-
oriented distributed systems. In Section 3 we show, on a concrete example, how
properties can be formally speci�ed with our approach. In Section 4 we analyze how
the automatization of several important steps in the testing process can be achieved
and brie
y describe MOTEL. Finally, our conclusions are presented.

2 The set of events

The question we answer in this section is the following: How can we, using event-based
behavioral abstraction, faithfully represent the behavior of object-oriented distributed
systems such that (i) the chosen events re
ect to a large extent the abstraction level
found in today's industrial implementations of distributed systems and (ii) we can
perform source code annotation in an automatic manner.

To respond to this question we derive a set of twenty events that is appropriate
for modelling object-oriented distributed systems. These twenty events satisfy the
requirement of being easily observable. We consider observable events at four di�erent
levels: the object-, thread-, process- and system level. The events are summarized
in Table 1. For a more detailed (and formal) description of these events we refer the
interested reader to [3].

The notion of observable event can be seen as a �lter that screens out all events
that are irrelevant at the given level of abstraction. We consider observable events to
occur instantaneously and to be atomic.

In this paper, we will concentrate on the four observable events at the object level.
For that purpose we will brie
y describe the formal notation we use for observable
events at this level.

Let OID be the set of object identi�ers for all objects in the system. Each observable
event at the object level is represented as a pair (o type; op req) where o type is an
element of the set of object events types o type 2 fo outReq, o inReq , o outRep,

2

Name Description

o outReq An event of type o outReq occurs when an object is sending
a request to execute an operation on another object.

o inReq An event of type o inReq occurs when an object starts
executing an operation as requested by another object.

o outRep An event of type o outRep occurs when an object is sending
the result of an operation back to the object that requested
the execution of the operation.

o inRep An event of type o inRep occurs when an object receives the
reply for the execution of an operation from the called object.

t assThr An event of type t assThr occurs when an operation request
is assigned to a thread.

t relThr An event of type t relThr occurs when a thread becomes idle
after processing an operation request to completion.

t outReq An event of type t outReq occurs when, during the execution
of an operation request, a request to invoke another operation
on another object is being sent.

t outRep An event of type t outRep occurs when a thread completes
the execution of an operation, i.e. when the result of the
operation is being sent back to the calling object.

t inRep An event of type t inRep occurs when the response for a
previous t outReq arrives and the thread continues to execute
the original operation.

p inReq An event of type p inReq indicates the arrival of an operation
request at a process.

p oReg Occurs when an object is registered in the system thereby
making it possible for other objects to invoke operations on
it.

p oDereg Occurs when an object is de-registered.
p newO Occurs when the creation of an object takes place.
p delO Occurs when an object is deleted.
p newT Occurs when the creation of a thread takes place.
p delT Occurs when a thread is deleted.
p reqRef Occurs when an object reference is requested.
p recRef Occurs when an object reference is received.
s newP Occurs when the creation of a process takes place.
s delP Occurs when the deletion of a process takes place.

Table 1: Observable events: Summary

3

o inRepg and op req is an operation request. An event of type o outReq occurs when
an object is sending a request to execute an operation on another object. An event
of type o inReq occurs when an object starts executing an operation as requested by
another object. An event of type o outRep occurs when an object is sending the result
of an operation back to the object that requested the execution of the operation. An
event of type o inRep occurs when an object receives the reply for the execution of
an operation from the called object. An operation request is a quadruple (src, tgt ,
oper , param list) where src 2 OID is the object identi�er for the source object, i.e.
the object that requests the execution of an operation on another object, tgt 2 OID is
the object identi�er for the target object, i.e. the object that executes the operation,
oper is the name of the called operation and param list is a list of parameter values of
the operation where each item has to be in the domain of its corresponding parameter
type.

For illustration consider Figure 1. The execution of an operation (as seen at the
object level) involves four observable events, each of these four events describing a
di�erent stage during the execution. The numbers in Figure 1 indicate the order in
which these events occur during the execution of the operation o�ered by object o2
and invoked by object o1.

o_outRep

(1)

o1

(4)

(2)

(3)

o2

o_outReq

o_inRep

o_inReq

Figure 1: Observable object events

For example, an event described as (o inReq ; (o1 ; o2 ; oper ; �)) occurs when object
o2 starts executing the operation oper that has been called by object o1. Throughout
this paper we use \�" to denote that a value is unrestricted or irrelevant. In the above
example, the parameters of the operation are of no interest.

An observable event occurrence is an instance of an observable event. We assume
that each event occurrence can be distinguished from other event occurrences of the
same event. This can be done by using a unique event occurrence identi�er. However,
an event occurrence identi�er is not part of the event's tuple notation. Distinct event
occurrences can obviously have the same event tuple.

3 Expressing properties

In this section, using an industrial example, we will demonstrate how behavioral prop-
erties can be expressed using the events described in the previous section and LTL.

LTL formulae are interpreted over an in�nite sequence of states � = s0; s1; : : :.
Given a state sequence � and a temporal formula p, (�; j) j= p denotes that p holds
at position j � 0 in �. In this paper we will use the notation �e to denote that an
event e just happened, i.e. (�; j) j= �e i� event e just happened. We restrict ourselves
to the use of the following future temporal operators: 2 (always), 3 (eventually)
and U (Until) which are de�ned as follows: (�; j) j= 2p () 8k � j; (�; k) j= p;
(�; j) j= 3p () 9k � j; (�; k) j= p and �nally (�; j) j= p U q () 9k � j; (�; k) j=
q and 8i; j � i < k; (�; i) j= p.

4

In the following we will show on an example how formal properties can be derived
from informal service speci�cations. The application chosen to validate our approach
was selected independently of the approach. The target application, a Desktop Video
Conference (DVC) System built according to the TINA architecture [2] on top of
CORBA, was provided by Swisscom.

CORBA is a standardized architecture for object-oriented distributed systems with
transparent distribution and easy access to components. CORBA requires that every
object's interface be expressed in the Interface De�nition Language (IDL). Clients only
see the object's interface but never any of the implementation details Every invocation
of a CORBA object is passed to the Object Request Broker (ORB); even when the
object is local. All distribution issues like parameter transfer to the remote object, are
handled by the ORB.

IDL provides an implementation language independent representation of the sys-
tem, more speci�cally, of the interface templates that the objects in the distributed
system support. There exist several well-de�ned and standardized mappings from IDL
to implementation languages like C++ and JAVA.

We were given the informal service speci�cation documents and the implementation
code once the service had been developed by Swisscom. In contrast to many other
formal methods projects from the literature, we had therefore to cope with two major
handicaps: (i) The persons formally specifying the properties on the service had not
been involved in designing and implementing the service. The properties had to be
expressed purely on the information given in the informal service speci�cations. (ii)
The service had been designed and implemented without paying any attention to
formality.

Linear-time temporal logic has already been used in several industrial projects to
express properties that the software under construction should satisfy. However, there
is only limited information in the literature about the complexity of the properties as
they arise from industrial software development. In most papers, the complexity of
the properties expressed in real systems remains unclear.

In [14], Manna and Pnueli give three classes of properties that are believed to cover
the majority of properties one would ever wish to verify: invariance (2p), response
(2(p! 3q)) and precedence (2(p! q U r)).

Holzmann [6] followed the argumentation of Manna and Pnueli and considers only
the three above-mentioned classes. In a similar project [8], only safety properties
(invariance properties) were considered.

In our work it turned out that safety and precedence properties cover a multitude
of properties as they are stated upon industrial systems. However, the complexity of
the system we had to deal with was such that some properties we needed to express,
could not fall into any of the three property classes.

Let us look at an extract from the informal DVC speci�cation (Figure 2) to illus-
trate the expression of properties and the problems encountered during the property
speci�cation process.

The four informal properties in Figure 2 can be expressed as simple safety proper-
ties.

We pick the second property as example. To formally specify this property we
�rst need to identify the event that denotes the addition of a party to a session. The
informal speci�cation (and the IDL speci�cation of the service components) reveals
that objects of class DVC UAPSessionReq o�er an operation add dvc parties which
takes the user id of the user to add to the session as parameter. Based on the syntax

5

It is the responsibility of the DVC GUI to check the consistency of a
number of end-user requirements, such as:

1. don't use invalid userIds (userIds can only be provided by select-
ing them from a list of valid userIds)

2. don't add the same party twice to same session

3. don't add more users than the prede�ned maximum

4. don't select a video QoS which exceeds the maximum session QoS

Figure 2: DVC Speci�cation

described earlier this event can therefore be described as:

(o inReq ; (�; oid ; add dvc parties ; (uid)))

We refer to the number of event occurrences of type � by writing #[�] which is de�ned
as follows:

#[�](�;n)
def
=

8>><
>>:

0 if (�; 0) 2 �

1 if (�; 0) � �

#[�](�;n�1) if n>0 ^ (�; n) 2 �

#[�](�;n�1)+1 if n>0 ^ (�; n) � �

A �rst representation of the property looks as follows:

8o 2 DVC UAPSessionReq :

2(#[�(o inReq ; (�; o; add dvc parties ; (uid)))] < 2))

However, even though this property seems to give a formal representation of the infor-
mal property at the �rst glance, deeper investigation reveals that it is not the property
we intended to specify.

If a user joins the session, leaves it and joins it again, the number of join-operations
is equal to two and the property is violated. However, the formal property exactly
expresses what the informal property states which means that the informal property
is not free of ambiguity. To rectify the property we have to change it to:

8o 2 DVC UAPSessionReq :

2(#[(o inReq ; (�; o; add dvc parties ; (uid)))]�
#[(o inReq ; (�; o; remove dvc parties ; (uid)))] < 2))

This relatively simple example shows already that it is not always easy to identify the
ambiguities of the informal speci�cations when deriving formal properties from it.

Scenarios are frequently used in informal speci�cations to illustrate certain behavior
aspects. Behavioral constraints as they can be derived from scenarios, can frequently
be expressed by using precedence properties. Consider Figure 3 for a scenario for
adding parties to a video conference session. It is relatively straightforward to derive
LTL properties from such scenarios. The entire scenario can be expressed using LTL.
Let us consider one part of this scenario which requires that when DVC parties are
added, the DVC status has to be set to LOCKED before any other action can be
taken. A �rst property that one might to express is that we always have to set the
DVC status to LOCKED before we can call the list dvc parties-operation: Each time
we call add dvc parties, we will not call list dvc parties unless we have set the DVC

6

add_dvc_parties

userIdList

inout: userId List

DVC_GUI

DVC_GUI_STUB

set_dvc_status(LOCKED)

list_dvc_parties()

out: dvcPartyInfoList

add_party(userId)

out: partyId

Interface
REQ

DVC_UAP UAP Access
Client

REQ Intf

GSEP

Itf
Access

Itf
ReqAPI

USS/GSS
DVC

DVC_Fact

set_dvc_status(UNLOCKED)

return add_parties

Figure 3: Add Parties Scenario

status to LOCKED before.

8o 2 DVC UAP REQ :

2((o inReq ; (�; o; add dvc parties ; �))!
:(o inReq ; (o; �; list dvc parties ; �)) U
(o inReq ; (o; �; set dvc status; (LOCKED))))

Let us �nally consider a more complicated property. It states that a chairperson (the
owner) of a DVC session is not allowed to exit the session (by calling the exit dvc session
operation) unless he/she has transfered the session ownership to another person. At
�rst glance this seems to be straightforward. However, �nding a correct formal rep-
resentation turns out to be quite di�cult. A person is automatically chairman of
a session if he has requested the session creation by calling the request dvc service
operation. We now identify the events that we need for expressing the property.

e1 = (o inReq ; (�; oid; request dvc service ; (�; uid1 ; �; �; �)))

The �rst event denotes the invocation of the request dvc service-operation. We skip
the details of the operation and only note that it takes �ve parameters, only the second
parameter is of interest for the speci�cation of the property. This parameter speci�es
the user id for the user requesting the service.

e2 = (o outRep; (�; oid; request dvc service ; (�; �; �; �; i req)))

The second event denotes the termination of the request dvc service-operation. This
operation returns an interface reference (object reference) as out parameter. The
object reference returned by this operation identi�es the interface that the user can
use to add parties to the requested session, to transfer the ownership of a session etc.

e3 = (o inReq ; (�; i req ; exit dvc session ; �))

The third event describes the invocation of the exit dvc session operation, i.e. the
operation that the chairman is not allowed to call.

e4 = (o inReq ; (�; i req ; transfer dvc ownership ; (uid2))) ^ uid2 6= uid1
e5 = (o inReq ; (�; i req ; transfer dvc ownership ; (uid2))) ^ uid2 = uid1

7

The fourth event describes the transfer of the session ownership from one user to
another user while the �fth event describes the case where the ownership is not changed
(it is transfered from a user to that user).

Having described these �ve events we are now ready to give the formal represen-
tation of our property:

2((e1 ! 3e2)! ((:e3 U e4) ^ (2(e5 ! :e3 U e4))))

In contrast to DisCo [9] and TLA [11], we only use a limited set of prede�ned events
to specify behavior, no internal states or internal transitions are used to express be-
havior. We agree with Lamport [10] that purely temporal speci�cations are often hard
to understand. However, in our approach these di�culties are compensated by the
possibility to automatize several steps in the testing process as we will show in the
next section.

Furthermore, it turns out that many properties as they are derived from industrial
speci�cations, can be classi�ed and there is a set of property structures that occur
frequently. Based on this observation it is possible to o�er a graphical user interface
to the property speci�er where he only has to select a property class from a list and
then �ll out the missing artifacts.

4 Automatization

In this section we will demonstrate some bene�ts of having these formally expressed
properties. We show how the automatization of several testing steps can be achieved
thereby illustrating how the combination of EBBA and LTL can be used to facilitate
the testing process.

Consider Figure 4 for an overview about the development process of distributed ap-
plications in the CORBA framework. The white boxes depict the normal development
process of distributed applications; the gray boxes describe the extensions proposed in
this paper. Rounded boxes denote tools.

The IDL speci�cation of the interfaces is passed to an IDL compiler which generates
stub code and header �les which are then linked to the actual implementation code
thereby shielding the developer of the distributed application from the di�cult task of
handling the distribution issues. Up to this point, the process is straightforward and
mostly well-understood by today's software industry. But here is where we propose the
innovative part developed in our work: In addition to passing the IDL speci�cations
to the IDL compiler we also feed a code generator with the IDL speci�cations. This
code generator tool generates some generic observation- and validation code which can
then be linked to the actual implementation, thereby providing an on-line observer and
-validator.

When running the distributed application we can pass our formally speci�ed prop-
erties to the on-line validator which will then compare them to the observed behavior
of the system and report all property violations.

When expressing properties it is not necessary, but certainly possible, to give a more
detailed behavior speci�cation. When expressing properties we can concentrate on a
selected set of properties that we wish to be exhibited by the system.

The abstraction level that is provided by an IDL speci�cation makes it also an
excellent place for expressing properties that can later be tested at run-time.

8

Figure 4: General Framework

The generic code generated by our code generation tool is comprised of two major
parts: one part deals with the observation of the distributed system and the collection
of traces, the other part is responsible for the analysis and interpretation of the traces.

The notion embodied in the observation part of our approach is not new: Many
distributed platforms have been implemented so that run-time observation can be
exploited. For example, CORBA compliant Orbix from IONA provides the �ltering
mechanism; the CHORUS Cool distributed platform o�ers a mechanism similar to Or-
bix �lters, termed interceptor. We make the assumption that a run-time observation
mechanism, is provided by the distributed platform. This assumption is not restric-
tive. In the case that such a mechanism is not o�ered by the distributed platform, a
proxy object can be added for each object within the system playing the role of the
observation �lter.

Using the �lter mechanism provided by IONA's Orbix CORBA platform [7] we
can spy on the distributed system. Orbix o�ers two kinds of �lters: process �lters and
object �lters. Filters allow the execution of additional code for each �ltered event.
A process �lter intercepts all incoming and outgoing operation requests for a given
process. When objects inside a process invoke an operation on an object in the same
process, then these invocations are also fully visible to the process �lters. Object �lters
are executed before and after each operation invocation on an object. Orbix process
�lters also allow the possibility to piggy-back data to operation request as long as the
receiving process removes the added data before passing it on to the object.

The way of an operation request from one object to another object is depicted in
Figure 5. The Orbix �lters that are used on the way are numbered in the order
they are executed. As shown in this Figure, we have six �lters which map to our

9

Figure 5: Orbix Filters

observable events as indicted in Table 2. It can be seen that our framework captures
the abstraction level that is useful for �lling the needs of todays industrial software
development.

Filter level Event type
1 process o outReq

2 process N/A
3 object o inReq

4 object N/A
5 process o outRep

6 process o inRep

Table 2: Mapping Orbix �lters to observable events

The generation of test oracles from properties speci�ed in LTL is also a well-
understood problem and can be automized.

When running the system we need to collect the test traces and to reorder them at
the observer side. As the observation mechanism can be dynamically activated and
deactivated { �lters can be dynamically attached to objects and detached { the impact
of the validator on the system is marginal if no properties are to be tested. When
feeding the observer with a property, the observation mechanism for the corresponding
events would be activated and thereafter the validator would receive noti�cations about
these two operations from the objects. As soon as a property gets violated, the on-line
validator will report a property violation.

A screen dump of MOTEL, the MOnitoring and TEsting tool is given in Figure 6:
LTL properties can be speci�ed and activated (Window entitled \Properties") and
relevant events can be observed (window entitled \MOTEL"). Test oracles for the
properties are automatically generated (bottom window). The observed events are
analyzed and property violations are reported to the user (window entitled \Property

10

violation"). For a detailed description of MOTEL we refer the interested reader to
[12].

Figure 6: MOTEL screen dump

5 Discussion

The set of observable events turned out to be largely su�cient for specifying the
properties we derived from the informal documentations. Most properties could be
expressed at the object level using the two event types o inReq and o outRep.

The abstraction level we achieve through event{based behavioral abstraction with
our events matches the abstraction level that the properties in the documentation are
expressed at.

Since its inception we have identi�ed several weaknesses of our property language.
Firstly, the property language does not allow for expressing properties on complex data
structures like lists and various records that are somewhere de�ned in the program and
later used as parameters. Since most operations use these complex data structures,
expressing properties on parameters is hardly possible with our property language
which considers only simple data types like integers.

Secondly, it is not always easy to come up with a temporal logic formula for complex
properties. While many properties can be speci�ed relatively easily, there are some
more complex properties which require a good deal of experience in developing LTL
formulas. This problem could be �xed in the following manner. Deeper investigation
would identify the property classes that frequently occur in industrial services. Once
several classes have been identi�ed, tools should be constructed that help the property
speci�er to choose the right property structure. He might even be unaware of the fact
that temporal logic is behind the property he expresses.

11

Other problems arise from the informal documentation. The informal documenta-
tion gives in many cases only limited information about the properties that are useful
to specify. While many properties can be derived from the SPOT documentation, the
practical relevance of the speci�ed properties remains unclear. However, we assume
that the persons writing such an informal documentation and the persons designing
and implementing the service could derive useful properties relatively easily.

Another problem results from the use of scenarios in the documentation. Since
they are supposed to re
ect a single system run, they do not, in general, give enough
information about special cases that might be encountered. In such a case, a for-
mal property which requires that something always has to happen as speci�ed in the
scenario might be based on wrong assumptions.

We are currently investigating several other issues: The observable events we were
considering are primitive events (as opposed to aggregate events). The speci�cation
of aggregate events could be used to facilitate the speci�cation of more complicated
properties.

We are extending the observer tool that we have developed for CORBA-based ap-
plications. The basic observation mechanism has already been implemented (including
dynamic activation/deactivation of event-generating code fragments, test oracle gener-
ation, time-stamping- and reordering mechanism etc.). To better address the problem
of scalability we are also investigating distributed observers.

In order to tackle speci�c problems in distributed applications we are currently
tailoring and extending our model for the two areas of fault tolerance and security.
For example, additional events, e.g., for check-pointing and node crashes, will make
our model applicable for the speci�cation of a large number of properties related to
fault tolerance.

6 Conclusions

There are many solid theoretical foundations related to testing and formal approaches
but there seems to be a lack of assimilation of this work into the mainstream testing
process. In particular, formality is di�cult to justify in industrial projects. Hiding part
of the formality and automizing parts of the testing process can break some barriers
currently present.

In our approach, only the property speci�cation must be derived manually. The
observation- and validation code, the selection of �lters to activate, the examination
of the observation messages and the property checking are all derived automatically.

The landmark characteristics of our approach are the expression of properties in
an implementation language independent manner and the veri�cation those properties
at system run-time without requiring any help from the programmer/tester to map
the properties to the implementation level. The observation of the distributed system
and the analysis of the test traces is also completely hidden from the service tester.

An IDL speci�cation is written at a level of abstraction that makes to particularly
suitable for providing a basis on which to express behavioral properties.

We have outlined how some properties can be speci�ed in this framework. We have
shown how the property relevant information can be collected in such systems.

7 Acknowledgements

This work is being partially supported by Swisscom. We would like to thank C.
Delcourt and S. Grisouard at Alcatel Alsthom Research, Paris, and P.-A. Etique at

12

Swisscom, Bern, for many interesting discussions. We thank H. Karamyan and F. Pont
for their work on the CORBA observer implementation.

References

[1] P. Bates. Debugging heterogeneous distributed systems using event-based models
of behavior. ACM Transactions on Computer Systems, 13(1):1{31, February 1995.

[2] M. Chapman and S. Montesi. Overall Concepts and Principles of TINA, Version

1.0. TINA-C, 1995.

[3] F. Dietrich, X. Logean, S. Koppenh�ofer, and J.-P. Hubaux. A temporal logic-
based approach to the design of object-oriented distributed systems. Technical
report, Swiss Federal Institute of Technology, Lausanne, 1998. Available from the
authors.

[4] L. Dillon and Q. Yu. Oracles for checking temporal properties of concurrent
systems. In Proceedings of the 2nd ACM SIGSOFT Symposium on Foundations

of Software Engineering, volume 19, pages 140{153, December 1994.

[5] J. Goguen and Luqi. Formal methods and social context in software develop-
ment. In TAP-SOFT'95: 6th International Conference on Theory and Practice

of Software Development, number 915 in Lecture Notes in Computer Science,
pages 62{81. Springer-Verlag, May 1995.

[6] G. Holzmann. The theory and practice of a formal method: NewCoRe. In Pro-

ceedings of the IFIP World Computer Congress, volume I, pages 35{44, Hamburg,
Germany, August 1994. North-Holland Publ., Amsterdam, The Netherlands.

[7] IONA Technologies PLC. Orbix 2: Programming guide, Version 2.2, March 1997.

[8] L. Jagadeesan, C. Puchol, and J. Olnhausen. A formal approach to reactive
systems software: A telecommunications application in ESTEREL. Journal of

Formal Methods in System Design, 1995.

[9] H.-M. J�arvinen, R. Kruki-Suonio, M. Sakkinen, and K. Syst�a. Object-oriented
speci�cation of reactive systems. In Proceedings of the 12th International Confer-

ence on Software Engineering, pages 63{71. IEEE Computer Society Press, March
1990.

[10] L. Lamport. A simple approach to specifying concurrent systems. Technical
report, Digital Equipment Corporation, SRC, 1988.

[11] L. Lamport. TLA in pictures. IEEE Transactions on Software Engineering, pages
768{775, September 1995.

[12] X. Logean. MOTEL { MOnitoring and TEsting tooL for distributed applications.
Technical report, Swiss Federal Institute of Technology, 1998. Available from the
authors.

[13] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1991.

[14] Z. Manna and A. Pnueli. Tools and rules for the practicing veri�er. Technical
report, Stanford University, June 1991.

13

