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Abstract

Medical imaging is a rapidly growing field in which diffusion imaging is a recently developed

modality. This novel imaging contrast permits in-vivo measurement of the diffusion of water

molecules. This is particularly interesting in brain imaging where the diffusion reveals an

amazing insight into the neuronal organization and cerebral cytoarchitecture. Diffusion

images contain from six up to hundreds of values in each voxel and are represented as tensor

fields (Diffusion Tensor Imaging (DTI)) or as fields of functions (High Angular Resolution

Diffusion (HARD) imaging). To fully extract the large amount of data contained within

these images new processing and analysis tools are needed. The aim of this thesis is the

development of such tools.

The method we have been mainly focusing on for this purpose is the level set method.

The level set method is a numerical and theoretical tool for propagating interfaces. In image

processing it is used for propagating curves in 2D or surfaces in 3D for delineation of objects

or for regularization purposes. In this thesis we have explored some of the numerous aspects

of the level set frame work to see how the diffusion properties can be used for segmentation.

For segmentation of tensor fields we have considered similarity measures for comparison

of tensors. From these similarity measures several applications of the level set method

have been developed for the segmentation of different structures. Different measures of

similarity have been used dependent on the application. When segmenting white matter

regions in DTI, the similarity measure emphasizes anisotropic regions. The segmentation

algorithm itself has a very local dependence since white matter, in general fiber tracts,

experiences different diffusion in different parts of the structure. The presented results show

segmentations of the major fiber tracts in the brain. Other structures, such as the deep

cerebral nuclei, that are mainly composed of gray matter, have more homogenous diffusion

properties than white matter structures. Therefore, in these structures we maximize the

internal coherence within the entire structure by using a region based approach to the

segmentation problem. Segmentations of the thalamus and its nuclei as well as on tensor

fields from fluid mechanics are presented.

For High Angular Resolution Diffusion (HARD) images, two methods for fiber tract

segmentation are presented based on different types of coherence. The coherence is either

measured as the similarity between fibers obtained from a tractography algorithm, or the

similarity of scalar values in a five-dimensional non-Euclidean space. The similarity between
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xviii Abstract

two fibers is determined by a counting strategy and is equal to the number of voxels they

have in common. A spectral clustering algorithm is then used for grouping fibers with

a high inter-resemblance. When segmenting white matter with the level set method, we

propose to expand the space we are working in from a three-dimensional space of Orientation

Distribution Functions (ODF) to a five-dimensional space of position and orientation. By

a careful definition of this space and an adaptation of the level set to five dimensions the

fibers tracts can be segmented as separated structures. We show some preliminary results

from segmentations in this 5D space.

The approaches proposed in this thesis permit a consideration of the fiber tracts and

gray matter structures as an entity, allowing quantitative measures of the diffusion without

losing information by simplifying the images to scalar representations.



Version Abrégée

L’imagerie médicale est un domaine en grande expansion et une des dernières modalités

développées dans ce domaine est l’imagerie de diffusion. Ce nouveau contraste nous permet

de mesurer la diffusion des molécules d’eau in vivo. Cet effet est particulièrement intéressant

en imagerie cérébrale puisqu’il peut fournir une meilleure compréhension de l’organisation

neuronale et de l’architecture des cellules cérébrales. Contenant une gigantesque quantité

de donnés, ces images doivent être traitées et analysées pour en extraire l’information

intéressante, ce qui justifie la nécessité de nouveaux outils. L’objectif de cette thèse est le

développement de ce genre d’outils pour mieux analyser des données de ce type d’images,

surtout des champs tensoriels.

La méthode principalement étudiée est la méthode des courbes de niveaux. Les courbes

de niveaux sont un outil numérique et théorique pour la propagation des fronts. Dans le

traitement d’image ils sont utilisés pour la segmentation des objets par la propagation des

courbes en 2D ou des surfaces en 3D. Dans cette thèse nous avons exploré les possibilités

d’utiliser l’approche de courbes de niveaux pour la segmentation en utilisant les propriétés

de la diffusion.

Pour la segmentation des champs tensoriels nous avons exploré des mesures de simi-

larité pour la comparaison entre tenseurs. A partir de ces mesures de similarité plusieurs

applications ont été développées pour la segmentation des structures différentes. Différentes

mesures de similarité ont été utilisées en fonction de leur application. Pour la segmentation

de régions de matière blanche dans des champs tensorielles, une mesure qui met en évidence

l’anisotropie a été utilisée pour une propagation de front très locale. Nous montrons des

résultats pour la segmentation des tractus de fibres majeurs dans le cerveau. A cause de

la nature des données tensorielles, le problème de croisement des fibres ne peut pas être

résolu avec cette méthode. C’est pourquoi nous utilisons des images de diffusion de haute

résolution angulaire pour segmenter ce genre d’images. La segmentation est faite en définis-

sant un nouvel espace non-euclidien de cinq dimensions décrivant l’orientation et la position

d’un tenseur et en adaptant les courbes de niveaux à cet espace de haute dimension.

Nous présentons aussi une autre méthode de courbes de niveaux basée sur des régions

pour segmenter des champs tensoriels. En imagerie de diffusion cette méthode a été adaptée

pour segmenter des structures de matière grise mais elle a aussi été appliquée sur des champs

tensoriels provenant de la dynamique des fluides. Une méthode pour segmenter des paquets

xix
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(tractus) de fibres a aussi été présentée en utilisant un algorithme de groupement spectral.

Les méthodes proposées dans cette thèse permettent des mesures quantificatives sans

pour autant devoir simplifier les images tensorielles et les images de fonctions à des images

scalaires.
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Abbreviations

ADC Apparent Diffusion Coefficient

DT Diffusion Tensor

DTI Diffusion Tensor Imaging

DT-MRI Diffusion Tensor Magnetic Resonance Imaging

DSI Diffusion Spectrum Imaging

FA Fractional Anisotropy

fMRI functional Magnetic Resonance Imaging

FID Free Induction Decay

HARD High Angular Resolution Diffusion

HARDI High Angular Resolution Diffusion Imaging

IS Integrated similarity

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

NMR Nuclear Magnetic Resonance

NTSP Normalized Tensor Scalar Product

ODF Orientation Distribution Function

PAS Persistent Angular Structure

PDE Partial Differential Equation

PDF Probability Distribution Function

POS Position Orientation Space

RGB Red-Green-Blue, vector used for color images

RF Radio Frequency

RST Reynolds stress tensor

SNR signal to noise ratio

SWSA Schaltenbrandt atlas

TSP Tensor scalar product

TD Tensor Difference

2D two-dimensional

3D three-dimensional

ND any number of dimensions
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Diffusion MRI

B0 external magnetic field

B1 time-varying rotating magnetic field acting perpendicular to B0

M spin magnetization vector

γ gyro magnetic ratio specific for each kind of nucleus

ω0 the Larmor frequency, the resonance frequency for the spin system, ω0 = γB0

τ the time the RF pulse is acting

α tip angle between M and the z-axis (along B0, α = γB1τ

T1 spin-lattice relaxation time

T2 spin-spin relaxation time

Gx, Gy, Gz linear field gradients along x, y, z

δ field gradient duration

ϕ phase-shift induced by the linear field gradients, ϕ = γδGyy

k-space reciprocal space for sampling of the MR-signal

r, r′ position vectors

Ps(r
′ | r, t) probability of self-diffusion

P (r′, t) probability of finding a particle at position r′ at time t

ρ(r) particle density at position r

J flux

D diffusion coefficient

∆ the time between the two gradient pulses

g linear field gradient in any direction, u where g = gu

S the measured signal in the MRI experiment

q-space reciprocal space for sampling the signal in a diffusion MRI experiment, q = 1
2πγδg

R total displacement, R = r − r′

F the Fourier transform, the inverse is denoted F−1

b-value descriptor for the MR sequence, b = γ2δ2
g

2∆ = q2∆

D the diffusion tensor

d(x) diffusion in direction x, d(x) = xDx

λ eigenvalue, for a diffusion tensor there are three, λ1 ≥ λ2 ≥ λ3

ei eigenvectors corresponding to λi

ς length of vector R = ςu where | u |= 1

D1 : D2 Tensor scalar product between D1 and D2.

Defined as Trace(D1D2).
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Level set method

φ (x(t), t) the level set function dependent on time, t and position x

Γ symbol for curve/surface/hyper-surface in R
N such that Γ(t) := {x(t) | φ (x(t), t) = 0}

φ < 0 for points lying inside Γ and φ > 0 for points lying outsideΓ

F propagation speed for interface embedded by φ

n normal

κn principal curvatures

G Gaussian curvature

M mean curvature

φx the derivative of φ with respect to x

φxx second derivative of φ with respect to x

φxy cross derivative of φ with respect to x and y

Pp projection operator onto a space orthogonal to the vector p

p a vector p = (p1, p2)

⊗ tensor product

E energy functional with the general form
∫

Ω f(x, φ,∇φ)dΩ

δij Kroeneckers delta function

f a monotonically decreasing function such that

f : [0, +∞] → R
+ and f(0) = 1 and f → 0 as x → ∞

I an image I : [0, a] × [0, b] → R
+

gij a metric, in general expressed as: f(∇I)[δij ]

C(p) parametrized planar curve: C(p) : [0, 1] → R
2

LR length definition in Riemannian space,
∫

C(p) gijdxidxj

AR area definition in Riemannian space,
∫

C(p) gijdxidxj

Ri a region with boundary ∂Ri

pi(s) probability of voxel s belonging to region, Ri

c1 mean over region φ ≥ 0,
�
Ω

Hε(φ)Idx�
Ω

Hε(φ)

c2 mean over region φ < 0,
�
Ω

(1−Hε(φ))Idx�
Ω

(1−Hε(φ))

ds Euclidean arc length
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General

∇ the gradient operator

∇2 Hessian derivative operator which corresponds to the second derivative

∇· divergence operator
∂
∂t the derivative with respect to t

det determinant

〈〉 mean

∝ proportional to

S2 the unit sphere

Ω image domain

∂Ω the boundary of Ω

M 3D Euclidean space

% length of voxel sides in M

n numbering of fibers

vn
i position of point i of fiber n

A affinity matrix

Λ eigenvalues of A

V eigenvectors of A

Vd d first eigenvectors of A

N (x) neighborhood of x

T threshold

HT (x) Heaviside function

α, β, γ weighting parameters

dij distance metric between two tensors

ci the sum of distances dij to all other tensors within the region, Ri

Hi(j, φj(s)) coupling force for surface i with respect to surface j

Dtyp,i the tensor best representing the tensors within region Ri

ϕ, θ angles on the unit sphere
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Fluid dynamics

U(x, t) velocity field

ρ(x, t) continuum density field

L characteristic length scale

U speed

ν molecular viscosity

Re Reynolds number, Re = UL/ν

〈U(x, t)〉 mean velocity field

u(x, t) fluctuating velocity field 〈u(x, t)〉 = 0

〈uiuj〉 Reynolds stress tensor

k(x, t) turbulent kinetic energy, (〈u2
1〉 + 〈u2

2〉 + 〈u2
3〉)/2

aij anisotropic stress 〈uiuj〉 − 2
3kδij



xxvi Notations and symbols



Introduction and

Preview 1
1.1 Motivation

Diffusion imaging is a new imaging modality that permits in-vivo measurement of the diffu-

sion of water molecules. This imaging contrast is particularly interesting in brain imaging

where it reveals an amazing insight of neuronal organization and cerebral cytoarchitecture.

The diffusion images contain a large amount of data and to fully extract all information

in the images they must be processed and analyzed. Image processing and analysis is also

a relatively new science for automatic treatment of digitized images and videos that has

grown with the use of computers and the multimedia society. An important branch of image

analysis is dedicated to medical image analysis with the goal of improving the diagnostic

and analytical tools for doctors and researchers. Automatic procedures for localization and

delineation of structures remove the subjectivity of the human evaluator and are of great

help for inter-subject comparisons.

Most traditional imaging methods in medicine produce gray scale images where the

different gray levels correspond to different physical properties of the tissues. A digital gray

scale image is a two- or three-dimensional grid of scalar values and for this type of image

numerous image processing and analysis methods exist. For a vector valued image, where

each pixel or voxel (as it is called in 3D) contains a vector as for example color images

or directional data images, such methods also exist but are more complicated due to the

increased complexity of the data. In diffusion imaging the complexity of the data increases

even further and each voxel contains from six up to hundreds of values. For these new type

of data new analysis methods need to be developed to fully exploit the possibilities that

these images provide. Developing liable and robust analysis tools for the diffusion data will

hopefully contribute to improve our knowledge of brain anatomy and brain function.

1



2 Chapter 1. Introduction and Preview

1.1.1 Aim of the thesis

The aim of this thesis has been to develop tools to make the information contained in these

multi-valued images more accessible and quantifiable. The methods are general approaches

for segmentation of tensor fields and fields of functions but the principal application is

images from Diffusion Weighted Magnetic Resonance Imaging. At the beginning of this

thesis, the only approaches available for analyzing diffusion data were scalar simplifications

and fiber tracking. Throughout this thesis new tools for segmenting and localizing structures

made visible through this new modality have been developed. Fiber tracking provides

visually compelling images giving a qualitative appreciation of the neuronal connectivity

but is often hard to quantify. Quantification is a critical issue for clinical studies and for

diagnosis of neurological diseases and surgical planning. The approaches that we propose

in this thesis are important since they delineates fiber tracts and gray matter structures as

an entity which will allow quantification measures of the diffusion.

The framework we have been mainly focusing on for this purpose is the level set method,

in particular the framework of active contours. The reason we have chosen this particular

framework is the possibility of using a variety of features simultaneously. This can be image

based features derived from the diffusion data or features of the segmentation result itself.

The level set method is a numerical tool for propagating interfaces and in image processing

they are used for propagating curves in 2D or surfaces in 3D for delineation of objects or

for regularization purposes. The liberty of formulation of these propagating fronts gives us

countless possibilities. Often the fronts are driven with the purpose of finding a minimum of

an energy functional derived from the image but they can also be driven by other physical

properties of the data. In this thesis we have explored some of the numerous aspects of

this level set frame work to see how the diffusion properties can be used for finding useful

image segmentations. An aspect we have concentrated on is how to compare diffusion

properties for diffusion tensors (DT) and how these measures of similarities can be used for

propagating fronts.

1.1.2 Main contributions

The main contributions of this thesis are illustrated in Figure 1.1 and can be summarized

as follows:

• Development of a fully automatic clustering method for grouping fibres into bundles.

• Analysis of similarity measures for image segmentation purposes and a proposal of

a new similarity measure that detects very subtle differences in diffusion between

tensors.

• A novel approach to segmentation of tensor fields by using measures of similarity.

• Development of a method for white matter segmentation with the level set method

using the full tensor information.
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• Development of a region based segmentation method for tensor fields, especially adapt-

ed for gray matter segmentation.

• Definition of a new non-Euclidean 5D space of orientation and position for segmen-

tation of high angular resolution diffusion images.

• Implementation of level sets in a 5D non-Euclidean space.

1.2 Outline

This dissertation is organized as follows:

Chapter 2 Presentation of MR imaging basics with an emphasis on diffusion MRI. This chapter

provides a background on image acquisition and better understanding of the nature

of the data.

Chapter 3 Presentation of a new clustering algorithm developed for grouping of fiber tracts. This

clustering algorithm can be used as a practical visualization tool and as the bridge

between a qualitative and quantitative analysis of the data. It is used to show the

connection between fiber tractography and fiber tract segmentation by showing that

fiber tracts can be considered as bundles of coherent fibers.

Chapter 4 Presentation of the level set method and its use in image segmentation. Together

with Chapter 2 this is the background on which this thesis is founded. This is an

important chapter for understanding the underlying principles of the level set method

that is used for segmenting structures in Chapter 5, Chapter 7 and Chapter 6.

Chapter 5 Presentation of similarity measures between DTs and demonstration of how to use

these similarity measures to define a front propagation with a local dependence. The

front propagation is used for segmenting some of the major fiber tracts from DT-MRI

in the human brain. The problem of regularizing curves with tubular structure is also

addressed.

Chapter 6 Segmentation of structures from high angular resolution diffusion images (HARDI)

by changing the representation of the image. The 3D image of functions is extended

to a 5D space of position and orientation. We show how to apply a region based level

set method for gray scale images in this high-dimensional, non-Euclidean space. The

adaptation of the mean curvature in such as high-dimensional space is discussed.

Chapter 7 We show how a similarity measure can be used to define regions which can be used

to define an energy functional. Minimizing this functional corresponds to the optimal

segmentation of the tensor field. This method is used for segmenting the thalamus

and its nuclei from DT-MRI. We also show examples how it can be used in fluid

dynamics.
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Figure 1.1: Figure illustrating our main contributions (corners of the image) in relation

to the state-of-the-art (the center of the image). Current state-of-the-art includes image

acquisition and fiber tractography from DT-MRI and Diffusion Spectrum Imaging (DSI).

From this our four main contributions are derived. Top row shows examples of white

matter segmentation where the top left corner is from DT-MRI and top right corner from

DSI. Bottom left corner illustrates the gray matter segmentation method we developed for

the thalamus and its nuclei. Bottom right corner represents our clustering algorithm for

fibers of high angular resolution.
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Chapter 8 Conclusion, we will here give a resume of our achievements and a discussion of future

application and research topics.
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MR and Diffusion

Imaging 2
2.1 Introduction

We will here introduce the basic principles ∗ behind the images on which we will apply

most of our new methods. First, we will describe the principles behind magnetic resonance

imaging (MRI), from the underlying physics to the image acquisition. We will then discuss

the self-diffusion of molecules and how it is related to the neuronal architecture of the brain.

Diffusion can be measured by an adapted MRI experiment and we will show the connection

between the physical principles of diffusion and imaging. We will then present different

models of the diffusion, in particular the diffusion tensor (DT) model and the diffusion

spectrum imaging (DSI).

Most of the vocabulary that we will use further on will be defined in this chapter as

well as in Chapter 4 that will set the mathematical background of the image segmentation

method we will adapt. Together, these two chapters present the state-of-the-art.

2.2 Magnetic Resonance Imaging

2.2.1 Brief history

Imaging human internal organs with exact and non-invasive methods is very important for

medical diagnosis, treatment and follow-up as well as for clinical research. Today, one of the

most important tools for this purpose is the MRI. MRI scanners are based on the discovery

of the nuclear magnetic resonance (NMR) phenomenon that was detected independently by

Bloch [18] and Purcell [83] in 1946. They discovered that an atomic nucleus with unpaired

protons in a strong magnetic field rotates with a frequency depending on the strength of

∗Information collected from [26][67][53]

7



8 Chapter 2. MR and Diffusion Imaging

the magnetic field and the nature of the atom. If it is submitted to a radio frequency (RF)

field of this particular frequency, which is the resonance frequency, it absorbs energy and

when the RF field is removed this energy is emitted through an electromagnetic wave of the

resonance frequency. For this discovery Bloch and Purcell were awarded the Nobel Prize in

Physics in 1952 [26].

The MR phenomenon was initially used mainly for studies of the chemical structure of

substances. The first two-dimensional magnetic resonance (MR) images were reconstructed

in 1973 by Lauterbur [63]. By introducing gradients in the magnetic field he made it

possible to determine the origin of the emitted RF-signals. The same year, independently

of Lauterbur, Mansfield and Grannell demonstrated the Fourier relationship between the

spin density and the NMR signal acquired in the presence of a magnetic field gradient [70].

These discoveries were ground breaking and led to the currently used application of MR in

medical imaging. It also led to the Nobel Prize in Medicine for Lauterbur and Mansfield in

2003.

Even more Nobel Prizes [1] have been attributed for discoveries in the field of MR

imaging. Richard Ernst was awarded the Nobel Prize in chemistry 1991 for his contributions

on further development of the methodology of high resolution nuclear MR spectroscopy in

1975.

The MRI medical scanners have been available since 1980 and since then the use of MR

scanners has rapidly increased, in 2002, there were approximately 22 000 in use worldwide,

and more than 60 million MRI examinations were performed [53]. Compared with other

imaging modalities MR has many advantages, first of all it is non-invasive and to present

knowledge has no secondary effects. It provides an amazingly strong imaging contrast

between tissues and it can, as we will see in this chapter, be adapted to image other

physical phenomenons.

Today, the most frequently used MRI method in medicine is the anatomical MRI de-

signed to differentiate tissue structures. It is used for basically any part of the body, brain,

knees, arms etc. Another more recent imaging method is the functional MRI (fMRI) for

mapping of activation patterns in the brain. This is an important modality for better un-

derstanding of function. When a brain region is activated new energy must be transported

to this region which leads to an increased blood flow in this part of the brain. This can be

imaged by repetitive MR scans and detected by appropriate signal processing methods. In

Figure 2.1 results from an fMRI scan is exposed on anatomical MRI scans. In this thesis

we will focus on a third modality, the diffusion weighted MRI. This imaging method maps

the movement of water molecules in the brain which is dependent on the tissue cytoarchi-

tecture. This is particularly useful in fibrous regions where the diffusion is restricted in

coherent direction which give insight in the neuronal connectivity.

2.2.2 Physical principles of MRI

Protons, neutrons and electrons have an angular momentum known as spin. Each spin can

have the values ±1
2 , 3

2 , 5
2 .... Since spins in atomic nuclei with pair number of protons will
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Figure 2.1: Examples of two different types of MRI. The background image showing

the contrast between different tissue structures is an anatomical MRI. The red zones are

activated areas in the brain highlighted by functional MRI.

cancel each other, only atoms with an odd number of protons have a net spin which is

necessary for being NMR-active. The most typical nucleus to use in the NMR experiment

is the hydrogen nucleus, 1H, that has the spin states ±1
2 . Since the signal of one spin is

impossible to measure, spins are in general considered as an ensemble and are described

in terms of precession around a spin magnetization vector, M. When no external field is

applied the spins are randomly distributed between the spin up (+1
2) and spin down(−1

2)

position and the net spin of the ensemble of spins therefore equals zero.

In the presence of an external magnetic field B0 (a polarizing field), the spin magne-

tization vector M will align itself with the field and the spins start precessing around B0.

The frequency of precession is the natural resonance frequency of the spin system. This

resonance frequency is known as the Larmor frequency ω0 = γB0 where γ is the gyromag-

netic ratio specific for each kind of nucleus. When considering a spin system we will define

a laboratory frame in which M appears to be stationary and aligned with B0. The axis

along which B0 acts, is the longitudinal z-axis and the plane orthogonal to the z-axis is the

transverse xy-plane. For a more detailed description see [26][67].

To obtain a measurable signal from the experiment the system must absorb energy that

can later be emitted and measured. The absorbtion of energy is made by exciting the system

with another time-varying rotating magnetic field, an RF pulse B1, acting perpendicular

to B0 and oscillating with the Larmor frequency, ω0. The RF-pulse tilts M away from

the z-axis and M starts precessing about the rotating B1-field. The tip-angle between M

and the z-axis is dependent on the duration of the RF-pulse. For the time, τ , the angle

is given by α = γB1τ . The cases α = 90◦ and α = 180◦ are the most commonly used in

NMR-imaging and are called a 90◦ pulse and a 180◦ pulse respectively. When the RF-pulse

is removed, M will fall back to its initial position aligned with B0, this process is called

relaxation. It is during the relaxation that the energy that has been added to the system

by the RF pulse is emitted and produces an RF signal, the free induction decay (FID).

This signal can be measured by an antenna or receiver coil and be interpreted as we will

see later, to generate the image.

The relaxation process contains two kinds of relaxations. The spin-lattice (longitudi-

nal) relaxation and the spin-spin (transverse) relaxation. The spin-lattice relaxation process
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involves the exchange of energy between the spin-system and the surroundings. The equi-

librium state is when the magnetization vector M is aligned with the longitudinal B0. The

time for the system to reach equilibrium is the spin-lattice relaxation time and is described

by the time T1. The spin-spin relaxation is the process where spins come to thermal equilib-

rium with themselves, this is also called the transverse relaxation and it is described by the

time T2. The difference in the physical properties of the different tissue types is reflected

in the relaxation times. It is this mechanism that generates the contrast between different

tissue types in imaging (T1, T1 etc. see Figure 2.2).

Figure 2.2: a) T1-weighted MR image. b) T2-weighted MR image.

2.2.3 Image formation and k-space

As previously mentioned, the Larmor frequency is dependent on the external field, B0. By

using a polarizing gradient field Gz linearly variable along the z-axis but constant in time,

the Larmor frequencies will change depending on its position. Due to this effect, a slice

selection can be made by letting B1 oscillate with different frequencies dependent on the

choice of slice to excite. Linear field gradients along the x and y-axis, Gx and Gy, are

applied to determine position in the transverse xy-plane. Generally, Gy is first applied and

introduces a phase-shift in the FID-signal dependent on the position along the y-axis. The

phase-shift is due to the difference in frequency that varies with position. It is determined

relative to the phase introduced by B0, γB0δ. The phase-shift is given by:

ϕ = γδGyy, (2.1)

where γ is the gyro-magnetic ratio, δ is the length of time over which Gy is applied and y

the position.

When the field gradient is removed the frequencies will return to their initial value but

the phase-shifts between nuclei remain at different positions on the y-axis. Then the field
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gradient, Gx is applied and the frequencies will change again, dependent on their position

along the x-axis. It is normally during the application of Gx that the signal is detected.

The resulting signal after successively applying Gz, Gy and Gx corresponds to the Fourier-

transform of the transversal magnetization Mxy. In order to make the Fourier relation

between the signal and the magnetization more obvious a reciprocal spacial frequency space,

known as k-space, is introduced. The measured signal for a set of gradients, Gx, Gy and

Gz, produces a single line in k-space. Applying these gradients in different combinations

leads to different samplings of k-space. Once k-space has been sampled the MR image is

obtained by applying the inverse Fourier transform. The above description samples k-space

for one slice along the z-axis at a time, see Figure 2.3, but several different techniques for

sampling the 3D volume exists, see [26] for more examples.

Figure 2.3: Schematic figure of a typical imaging sequence for sampling k-space. The

z -gradient is responsible for the slice selection and the x - and y-gradients are responsible

for frequency and phase encoding respectively.
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2.3 Diffusion Weighted MRI

Water diffusion in living tissues is highly affected by its cellular organization. Axonal cell

membrane and myelin sheath are in particular the main components restricting the wa-

ter mobility [13] as can be seen in Figure 2.4. Imaging the diffusion process in-vivo gives

therefore an insight of the microstructure of the tissue. The anisotropic diffusion in fi-

brous regions can be used for mapping neuronal connectivity and structures invisible in

other imaging modalities can be localized due to the information contained in the diffu-

sion. Diffusion imaging is therefore a valuable tool to improve our current knowledge of the

brain. Even though diffusion weighted imaging is routinely used in investigations of stroke,

more advanced models of the diffusion such as diffusion tensor MRI is rare in most institu-

tions. Other possible clinical applications include investigations of cerebral ischemia, axonal

injury, understanding of the developing brain, maturation and aging etc. [90]. In psychi-

atric research diffusion tensor MRI is used for studies in disorders of cognitive dysfunction,

Schizophrenia, alcoholism etc. [93].

Figure 2.4: Axonal cell membrane and myelin sheath are in particular the main com-

ponents restricting the water mobility. a) The random translational motion of the water

molecules is restricted in the axones b). The main diffusion will therefore be along the

axones as shown in c)

2.3.1 Physical principles of diffusion

Molecules in a medium constantly exhibit a random translational motion, see Figure 2.4a.

This phenomenon, known as Brownian motion, is the self-diffusion of the molecules and

it is a physical process that was described by Einstein in 1905 [38]. Even though the
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random motion for a single particle is impossible to predict it is possible to make statistical

predictions about the macroscopic behavior of a large number of molecules. In a free medium

the diffusion of the molecules is isotropic and can be modelled by a Gaussian distribution.

In this free diffusion the diffusion coefficient is only dependent on the molecular mass,

the temperature and the viscosity of the medium. When the diffusion is restricted due to

obstacles, the diffusion can no longer be considered Gaussian.

Since the signal in NMR is never detected from one single spin but from a very large

number of spins we have a macroscopic description that gives us an ensemble-averaged view

of the behavior of the molecules. We can therefore link the diffusion to the measured signal

in the MRI experiment by talking in terms of the ensemble-averaged diffusion propagator.

This is the probability of finding a particle at position r′ after a time t given its initial

position was at r. This is equivalent to the probability of self-diffusion Ps(r
′ | r, t). The

total probability of finding a particle at position r′ at time t is given by:

P (r′, t) =

∫

ρ(r)Ps(r
′ | r, t)dr, (2.2)

where ρ(r) is the particle density at position r.

Fick’s laws on macroscopic diffusion

The macroscopic behavior of diffusion was modelled in 1855 by Adolf Fick, now known

as Fick’s first and second law. Fick’s first law states the proportionality between the flux

and the concentration gradient of the fluid, weighted by the diffusion coefficient. When

considering self-diffusion there is no net concentration gradient, so instead of using the

concentration we can use the probability of self-diffusion, Ps from Eq. (2.2) which gives us

Fick’s first law :

J = −D∇Ps. (2.3)

where J is the flux and D the diffusion coefficient. In a closed medium, the number of

particles must be conserved. This constraint is described by the continuity equation that

originally links the rate of change of particle concentration at a point in space with the

divergence of the local flux. In terms of Ps this condition is expressed as:

∇ · J = − ∂

∂t
Ps, (2.4)

By differentiating Eq. (2.3) with respect to x (D is constant) and combining it with the

continuity equation Eq. (2.4) we obtain Fick’s second law.

∂

∂t
Ps = D∇2Ps. (2.5)

Fick’s second law can be solved for the case of unrestricted diffusion and we obtain the

following relation:

Ps(r
′ | r, t) =

1√
4πDt

exp

[

−(r′ − r)2

4Dt

]

. (2.6)
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We see here that also the macroscopic description predicts a Gaussian behavior in a free

medium and it is therefore compatible with the microscopic description provided by Ein-

stein.

2.3.2 Image formation and q-space

To image the diffusion we must link the diffusion propagator to the signal measured in

the MRI experiment. In 1950 Hahn noted that random thermal motion of the spins in

the presence of a magnetic field inhomogeneity would lead to attenuations of the spin

echo [50]. To take into account the artefacts this might cause, Torrey modified the Bloch-

equations used for describing the magnetization of spins in an NMR experiment. These

modified equations are now known as the Bloch-Torrey equations and have become the

most fundamental equations in diffusion imaging [95].

The first NMR experiment specifically designed to measure the diffusion was demon-

strated in 1965 by Stejskal and Tanner [89]. The experiment is known as the Pulse Gradient

Spin Echo (PGSE) and provides a quantitative measurement of diffusion in a sample, see

Figure 2.5. The Stejskal-Tanner PGSE experiment uses the effect that spins moving along

the gradient direction will experience different field strength and therefore has a different

phase depending on their position on the gradient axis. If two pulses acting in the inverse

direction of each other are applied, the phase for a static spin will return back to the initial

zero-phase but spins that have moved along the gradient direction will experience a phase-

shift. Molecules moving in other directions will not experience any change in field strength

and therefore not have any phase-shift. A phase-shift of the magnetization vector will lead

to an attenuation of the net magnetization measured in the NMR signal and is directly

related to the diffusion coefficient for free diffusion through the Bloch-Torrey equations

[89]. Stejskal later extended the theory to describe the more general case for any generic

diffusion propagator [88].

From induced phase-shifts to the MR signal

A schematic figure showing the ideas behind a PGSE can be seen in Figure 2.5. The first

gradient applied will introduce a phase-shift according to Eq. (2.1). A 180◦ RF-pulse is

applied before the second gradient and aims at reversing the the phase-shift. This will lead

to a total phase-shift of:

ϕ = γδg(r′ − r). (2.7)

Here g is the applied diffusion gradient, r and r′ are the position vectors for the spins at

the first and second gradient pulses and (r′ − r) is the displacement during the time ∆,

which is the time between the two gradient pulses. The phase-shift is expressed relative

to the polarizing field B0. After both gradients have finished acting the spins fall back to

their original positions aligned with B0 and an RF-signal is emitted.

The measured phase-shift is proportional to the spin displacement and maps the mean

diffusion within a voxel. Due to the millimetric resolution provided by the NMR experiment
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Figure 2.5: Schematic figure of a Pulse Gradient Spin Echo (PGSE) sequence for imaging

diffusion along one gradient direction. The π-pulse inverses the rotation of the spins and

induces a phase-shift dependent on the movement of the spins along the gradient axis. The

gradient pulse, G, is applied in the direction in which the diffusion is measured. ∆ is the

time between two gradient pulses and δ is the duration of one gradient pulse. This sequence

should be combined with a k-space sampling to yield a complete image.

compared to the micro-metric scale of the diffusion it is biologically reasonable to assume

that the diffusion between voxels is very small compared to the diffusion within the voxel

itself so the inter-voxel effects will be ignored. The mean displacement within a voxel can be

considered being the expectation value, or the ensemble average of exp(iϕ) so the measured

signal is expressed as:

S(g)/S(0) = 〈exp
[

iγδg(r′ − r)
]

〉, (2.8)

where S is the measured signal.

From the measured signal to the probability density function

Each phase term in Eq. (2.8), exp [iγδg(r′ − r)], is weighted by the probability of a spin

being at r and move to r′. This probability is expressed as the ensemble-averaged diffusion

propagator in Eq. (2.2). Hence, the signal can be written as:

S(g)/S(0) =

∫

ρ(r)

∫

Ps(r
′ | r, ∆) exp

[

iγδg(r′ − r)
]

drdr′. (2.9)

For the same purpose as the k-space was introduced to make the classical MRI experi-

ment more intuitive a reciprocal space, q, is defined for imaging diffusion by substituting:

q =
1

2π
γδg.

Introducing q and substituting r′ = r + R, the signal in Eq. (2.9) can be rewritten as:

S(q) =

∫ ∫

ρ(r)P (r + R | r, ∆)dr exp [i2πq · R] dR. (2.10)
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The ensemble average diffusion propagator is now expressed as a function of the dis-

placement R, P (R, ∆). The simple inverse Fourier relation between the signal and P (R, ∆)

is now evident:

S(q) =

∫

P (R, ∆) exp [i2πq · R] dR = F−1[P (R, ∆)]. (2.11)

By measuring the signal for sampled points in q-space we can reconstruct the ensemble

average diffusion propagator in every voxel. q-space is sampled by either varying the diffu-

sion gradient strength, g, or the gradient duration, δ. Hence the probability distribution is

obtained through:

P (R, ∆) = F [| S(q) |]. (2.12)

It is sufficient to only use the modulus of the signal to obtain the probability distribution,

this has been proved in [103]. Examples of diffusion weighted MR images for different

gradient directions can be seen in Figure 2.6.

Figure 2.6: Diffusion Weighted MRI. Each image shows S(q), for different values of

q obtained by varying the gradient direction, g and a constant b-value. Darker areas

correspond to areas of diffusion in the direction of g since the signal is the most attenuated

in this direction.

The b-value

In diffusion imaging, b-values are often used for describing the diffusion sequence that has

been used for the image acquisition. The b-value is defined as:

b = γ2δ2
g

2∆ = q2∆. (2.13)

However, the effective diffusion time is τ = (∆ − δ/3), where δ/3 is a correction due to

the diffusion that occurs while the gradient is applied. The movement during the gradient

pulse is difficult to detect and the smaller it is the more exact the information about our

movement will be. We will therefore try to make the pulse infinitely small so that we can
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use the narrow pulse approximation, δ � ∆. This improves the signal as the displacement

during the gradient pulse is negligibly small.

The b-value can be variable or constant depending on the desired imaging modality.

The b-value depends on q and on the diffusion time ∆. Varying these parameters will lead

to different properties. A longer diffusion time will for example lead to a better directional

resolution. Imagine the diffusion within an axon, for a very short diffusion time there will

be a similar amount of diffusion in every direction. When the diffusion time gets longer the

diffusion perpendicular to the direction of the axon will reach the axon wall and there will

be no more diffusion in that direction whereas in the direction along the axon the diffusion

will continue. Thus, a longer diffusion time increases the distinction between the signals

in different directions. However, a longer diffusion time will lead to a lower signal-to-noise

ratio (SNR) so a compromise is necessary.

2.3.3 Diffusion tensor imaging

The diffusion tensor formalism was introduced by Basser et al. in 1994 [6] [7]. This ap-

proach was the first one to provide a unified description of the diffusion from a series of

diffusion weighted images. Basser proposed to fit a second order symmetric tensor to the

diffusion data in every voxel. This diffusion tensor (DT) fully characterizes the variation of

the diffusion dependent on direction. The DT model is based on the hypothesis that the

diffusion is unrestricted and can therefore be modelled by a Gaussian distribution. In bio-

logical tissues this assumption is not correct and instead of talking about the true diffusion

coefficient we therefore talk about the apparent diffusion coefficient (ADC).

In the previous section we saw that the diffusion in a free medium is Gaussian. Isotropic

diffusion has a constant diffusion coefficient, D, but when the diffusion varies with directions

it is anisotropic and must be modelled with a tensor, D. Thus, the diffusion propagator for

anisotropic Gaussian diffusion is:

P (R, ∆) =
1

√

det | D | (4π∆)3
exp

[−RTD−1R

4∆

]

. (2.14)

In the NMR experiment the signal we measure in free diffusion looks like:

S(q)/S(0) = F−1[P (R, ∆)] ∝ exp
[

−qTDq
]

. (2.15)

Since the DT is symmetric, six elements have to be determined. This means that the

ADC has to be measured in at least six linearly independent directions together with a

reference image, S0. By varying the gradient directions, q, but not their amplitude, | q |,
in order to keep a constant b-value, the DT coefficients can be determined for every voxel.

More than six directions are often used for a more reliable measurement of the diffusion

tensor, the tensor components are obtained by solving the redundant system of equations

formed by the signal in Eq. (2.15). When six gradient directions are used the DT can easily

be determined using the simplified method proposed by Basser [11].
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Properties and visualization of the diffusion tensor

The DT is a 3 x 3 symmetric, semi-positive definite matrix. By diagonalizing the DT we

obtain the eigenvalues (λ1, λ2, λ3 where λ1 ≥ λ2 ≥ λ3) and the corresponding eigenvectors

(e1, e2, e3). Since the tensor is symmetric and semi-positive definite the eigenvalues are

always non-negative even though noise can destroy the semi-positivity of the DT. The

largest eigenvalue and its corresponding eigenvector describe the quantity and direction of

the principal diffusion. The DT is normally visualized as an ellipsoid with the principal axes

along the eigenvectors and with the length of these axes proportional to the magnitude of

the eigenvectors. An anisotropic tensor has a distinct cigar shaped look whereas an isotropic

tensor approaches the shape of the sphere. By making a double contraction of an arbitrary

unit vector, x̂ with the DT a measure of the diffusion in that direction is obtained:

d(x) = xDxT . (2.16)

By plotting the diffusion for different directions on the sphere we see that the typical shape

of a DT is not an ellipsoid but more a peanut shaped fuzz ball as can be seen in Figure 2.7b.

A field of fuzz balls can be seen in Figure 2.9. Figure 2.8 shows how diffusion in fibrous

regions are represented by the DT model.

Figure 2.7: A diffusion tensor visualized as a) an ellipsoid and b) a fuzz ball. The axes

corresponds to the eigenvalues and the principal direction of diffusion is directed along the

eigenvector of the largest eigenvalue, λ1.

The mean diffusivity highlights areas of strong diffusion such as the ventricles, see

Figure 2.10a, and it is given by:

〈D〉 =
Trace(D)

3
=

D1,1 + D2,2 + D3,3

3
. (2.17)
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Figure 2.8: a) The diffusion tensor (DT) is most commonly obtained by measuring S(q)

in 6 linearly independent directions. b) In fibrous regions the DT represents the diffusion

well in highly anisotropic parts c) whereas in fiber crossings d) the angular resolution of

the tensor model does not resolve the crossing but will have a planar shape.
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Figure 2.9: a) A coronal cut of a color map from a field of DT. b) A field of DT visualized

as fuzz balls.
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An important property of the DT is the anisotropy which is high in fibrous regions but is

low in other regions such as the ventricles. The level of anisotropy is calculated from the

eigenvalues and the most commonly used measure is the fractional anisotropy (FA) [10]:

FA =

√

3

2

√

(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2
λ2

1 + λ2
2 + λ2

3

, (2.18)

where 〈λ〉 is the average of the eigenvalues. This is a measure of the deviation of the DT

from the isotropic case, see Figure 2.10b.

A useful visualization of a tensor field can be obtained by color coding the tensors.

The principal direction of diffusion is considered being an RGB-vector in color space so

each direction is represented by a color and the intensity is determined by the fractional

anisotropy [77], see Figure 2.10c.

Figure 2.10: Visualizations of a DT field using a) Mean diffusion map b) Fractional

anisotropy map c) Color map, green color represent fronto-occipital, blue color for transverse

and red for cranio-caudial principal diffusion direction.

It can often be useful to compare the diffusion between different compartments. A direct

way to do so is to compare the principal directions of diffusion but that leaves out a lot of

information contained within the tensor. In Chapter 5 we will present different measures

of similarity for comparison with the full diffusion information of the DT.

2.3.4 High angular resolution diffusion imaging

The DT model, which is the most commonly used model today, basically only contains

information about anisotropy and principal diffusion and it has limited possibilities to

resolve complex brain white matter architectures, particularly in regions with fiber crossings.

Augmenting the angular resolution of the diffusion model will help us to resolve the fiber

crossings and give us images that more and more resembles the anatomical reality.
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Diffusion Spectrum Imaging

A recent approach, first presented by Wedeen et al. in [104], is the Diffusion Spectrum

Imaging (DSI) that provides a full 3D probability density function (PDF) of the diffusion

at each location without implying any model of the diffusion. As we have seen in Eq. (2.11),

the measured signal is related to the PDF through the inverse Fourier transformation:

S(q) =

∫

P (R, ∆) exp [i2πq · R] dR = F−1[P (R, ∆)]. (2.19)

We can therefore obtain the PDF for each voxel by sampling the q-space for a very high

number of gradient directions and several values of b, see Figure 2.11b, and then applying

the Fourier transform:

P (R, ∆) = F [| S(q) |]. (2.20)

The PDF provides a detailed description of the diffusion and manages to resolve highly

complex organization of fibers such as crossings, see Figure 2.11c. For simplicity the PDF

is normally reduced to an orientation density function (ODF), see Figure 2.11d, through a

a radial projection of the PDF, P (R, ∆) according to:

ODF (u) = Z

∫

R+

P (ςu, ∆)ς2dς, (2.21)

with | u |= 1, ςu = R and Z is a normalization constant.

Q-ball imaging

Keeping only directional information means that a lot of unnecessary information is acquired

during the measurements. With the purpose of reducing the acquisition time, methods for

approximating the ODF have appeared. Q-ball imaging [99] is a way of avoiding the mea-

suring of unnecessary information by sampling the diffusion signal directly on the sphere.

A function resembling the ODF from the radial projection is then directly reconstructed.

The spherical inversion is accomplished by the reciprocal space Funk transform which is a

generalization of the Radon transform to the sphere [107]. The inverse of the Radon trans-

form is used to reconstruct images from CT scans. The Funk transform assigns a value to

a given point on the sphere, the point can be seen as a pole and the value that is assigned

to it is the integral over the associated equator.

Tuch shows in [98] that this Funk transform of the diffusion signal, S(qj), where q is

sampled on a sphere, will generate a result that very much resembles the ODF obtained by

the radial projection of the PDF.

Persistent angular structure

Another method for determining the ODF directly from diffusion MRI, proposed by Jansons

and Alexander [54], is the persistent angular structure(PAS) MRI. As in q-ball imaging

the PAS-MRI is an inversion algorithm that extracts orientational information about the

displacement probability function, p(x), from a sparse set of measurements. The method
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Figure 2.11: From diffusion to Orientation Distribution Function (ODF) with DSI. a)

Model of a fiber crossing. For the remaining figures, consider one voxel placed in the

crossing. b) q-space, sampled by measuring S(q) for various q on a 3D grid. c) The

Probability Distribution Function (PDF). Obtained by applying the Fourier transform of

q-space. d) The ODF is obtained through a radial projection of the PDF.
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Figure 2.12: a) A coronal slice of ODFs of the brain. b) The zoomed region shows a region

with many fiber crossings. The HARD data have been obtained from a DSI experiment.

makes the best fit of a function, the ODF, to the points that exist in q-space using the

inverse Fourier relationship and without adding any extra information.

All these methods are commonly referred to as high angular resolution diffusion (HARD)

MRI.

2.3.5 Tractography

Fiber tractography is one of the first and most direct interpretations of diffusion weighted

images in human brains. Its primary purpose is to reveal the orientational architecture of

tissues from the diffusion data by integrating paths of coherent orientation. Fibers obtained

through tractography are often viewed as a representation of true axons or nerve fibers but

it is more correct to consider them being a contrast mechanism for directional data. This

contrast is very informative and interesting for visualization of the human neuronal anatomy,

see Figure 2.13.

The connectivity map obtained from tractography will have a different character de-

pending on which imaging modality has been used as diffusion data. Since the DTI is the

Gaussian approximation of the true diffusion and its representation as a diffusion tensor

is restricted to variations of an ellipsoid it restricts the tractography compared to HARD

images where a much higher complexity can be revealed. Deterministic fiber tracking from

DTI uses the principal direction of the diffusion to integrate streamlines between voxels

[9, 35, 100] but ignores the statistical nature of the DT. To explore this property of the

data, Hagmann et al. introduced statistical fiber tracking by considering the tensor as a

probability distribution of the diffusion [49].

Fiber tractography on HARDI data, such as DSI or q-ball imaging, results in a large set
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Figure 2.13: Fiber tractography. a) DTI data, b) DSI data. All fibers are colored after

their principal direction.

of fiber tracts with a very complex geometry. The higher complexity compared to DT-MRI

is due to the numerous intersections between fibers that can be resolved, that is to say

separated, using HARDI. For DTI, tractography gently starts being used in clinic but there

is still a problem with validation and accuracy of the methods.

2.3.6 Potential applications

In this chapter we have presented the basics of MRI and how MR can be used for imaging

diffusion in-vivo. We briefly discussed the underlying physics of diffusion and how it can

be modelled by the DT or HARDI. In current clinical research, DT-MRI is the most fre-

quently used modality. In particular the most simple representation of the diffusion is used

such as fractional anisotropy and mean diffusion, see Figure 2.10. These values can indi-

cate changes in white matter due to neurological diseases such as Schizophrenia, Multiple

sclerosis, Parkinson and Alzheimer and is also often used for investigating stroke.

An important issue when using diffusion imaging in clinic is the acquisition times. For

a reasonable SNR each MR sequence must be repeated numerous times which leads to long

acquisition times. As we could see in Section 2.3.3, the diffusion can be measured with

only 6 gradient directions which makes it possible to obtain a high quality image within a

reasonable time limit, together with an anatomical MRI which is standard to take in clinic,

the patient will have to stay approximately 20 minutes in the scanner. As for DSI, the total

acquisition time is over one hour which is unfeasible for clinical practise. For an even better

SNR even longer scan-times are necessary.

An important problem concerning tractography is how to obtain quantitative measures

for comparative studies. This problem is even more present for HARD data where the

ODF contain only directional information. In DSI where the whole PDF is present without

simplification there are possibilities of quantification and mapping of the fiber density.

What we will present in this thesis is a new way of looking at the information contained

in these diffusion images by considering tractography as a segmentation problem. We will

also present methods for localization of structures that consist mainly of gray matter that
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due to this new imaging modality can be clearly distinct.



A fiber clustering

technique for defining

tracts 3
3.1 Introduction

Before we tackle the problem of segmenting fiber tracts as a whole we will set its context

by defining fiber tracts as bundles of spatially compact and functionally coherent fibers. In

this chapter we use fibers obtained from DSI data and present an effective algorithm for

clustering of fibers to illustrate how these fiber tracts are defined. The goal is to group fibers

into coherent bundles that correspond to the main fiber tracts in the brain. Today, grouping

of fibers is often done manually defining regions of interest and selecting all fibers passing

through both regions. Such an approach leads to problems of variability and reproducibility.

A completely automatic technique for coloring of fiber bundles can therefore be useful for

enhancing the imaging contrast provided by the tractography.

Even though fiber bundles can have a distinct orientational separation they intertwine

and mix in the 3D position space. To separate these bundles and identify tracts we will

use a technique that will prove to be highly appropriate for the characteristics of our data,

namely spectral clustering. Spectral clustering techniques are methods that aim at obtain-

ing new data representations to separate clusters with significant overlaps by creating a new

feature space in which the clusters are clearly distinct from each other. This new space is

constructed from the eigenvectors of a local affinity matrix representing the data and any

classical clustering algorithm can then be applied on the eigenvectors [73, 106]. Brand et

al. presents in [19] a unifying theory on how this spectral embedding works. Their con-

clusion is that ”there exists an eigenvector representation which matches the angles between

data-points in feature space; as the dimensionality of the representation is reduced, angles

between similar points shrink while angles between dissimilar points grow. This highlights

the cluster structure of the data and makes segmentation by heuristic methods more likely

to succeed.

27
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Two approaches to clustering of fibers related to spectral segmentation have been made

for DT-MRI by Brun et al. [23][24]. In their first approach they use the distance between

the end-points of the fibers to generate a weighted graph [23]. They cluster this graph using

Laplacian eigenmaps [15]. In their second approach the weighted graph is generated from

a pair wise comparison of distance and shape between fibers. This graph can be compared

to our affinity matrix. Then, they use normalized cuts to partition the graph by using its

second smallest eigenvector and successively subdividing the graph until the desired number

of clusters is obtained. Even though authors disagree on which eigenvectors to use and how

to derive clusters from them, recent papers on spectral clustering now agree that using

more eigenvectors and directly partitioning in the desired number of clusters will improve

the results. Weiss et al. [106] argue that more eigenvectors lead to better segmentation.

Our approach to the clustering problem is a simple algorithm for counting the number of

intersections between fibers and run a spectral segmentation algorithm on the co-occurrence

matrix obtained from the counting. The simplicity of this approach is due to the high an-

gular resolution of the fibers from DSI. The proposed method is an unsupervised clustering

technique, applicable for large sets of fiber tracks. Moreover, it is easy to implement and

has a low computational cost.

3.2 Method

In this method we consider N fibers, numbered 1 ≤ n ≤ N . Each fiber, n, is represented

by m vectors v that each represent a point in the space such that:

Fiber n := {vn
i : 1 ≤ i ≤ m(n)} , (3.1)

where m is the number of points for fiber n.

The first step of our algorithm is to create a 3D Euclidean voxel space, M, of an

appropriate resolution with the voxel side %. A list of all fibers passing through will be saved

in every voxel in M. The position in the new space is simply determined by computing

[vn
i,1/%, vn

i,2/%, vn
i,3/%]. At every point in M we will then have a list of fibers passing through.

In the second step an N by N large co-occurrence matrix, A, is created where N is

the number of fibers to cluster, see Figure 3.1. A contains the number of times two fibers

share the same voxel. Since the number of fibers that we wish to segment is very large this

co-occurrence matrix will also be very large. Due to the nature of the DSI data the matrix

is also sparse since most of the fibers never cross which makes it possible to handle it in

Matlab despite its size. The matrix will be made even sparser by removing the influence of

fibers that have only a few voxels in common by setting their values in the co-occurrence

matrix to zero. This co-occurrence matrix is the affinity matrix and represents our data

set. The affinity matrix resembles what in network theory is known as a weighted graph.

The axes of the matrix represent the nodes and each entry of the matrix represents the

edges between the nodes.

Each fiber is then represented by a column vector from our weighted graph. This means

that each fiber is described in terms of the fibers it crosses. Considering the nature of our
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Figure 3.1: The affinity matrix, A, N by N large where N is the number of the fibers to

cluster. A contains the number of times two fibers share the same voxel.

fiber data this description will be highly entangled and it will be hard to group fibers of high

resemblance. By applying Principal Component Analysis (PCA) on the weighted graph we

project the vector representation of the fibers into an orthogonal subspace in which the

fibers become disentangled. Thus, the affinity matrix is decomposed to:

A = VΛVT

As we have seen in Chapter 2, the first eigenvector of the diffusion tensor corresponds to the

direction of the principal diffusion. For the affinity matrix, the first eigenvector corresponds

to the vector along which the fibers are separated the most. The second eigenvector is

orthogonal to the first one and it is the second most important axis in the subspace and

so on. We will chose the d first eigenvectors and call the truncated representation of the

eigenvectors V(d). In this new space the fibers can be clearly distinct and grouped using

a simple clustering algorithm on V(d). We have used the standard k-means clustering

algorithm as implemented in Matlab [17].

3.3 Implementation details

The method is extremely simple to implement and the clustering is fully automatic and

fast. The limiting number of fibers depends on the size of matrix that Matlab is capable

of diagonalizing. So far up to 4000 at a time is no problem. By using the sparse function

in Matlab, matrices with up to 8000 times 8000 entries can be treated. However, for these

matrices only 6 eigenvalues can be obtained at a time. With only 6 eigenvalues the fibers
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are not sufficiently separated to give a satisfying result. More eigenvectors can be obtained

iteratively by projection.

Algorithm 3.1: Fiber clustering with spectral segmentation.

1: Create Euclidean voxel space, M, with voxel size %3

2: ∀i,∀n:M(bvn
i /% + 1/2c) = M(bvn

i /% + 1/2c) ∪ {n}

3: ∀i, j, 1 ≤ i, j ≤ N :A(i, j) := #{x | {i, j} ⊂ M(x)}

4: A = VΛVT

5: Clusters = k-means(Vd, noClusters);

When clustering all fibers, the Euclidean space in which the fibers are mapped contains

voxels with a side % = 2mm. To remove the influence of fibers that only have a very few

number of voxels in common, all entries of the affinity matrix inferior to 5 is set to zero.

When the short fibers are clustered independently, the Euclidean space in which the fibers

are mapped contains voxels with a side of % = 5mm and no fiber crossings are ignored.

These values have been determined experimentally.

3.4 Data

The method has been tested on a set of fibers obtained from DSI data using a tractography

method described in Hagmann et al. [48]. The diffusion images were obtained on a healthy

volunteer with a 3T Allegra scanner (Siemens, Erlangen, Germany). We used a twice-

refocused spin echo EPI sequence with TR/TE/ =3000/154/66 ms, bmax = 17000mm2/s

and a spatial resolution of 3 × 3 × 3mm3. Data were acquired using 515 different diffusion

encoding directions sampling on a sphere of radius r=5 grid units. The diffusion data

were obtained from Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts

General Hospital and the Harvard Medical School, Boston, MA, United States.

3.5 Results

The clustering algorithm was tested on a set of fibers containing 17000 fibers. To diminish

the size of the affinity matrix every fifth fiber was selected to map back into Euclidean

space. In Figure 3.2a all the clusters are displayed except for the cluster that contains what

we call the background fibers. This cluster contains all the short fibers that due to the

thresholding of the affinity matrix do not have any immediate neighbors. It can be seen in

Figure 3.2b. In Figure 3.3 we have selected clusters representing some of the fiber tracts

that we will segment directly from the DTI in the next chapter.

By looking at the histograms of the fiber lengths in Figure 3.4 for all the clustered
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Figure 3.2: Clustering of every fifth fiber from the output of a fiber tractography algorithm

into 20 clusters. a) All clusters except for the background cluster. b) The cluster of

background fibers contains the short fibers that due to the removal of values inferior to 5

in the affinity matrix, do not belong to specific clusters.
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Figure 3.3: Clustering of every fifth fiber from the output of a fiber tractography algorithm

into 20 clusters. Every fifth fiber on both hemi-spheres were used. a) The corpus callosum.

b) Long association fibers. c) Cortico spinal tract.
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fibers compared to the background fibers, we see that the length of the background fibers

are mainly inferior to 15 points (m ≤ 15). We will therefore treat these fibers separately.

The reason that they have ended up in the cluster of background fibers is because they are

short and that they do not share enough voxels with their neighbors. Since the size of the

affinity matrix is a limitation of the method we can augment the density of the short fibers

by removing fibers longer than 15 points and use only fibers on one hemisphere. We also

remove the thresholding of the affinity matrix. The remaining treatment rests the same.

The results of the clustering for the short fibers can be seen in Figure 3.5.

Figure 3.4: Histogram of the fiber lengths (in points). Every fifth fiber from the output

of a fiber tractography algorithm have been used. a) Histogram of the fiber lengths for the

entire set of fibers used in the clustering algorithm. b) Histogram of the fiber lengths of the

’trash’ cluster.

3.6 Discussion and Conclusion

We have shown an example of the capability of spectral clustering to segment fibers that

intertwine in position space and also showed evidence of their orientational separation.

This unsupervised segmentation technique is a first step towards a quantitative analysis of

the fiber tracts from HARD data which will improve the comprehension of connectivity in

anatomical structures. The higher orientational resolution that HARDI provides allows us

to use a very simple approach to obtain our affinity matrix. The sparseness of the affinity

matrix is a consequence of this and is important for several reasons. Most importantly,

the sparseness gives a sense to our counting procedure. With a lower angular resolution

numerous fibers would have several intersecting points in common without belonging to the

same tract; this is one reason for which this counting procedure will most probably not work

for DT-MRI. Methods for clustering fibers from DT-MRI have previously been presented

[24][23]. They mostly rely on pairwise similarity between fibers which include defining ap-

propriate distances between fibers, both concerning shape and Euclidean distance. Defining

these similarity measures is obviously a much more challenging task than simply counting

the intersection points.

What we see in this chapter is also how fibers can be bundled together in groups that

correspond to the main fiber tracts in the brain. In the following chapter we will segment
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Figure 3.5: Clustering of short fibers inferior to a length of 15 points. All fibers on the

left hemisphere was used. a) 5 clusters b) 10 clusters c) 15 clusters. d) 20 clusters.
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the main fiber tracts directly from DT-MRI without using fiber tractography. Segmenting

the fiber tracts as a whole is very useful for quantitative analysis of the diffusion in these

important structures of the brain.

The work presented in this chapter has been presented in [58].
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Image segmentation with

the level set method 4
4.1 Introduction

Since the level set method was first introduced by Osher and Sethian [75, 76, 87] it has

become a more and more popular theoretical and numerical framework within image pro-

cessing, fluid mechanics, graphics, computer vision etc. The level set method is basically

used for tracking moving fronts by considering the front as the zero level set of an em-

bedding function, called the level set function. In physics, numerous phenomena can be

modelled with moving fronts propagated using a curvature dependent speed such as for ex-

ample crystal growth, flame and wave propagation, only to mention a few. Other possible

applications are optimal path planning and noise removal.

In image analysis it has become a widely used tool for segmentation. Dependent on

how the propagation speed of the front is defined, many features can be considered simul-

taneously such as edges, region statistics and shape and any kind of multidimensional data.

Consideration of a priori knowledge of shape for segmentation of partly occluded objects

[21] [22] and texture segmentation [20] are some other recent and very interesting approach-

es, see Figure 4.1. Examples of handling of multidimensional data are segmentation of color

images [85] and now the very recent approach of tensor segmentation, that is presented in

this thesis and has been published in [57][55] [56] [60].

These numerous possibilities constitute some of the many reasons why this framework

have been chosen when tackling the segmentation problem for our multi-valued diffusion

images (see Chapter 2). Compared to other powerful methods such as Markov Random

Fields [43][44] which is a statistical approach for region based segmentation, the level set

method provides the possibility of including several properties when formulating the prob-

lem. Moreover, having a front that can be smoothed automatically leads to a regularization

of the segmentation and a more visually compelling result. The level set method also has

37
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Figure 4.1: Examples of the power of the level sets as a segmentation tool. The first

row shows the use of shape prior for segmentation of a partly occluded object. It shows

the evolution of the active contour (solid line) with an a priori knowledge of its shape (the

dotted line) [21] [22]. The second row shows the segmentation of objects with complex

textures using information theory [20].

a sub-voxel precision in its segmentation, a property that very few segmentation methods

provide. However, some drawbacks exist such as long computation times and sensitivity to

initial conditions. The latter can be resolved by hybrid techniques by coupling this high

precision method with more large scale segmentation tools.

This chapter aims at presenting the basic concepts of level set theory and showing a few

examples of how to define propagation speeds from physical properties of the image. The

examples presented are oriented towards detection of boundaries and regions.

4.2 The Level Set Method

The level set method is a theoretical and numerical tool for moving any kind of implicitly

represented surfaces or interfaces. The method is based on theories borrowed from mechan-

ics on hyperbolic conservation laws and especially properties of Hamilton-Jacobi equations.

In mechanics, these theories are since long well developed and by adapting the same frame-

work for the level set theory many practical problems of moving fronts have already been

solved. Examples of potential problems that can occur when propagating fronts are irreg-

ularities of the moving interface. This is solved theoretically using the theory of viscosity

solutions and numerically by using schemes based on hyperbolic conservation laws. We will

briefly discuss some of these questions later but for more details about these relations we

refer to [87].

The idea of the level set method is to consider the moving interface as the set of zero-
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values of an embedding function φ. Such an implicit representation has numerous ad-

vantages over a parametrical approach. The most striking example is topological changes

occurring during the propagation, typically when two flames burn together the evolving in-

terfaces merge into one single propagating front. In Figure 4.2 it is shown how the level set

method practically handles topology changes. The initial curve, seen as a magenta colored

line at the zeroth position of the embedding function, seen in Figure 4.2a, will deform and

split into two curves, Figure 4.2c, without changing topology of the embedding level set.

Several numerical advantages such as the easy computation of normals and curvatures are

also due to the level set implementation. Later it will be seen that these computations will

play a major role in the front propagation.

Figure 4.2: Example of the level set principle for a curve in 2D. The propagating curve is

the magenta colored line and the pyramid formed function is its level set. The curve will

change shape as the level set evolves. Between b) and c) the curve has split into two curves

whereas the topology of the level set remains.

The level set method can be applied to any kind of problem where an interface is

moving with a speed F defined on every point, see Figure 4.3. F can depend on any kind

of complex physics, such as heating or fluid mechanic effects. This thesis will treat the

problem of finding a suitable F to use when segmenting multi-valued images, in particular

tensor images.

4.2.1 The level set equation

For now, let us assume that F is known. Consider an interface, Γ that can be a curve,

surface, hyper-surface in R
N , as a boundary between two regions, one inside the boundary

and another one outside the boundary. A level set function is constructed around the

interface that constitutes the zero value of the embedding function, φ, as can be seen in

Figure 4.4. All other points of the level set function have the value of the distance from

that point to the closest point on the boundary. The distance is positive if this point is

situated on the outside of the bounded area and negative if it is situated on the inside.

The level set function will change with time according to the speed F and the interface is

always constituted by the points where the level set function equals zero. The interface, Γ,

embedded by the level set function, φ, can be expressed as:

Γ(t) := {x(t) | φ (x(t), t) = 0} , (4.1)
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Figure 4.3: The level set method can be applied to any kind of problem whenever an

interface, Γ, here represented as a curve in R
2, is moving with a speed F defined on every

point of the interface. F can be dependent on external properties, such as complex physical

properties or images, and on intrinsic properties of the curve itself.

where t being the time and x(t) are the points of φ. φ < 0 for points lying inside the surface

and φ > 0 for points lying outside the surface.

Figure 4.4: The interface, Γ, here represented as a curve in R
2,is embedded in a level set

function, φ, and it is constituted of all points where the value of the level set function is

zero Γ(t) := {x(t) | φ (x(t), t) = 0}.

Computing the time derivative of the level set φ (x(t), t) by using the chain rule gives

us:
∂φ

∂t
+ ∇φ (x(t), t) · dx

dt
= 0. (4.2)
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where ∇ is the gradient operator.

We introduce F as the speed in the outward normal direction such that F = (dx/dt) ·n
where n = ∇φ/ | ∇φ |. If the initial level set function is known, φ(x, t = 0), the level set

equation becomes:
∂φ

∂t
+ F | ∇φ |= 0. (4.3)

This partial differential equation (PDE) will propagate the boundary towards the optimal

solution. For certain choices of F , Eq. (4.3) corresponds to a Hamilton-Jacobi equation. The

property of being a Hamilton-Jacobi is used when studying the existence and uniqueness

of the solutions and designing stable numerical schemes.

When interfaces propagate, sharp corners and other phenomenon such as ’swallow-tails’

[87], can easily be formed. These artefacts cause problems since their derivatives can not

be determined. To deal with this problem the sharp corners are smoothed out by letting

the interfaces move under curvature.

For the special case:

F = −∇ ·
( ∇φ

| ∇φ |

)

, (4.4)

where ∇· is the divergence operator, we have that F is the mean curvature of the level sets

of φ. With this definition of F , Eq. (4.3) becomes a pure mean curvature flow which is a

thoroughly studied case [4] [76]. Curvature will be further discussed in Section 4.2.2.

In image processing the level set method is most frequently used as a segmentation

tool through propagation of a contour by using the properties of the image. One of the

first applications was to detect edges in an image [28], but in more recent applications

textures, shapes, colors etc can be detected. The level set theory was initially used for two

dimensional images but its general formulation makes it possible to use for images of N

dimensions. The theoretical extension to 3D is commonly used and even though some of

the properties of the 2D curves, such as the property of shrinking to a point under curvature

flow, do not hold in the 3D case, the main part of the theory remains valid and works well for

segmentation of 3D objects [29]. The extension to even higher dimensions is theoretically

straightforward but has some practical complications as we will see in Chapter 6.

4.2.2 Curvature

In this section all fronts considered are of codimension one. This means that the front

is embedded in a space of one superior dimension. This is the case for a curve in a two

dimensional space, a surface in a three dimensional space etc. A curve lying in a 3D

space is of codimension two. The general case of curvature in arbitrary codimension is

treated in [4]. The curvatures that will be treated here are the principal curvatures, mean

curvature and Gaussian curvature. A two-dimensional surface can be curved differently

in different directions, this is described by the principal curvatures. A cylinder has one

curvature defined radially and another defined axially. The radially dependent curvature

is the maximum principal curvature κ1 = 1/R (R=radius of the cylinder) and the axially

defined curvature is the minimum principal curvature κ2 = 0.
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From the principal curvatures mean curvature and Gaussian curvature is defined. The

Gaussian curvature is intrinsic, that means that it is dependent only on itself and determines

whether a surface is locally convex or locally saddle. The Gaussian curvature, G, can be

expressed in terms of the principal curvatures, κn as:

G = κ1κ2...κN . (4.5)

Mean curvature is extrinsic which means that it is dependent on the embedding of the

surface. Differential geometry decomposes the mean curvature, M, into its principal cur-

vatures, κn, such as:

M =
κ1 + ... + κN

N
. (4.6)

To understand the difference between Gaussian and mean curvature and the concept of

principal curvatures it is again instructive to consider a cylinder. As already mentioned,

the principal curvatures of the cylinder are κ1 = 1/R (R=radius of the cylinder) and

κ2 = 0. An ant living on the surface of the cylinder, unconscious of the surrounding world,

will consider the cylinder being flat but would be capable of detecting small irregularities on

the surface. What it experiences is the intrinsic (Gaussian) curvature which for a cylinder

is G = 1/R · 0 = 0. Looking at the cylinder from an external point of view we see that

the cylinder is flat along the principal axis but curved around the axis. Thus the external

(mean) curvature is M = (1/R + 0)/2 = 1/2R. When using the level set method we

consider implicit surfaces in an embedding function and we will therefore mostly use the

mean curvature. However, for some cases it can be useful to use the minimum principal

curvature that can be expressed as a combination of the Gaussian and mean curvature:

κmin = M−
√

M2 − G (4.7)

Using this definition of the curvature, tubular structures are smoothed axially and not

radially, as if they are open curves in a 3D space, allowing them to keep their tubular form.

This effect is illustrated in Figure 4.5. Thus, this curvature flow satisfies the property of

shrinking to a point while preventing undesirable changes of topology.

The mean curvature of the level set function for an arbitrary dimension is expressed in

Eq. (4.4). In the 2D case the expression of the mean curvature becomes:

∇ ·
( ∇φ

| ∇φ |

)

=
φxxφ2

y − 2φxφyφxy + φyyφ
2
y

(φ2
x + φ2

y)
1/2

. (4.8)

where φx is the derivative of φ with respect to x, φxx is the second derivative and φxy is

the cross derivative with respect to x and y. In Figure 4.6 the evolution of a cube under

mean curvature flow is shown. For the 3D case the expression becomes much longer but it

is still feasible to implement. The expression in 5D is far too complicated to be numerically

acceptable.

N-D mean curvature flows have already been treated in litterature [4, 32]. Hence, for

dimensions superior to three the theory developed by Ambrosio and Soner [4] will be used

to determine the mean curvature in a N-D space.
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Figure 4.5: Flow evolving under minimal principal curvature. The original structure in

a) evolves while keeping the tubular structure in b) and c). From the shape in c) it shrinks

to a point and disappears.

Figure 4.6: Example of cube evolving under mean curvature flow, a) the corners of the

cube are directly smoothed out and b) becomes a sphere that shrinks c) to a point.
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They show that the principal curvatures of a hyper-surface in N-D, embedded in a level

set function, φ, of codimension one are then given by the eigenvalues of the following N ×N

matrix:
1

| ∇φ |2 P∇φ∇2φP∇φ. (4.9)

Here ∇2φ(x) is the Hessian derivative operator, which corresponds to the second derivatives

of φ, and Pp is a projection operator for the Hessian of the level set function onto the space

normal to the nonzero vector p:

Pp = I − p ⊗ p

| p |2 . (4.10)

Here I is the identity matrix and p ⊗ p is the tensor product which in two dimensions is

expressed as:

p ⊗ p =





p1p1 p1p2

p1p2 p2p2





with p =
(

p1 p2

)

.

Their work extends to surfaces of arbitrary co-dimension and they show the existence

and uniqueness of surfaces propagating with speeds from these definitions.

In Chapter 6 we will use a 5D level set to evolve a hyper surface. To illustrate the above

theories we have evolved hyper-cube in 5D through a mean curvature flow and seen how it

first turns into a hyper sphere and then finally shrinks to a point, see Figure 4.7.

Figure 4.7: A hyper-cube evolving under 5D mean curvature flow. a) x − z-plane, b)

y − θ-plane.

4.3 Variational formulation

The variational formulation is generally used when determining F from an energy functional

E, dependent on the data. Through the calculus of variation a PDE driving the interface
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can be determined. This way of determining F guaranties that there exists a unique solution

of the PDE and that the interface will converge towards this solution.

For a functional of the form:

E =

∫

Ω
f(x, φ,∇φ)dΩ (4.11)

where Ω is the image domain. A necessary condition for a (local) minimum is given by the

Euler-Lagrange equation [42]:

∂f

∂φ
− ∂

∂x1

(

∂f

∂φx1

)

− ∂

∂x2

(

∂f

∂φx2

)

− ∂

∂x3

(

∂f

∂φx3

)

= 0 (4.12)

from the condition that the first variation of E must be zero.

Denote the left-hand side of the Euler-Lagrange equation F . If a surface Γ∗ satisfies the

equation F = 0 then S∗ is also a stationary solution to the equation:

∂x

∂t
· n = ±F, (4.13)

for all points x(t) ∈ Γ∗ where ±F then is the velocity in the normal direction. This means

that an initial surface will converge to a minimum of the functional E if evolved according

to Eq. (4.13). Substituting this into Eq. (4.2) and again using that n = ∇φ/ | ∇φ | we

come back to the level set function.

∂φ

∂t
= −∂x

∂t
· ∇φ = ±F | ∇φ | . (4.14)

4.4 Geodesic Active Contours and surfaces

One of the first applications of the level set method in image processing is for edge detection

and is known as Geodesic Active Contours (GAC), introduced by Caselles in [28]. A geodesic

is a weighted curve between two points and the length shortest curve between the points

defines their distance. In Euclidean space the shortest distance between two points is a

straight line but in other spaces the distance is weighted by the topology of the manifold.

If you consider yourself walking across a flat field of grass, the most energy-saving path

between two points, A and B, would be a straight line. Now consider yourself being in

Switzerland, in a highly mountainous area. The choice of the closest path between to

points it is now less evident. The energy you need to go from A to B would be weighted

by the altitude difference of your path. Minimizing the energy to go from A to B would be

the same thing as to minimize a geodesic.

The same principle is used to find edges in an image. We are interested not only in

finding the path of minimum classical length, but the one that minimizes a new length

definition which bears in consideration the image characteristics. The image can be seen as

a Riemannian space, where the metric defining the weighted length of a path is dependent

on the proximity of an edge. The energy functional is constructed from this metric which
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is based on a monotonically decreasing function f : [0, +∞] → R+ such that [f(0) =

1 and f(x) → 0 as x → ∞]. The metric can be written:

[gij ] : f(∇I)[δij ], (4.15)

where δij is the Kroenecker delta function. Example of functions, f , that can be used for

edge detection are:

f(∇I) = 1/(1+ | ∇I |)

f(∇I) = exp (− | ∇I |)
(4.16)

where I : [0, a] × [0, b] → R
+ is the image where we look for edges and ∇I the image

gradient. At an edge this image gradient is high and the most important property of f is

that it goes toward zero in the vicinity of an edge.

Consider the parameterized planar curve C(p) : [0, 1] → R
2. The length definition in the

Riemannian space, defined from the metric in Eq. (4.15) is given by:

LR =
∫

C(p) gijdxidxj =
∫ 1
0 f (| ∇I (C(p)) |) | C′(p) | dp =

∫ L(C)
0 f (| ∇I (C(s)) |) ds,

(4.17)

where ds is the Euclidean arc length. This weighted length corresponds to the energy

functional in Eq. (4.11) and should be minimized. In the case of a surface in a 3D space

this equation would be an integral over Euclidean area elements, da [29]. Thus, we wish to

minimize the weighted area:

AR =

∫ ∫

f(| ∇I |)da (4.18)

Figure 4.8: Segmentation of two 2D objects from one initial surface using the Geodesic

Active Contour method. Note how the initial curve easily separates in several curves due

to the implicit representation by the level set method.

By computing the Euler-Lagrange of the energy functional we obtain an equivalent

result for 2D as well as for 3D which is the evolution of our level set function described by

the following PDE:

∂φ

∂t
= f(∇I) | ∇φ | ∇ ·

( ∇φ

| ∇φ |

)

+ ∇f(∇I) · ∇φ. (4.19)
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This corresponds to a speed function, F = f(∇I)M+∇f ·n, where M = ∇ · (∇φ/ | ∇φ |)
is the curvature as in Eq. (4.4) and n is the normal to the evolving surface. The first term is

the mean curvature flow multiplied by the image dependent function, f(∇I). This will stop

the front propagation at edges. The second term forms an attraction valley that pushes

the front towards the edge when the front is sufficiently close to it. This is especially useful

if a balloon term is added to the propagation speed. A balloon term is a constant speed

and it is added to increase the convergence speed. This can be dangerous since the front

sometimes can be pushed too far and pass the edge. In this situation the second term starts

acting to push the front back to the edge. An example of a segmentation of 2D objects can

be seen in Figure 4.8 and for 3D objects can be seen in Figure 4.9. Note how the initial

curve in 2D and surface in 3D easily separate in several curves and surfaces due to their

implicit representation by the level set method.

4.5 Region based segmentation front propagation.

Several methods of segmenting regions using level set methods have been proposed in liter-

ature. We will here consider two of them, the Geodesic Active Regions (GAR) [78] and the

Chan-Vese model [30]. Both models are based on the hypothesis that an image is composed

of homogenous intensity regions.

4.5.1 Geodesic active regions

The GAR model treats the case of N regions. The probability of a voxel, s, belonging

to region, Ri is dependent on the image value of the voxel, I(s) and equals pi(I(s)). In

this model this probability is determined by estimating the image intensity histogram with

Gaussian distributions. The Gaussian distributions are found by using the maximization

expectation algorithm [5]. An intensity based probability is not the only way to determine

a region probability, in Chapter 7 a method for determining regions from diffusion tensor

similarity is presented.

From the region probability an energy functional is defined. Combined with a boundary

detection similar to what we have seen in the GAC model it will look like:

E({Ri}1≤i≤N = α
N

∑

i=1

∫ ∫

Ri

− log(pi(I(x, y))dxdy + (1− α)
N

∑

i=1

∫ 1

0
f(∇I(C(s)))ds (4.20)

Here we recognize the second term from the GAC model. The first term aims at finding

the optimal region by using an estimation of the entropy for the probability. By computing

the system of Euler-Lagrange motion equations we obtain the following speed function:

∀i ∈ [1, N ] ,

F (C(s)) = −α log
[

pi(I(C(s)))
pj(I(C(s)))

]

+ (1 − α)f(∇I)Mi + ∇f(∇I) · ni

(4.21)
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Figure 4.9: Segmentation of four 3D objects from one initial surface using the Geodesic

Active Surface method. Note how the initial surface easily separate in several surfaces due

to their implicit representation by the level set method.
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where Mi is the mean curvature of the curve Ci as in Eq. (4.4) and f is an image depen-

dent function that goes toward zero in the vicinity of an edge as for example Eq. (4.16).

Figure 4.10 shows an example of how several regions are defined and interact.

Figure 4.10: Region based segmentation with Geodesic Active Regions by evolving several

coupled level sets.

The region based force turns out to have some very interesting properties. In the case:

pi (I (C(s))) > pj (I (C(s))) ⇒

⇒ pi (I (C(s)))

pj (I (C(s)))
> 1 ⇒ −α log

[

pi (I (C(s)))

pj (I (C(s)))

]

< 0.

(4.22)

This leads to a negative speed term that aims at shrinking the curve, so that voxel s can

be attributed to another region.

If, on the contrary, the voxel C(s) does not belong to Ri, then:

pi (I (C(s))) < pj (I (C(s))) ⇒

⇒ pi (I (C(s)))

pj (I (C(s)))
< 1 ⇒ −α log

[

pi (I (C(s)))

pj (I (C(s)))

]

> 0,

(4.23)

and therefore the speed is positive and the force is applied to expand the curve.

In Figure 4.12 an example of segmentation using GAR is shown for the segmentation of

the thalamus from a map of fractional anisotropy.

4.5.2 Active contours without edges

Chan and Vese have presented in [30], a method for segmenting images without edge de-

tection by using the weak formulation of the Mumford-Shah functional [72].

They separate the image into two regions, one inside the level set function φ < 0 and

the other region on the outside of the boundary, hence φ > 0. Each region is represented
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Figure 4.11: Segmentation of the thalamus using Geodesic Active Regions [79], on a

map of fractional anisotropy (FA). The histogram shows the intensity values of the FA, the

Gaussian estimation of the histograms using the maximizing expectation algorithm [5].

by its mean values, c1 and c2, that are defined as:















c1 =
�
Ω

Hε(φ)Idx�
Ω

Hε(φ)

c2 =
�
Ω

(1−Hε(φ))Idx�
Ω

(1−Hε(φ))

(4.24)

where Ω is the image domain and ∂Ω is the boundary of Ω. Hε(φ) is the ε-regularized

version of the Heaviside function and c1 and c2 are the averages of the image I on the

region φ > 0 and φ < 0 respectively.

Here, only the resulting equation for the interface evolution will be presented. As in

the previous cases it has been obtained by computing the Euler-Lagrange of an energy

functional. For more details we refer to [30]. Their level set equation is the following:















∂φ
∂t = δε(φ)

[

µ∇ ·
(

∇φ
|∇φ|

)

− (I − c1)
2 + (I − c2)

2
]

in Ω

δε(φ)
|∇φ|

∂φ
∂n = 0 on ∂Ω















(4.25)

Here δε(φ) is the ε-regularized Delta function [30] and µ > 0 is a fixed parameter. This

equation has similar properties as Eq. (4.21). The front will expand when the voxels close

to the interface have values closer to the mean of the image inside the surface and shrink

when it resembles the voxels outside more.
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Figure 4.12: Rosa’s hand segmented by Xavier Bresson, using the Chan-Vese method.

4.6 Numerical implementation of the level sets.

As mentioned earlier the numerical schemes for implementing the level set method is bor-

rowed from mechanics and especially from the theory of hyperbolic conservation laws. We

will not present the details of the implementation but just mention a few specific features

that we have considered during our implementation of the method.

4.6.1 The upwind scheme

It is important during the evolution of the level sets to consider that ”the numerical domain

of dependence should contain the mathematical domain of dependence” [87]. A concrete

example of this is the computation of the normals. If we consider an expanding closed

curve, CΓ(t) := {x(t) | φ (x(t), t) = 0}, the domain of dependence is situated just outside

the curve where the level set function is positive, φ > 0. The normals should therefore

be pointing outwards and be computed from the values of the region of dependence, see

Figure 4.13.

As we have seen earlier the normal is expressed as n = ∇φ/ | ∇φ |. Numerically the

derivatives can be computed with three different domains of dependence using the forward,

backward and centered difference operator. Numerically the spatial derivatives of a function

u with respect to y are expressed as follows:

D+yu = u(y+h,t)−u(y,t)
h

D−yu = u(y,t)−u(y−h,t)
h

D0yu = u(y+h,t)−u(y−h,t)
2h .

(4.26)

To ensure the correct domain of dependence the outward normal along y should be expressed

as:

n+
y = max(D+yu, 0) + min(D−yu, 0). (4.27)
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Figure 4.13: Regions of interest when computing derivatives according to the upwind

scheme. See text for definitions.

If our closed curve is shrinking the normal is pointing inwards and the domain of dependence

is situated inside the curve, φ < 0. Numerically the inward normal along y should then be

expressed as:

n−
y = max(D−yu, 0) + min(D+yu, 0). (4.28)

If we have a positive speed F the curve is moving outwards and we must use Fn+
y but if

on the contrary F is negative and the curve is shrinking we must use Fn−
y . This can be

summarized as:

Fn = max(F, 0)n+
y + min(F, 0)n−

y . (4.29)

4.6.2 Stability condition

The time-step for the front propagation is determined according to the CFL-criterion [87].

This condition, observed by Courant, Friedrichs and Lewy [37], states that to assure stability

for a numerical scheme the domain of dependence for each point in the domain should

include the domain of dependence of the PDE itself. This will lead to the following time-

step,

∆t ≤ 1/max(F ).

We will mostly use

∆t = 0.5/max(F ),

since we have observed that this is the largest possible time step that can be used. The

time step needs to be so small because of our way of fixing the level set in the re-initialization

algorithm. If the value at a voxel changes too quickly compared to its neighbor, the zero

level set can be moved next to a voxel of a high value.

4.6.3 Preserving the level set function

Due to local dependence of the propagation speed, the level set function, φ, can differ

dependent on the distance to the zero level set. This creates irregularities that deform φ so
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it ceases to be a signed distance function. A correct level set function is crucial for a correct

and smooth evolution of the surface, since the calculations of the normals and curvatures

depend directly on it. Therefore, a re-initialization of the signed distance map has to be

made regularly. It is implemented using the fast marching method to solve the PDE [2]:

| ∇φ |= 1. (4.30)

4.6.4 Implementation

The general scheme for evolving the level set function will have a similar character no matter

how we chose the different front propagation forces, F , see Algorithm 4.1. In the different

implementations the regularization force based on curvature, κ, will also change.

Algorithm 4.1: General principle for level set evolution

1: Set Γ(t = 0) := {x(t) | φ (x(t), t) = 0},

2: while not converged do

3: n = ∇φ/(| ∇φ |) respecting the upwind scheme

4: Compute the curvature, κ respecting the upwind scheme

5: Compute image dependent speed, F .

6: χ = (F + κ) | φ |

7: φ(x, t + 1) = φ(x, t) + ∆tχ

8: Reinitialize φ such that | ∇φ |= 1

9: end while

10: Segmentation result: Γ(t) := {x(t) | φ (x(t), t) = 0}

4.7 Summary

In this chapter we have presented the basics of the extensive and highly theoretical frame-

work of the level set method. There are plenty of more to be told on this matter and there

is currently a lot of research on extensions and improvements to be done. The presented

parts will be used further on in this thesis. In general, the principal problem has been to at-

tribute appropriate functions to the front-propagation speed, F . In Chapter 5 we will define

F using diffusive similarity between tensors for segmentation of white matter fiber tracts

from Diffusion Tensor Magnetic Resonance Images (DT-MRI). In the following chapter,

Chapter 7, we will present a region based approach for segmenting gray matter structures

in DT-MRI according to the theories of Paragios et al. [79] presented in Section 4.5. In
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Chapter 6 we will extend the region based method by Chan and Vese [30] presented in

Section 4.5, to 5D for segmentation of diffusion images of high angular resolution.



A local front propagation

method for white matter

segmentation 5
5.1 Introduction

In this chapter we present a 3D geometric flow designed to segment the main core of

fiber tracts in DT-MRI. By fiber tracts we mean regions containing spatially compact and

coherent bundles of axons. These can be tubular structures such as the cortico spinal

tract as well as planar structures such as the corpus callosum. The white matter of the

brain consists of all such different tracts. In Chapter 3 we showed how these tracts could

be easily segmented from a set of fibers obtained from a tractography algorithm. We

will here present a method for segmenting the tracts as an entity directly from the DT

data without passing through the tractography step. In neuroscience, various problems can

benefit from a segmentation of the fiber tracts as a whole as we propose in this chapter. The

possibility of measuring the diffusion inside chosen fiber tracts opens new perspectives to

follow up evolution of diseases (Parkinson, Multiple Sclerosis, Alzheimers, epilepsy, stroke),

to monitor therapy effects and to map anatomically important connectivity to be preserved

in surgical interventions.

The challenge is to define an appropriate propagation speed F , Eq. (4.3), that drives

the flow to fill out the whole fiber tract and to include an appropriate regularization that

smoothes the tracts without changing their tubular structure. The diffusive properties are

very different in different ends of the tracts since the fiber tracts turn, bend and change

direction. It is therefore difficult to define the problem as a global minimization problem

since the propagation speed must have a very local dependence. Furthermore, it is very

important that we use the directional information as well as the quantitative information

about the diffusion. In many regions of the brain, fiber tracts pass close to each other and if

only a scalar value such as an anisotropy measure is used nothing will separate the regions

from each other. Using the full tensor is necessary for satisfying results as has already been

55
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shown for regularization problems [31, 36, 97, 100]. Reducing the DT to for example its

principal directions of diffusion leads to several problems. Due to noise in the acquisition,

the order of the eigenvalues can sometimes be swapped and in fiber crossings the principal

direction loses its significance [8].

Instead of using directly the physical properties of the DT, we base our approach on

the assumption that adjacent voxels within the same tract have similar properties of diffu-

sion. Therefore, we measure the similarity of diffusion between voxels and then using this

similarity as a front propagation speed. For a local dependence, the similarity is measured

between tensors lying on the surface and their neighbors in the direction of propagation.

The measure of similarity that we use to compare the diffusion is based on the whole diffu-

sion tensor, which helps to avoid problems that occur when only the principal direction is

used. The tensor scalar product (TSP), see Chapter 2, uses all possible combinations of the

eigenvectors and an eventual swapping of principal directions will not influence the result.

The influence of noise will thereby be diminished.

Once the propagation speed F is defined the front propagation is implemented using the

level set method as in Chapter 4. Fiber tracking methods in general demand a regularized

tensor field, our geometric flow regularizes the 3D surface as it evolves inside the fiber tracts

so that a regularized tensor field is not needed. Several aspects of our flow take care of

this smoothing, the nature of the similarity measure, the inertia that the local dependence

induces and the use of a smoothing term added to the flow. The smoothing term is the

minimal principal curvature of the tract itself, the use of minimal principal curvature is

to keep the thin tubular structure which is typical for fiber tracts. Further details on the

choice of curvature was analyzed in Section 4.2.2.

One of the first approaches of using PDEs and variational methods on DT data was

published by Parker et al. [80]. They used the fast marching method to create a weighted

distance field from the tensor properties. The connection paths between different brain

regions are then the geodesics that minimizes the weighted path length and is obtained by

backtracking in the distance field. Campbell et al. [27] have also used level set theory to

implement a geometrical flow to track the fibers. They mostly focus on the problem of

preventing leakage from the thin tubular structure that represents the fibers, by using flux

maximizing flows.

Batchelor et al. [12] use more of the tensor information by solving the diffusion equation

iteratively. The method creates paths that originate from a chosen seed-point and can be

considered as probability measures of a connection. A similar approach is presented by

O’Donnell et al. [74] where they find the steady state of the diffusion equation to create a

flux vector field. In the same paper they show how the inverse diffusion tensor can define

a Riemannian metric that is used to find geodesic paths that can be interpreted as fiber

tracts.

The above methods focus on finding individual fiber paths whereas we have chosen to

search for regions that correspond to certain fiber tracts. Tench et al. [94] was one of

the first to segment regions by finding trajectories of individual fibers and then identifying

voxels that belong to the same structure. The identification is based on the similarity
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of the shape of the trajectory paths. Zhukov et al. [110] also focus on segmenting white

matter regions from DT-MRI instead of on fiber tracts. They present new invariants of the

tensor such as an anisotropy measure of the tensor that is rotationally invariant and not

dependent on the computation of eigenvalues. These invariants are then used to calculate

scalar volumes, one that represents the total diffusivity within a voxel and another that

describes the anisotropy. On these scalar maps he segments regions with similar diffusion

properties and then he applies a level set method to obtain a smooth segmentation. A

drawback with Zhukov’s method is that he only uses a scalar measure and ignores the

directional information. Posterior to our publication of this work in [57], Wang and Vemuri

[102] and Lenglet et al. [64] presented region based approaches for segmentation of DT-MRI

using PDEs and variational methods. We will discuss their work further in Chapter 7.

5.2 Method

5.2.1 Similarity measures of DT

Alexander et al. [3] have explored measures for comparison of tensors to perform elastic

matching of DT images. These measures take both the magnitudes and the directions of

the diffusion into account. One of the most common measures of similarity between two

tensors is the tensor scalar product (TSP). This is a measure of the overlap between two

tensors:

D1 : D2 = Trace(D1D2) =
3

∑

j=1

3
∑

i=1

λ1iλ2j(e1ie2j)
2. (5.1)

The TSP is often normalized to avoid influence by the relative size of the two tensors. This

will emphasize the shape and orientation of the tensor.

NTSP(D1,D2) =
D1 : D2

Trace(D1)Trace(D2)
. (5.2)

Another way of measuring the tensor similarity using the full tensor information that is

also presented by Alexander et al. [3], is the tensor difference (TD).

TD(D1,D2) =
√

(D1 − D2) : (D1 − D2) (5.3)

The TD measures the difference in size and shape as well as orientation between the two

tensors.

A way of directly comparing the diffusion between two tensors is to compare the diffusion

in the direction of all unit vectors on the unit sphere, S2, x, using the double contraction.

We will call this measure of similarity for integral similarity (IS).

IS(D1,D2) =

∫

S2

min

(

xD1x
T

xD2x
T

,
xD2x

T

xD1x
T

)

dx. (5.4)

The IS gives us a percentage of the common diffusion for the two tensors.
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Table 5.1: Comparison between similarity measures between different combinations of

isotropic and anisotropic tensors. The normalized tensor scalar product(NTSP), the ten-

sor difference(TD) and integral similarity(IS). Here Danisotropic,n represents the anisotropic

tensor with its principal vector rotated n degrees.

Tensors NTSP 1-TD IS

(Danisotropic,0, Danisotropic,0) 0.57 1 1

(Disotropic, Disotropic) 0.33 1 1

(Disotropic, Danisotropic,0) 0.33 0.25 0.54

(Danisotropic,0, Danisotropic,30) 0.51 0.75 0.79

(Danisotropic,0, Danisotropic,45) 0.46 0.5 0.72

(Danisotropic,0, Danisotropic,90) 0.36 0 0.64

In Table 5.1 the different measures of similarity have been compared. We see that each

measure has different specific properties. For the purpose of white matter segmentation we

have found the NTSP being the most appropriate measure. Firstly, it is dependent on the

global shape of the tensor since it takes into account all eigenvalues and eigenvectors which

is not the case with the other similarity measures. Secondly, since the main objective is

to propagate the surface in the anisotropic regions while avoiding the isotropic regions, we

want a high speed, F, in the anisotropic areas and a low speed in the isotropic areas. For

this, the NTSP measure is highly interesting since only a completely anisotropic tensor with

diffusion in only one direction compared with itself will sum up to one and the similarity

between two isotropic tensors are low (see Table 5.1). Thirdly, this similarity measure is

robust with respect to noise. Noise can sometimes swap the order of the eigenvalues but

since the NTSP combines eigenvalues and eigenvectors independently of the order, this

measure is more stable compared to other measures.

All the presented measures are dependent on the whole information of the DT. We see

that the TD gives a high distinction between different DTs whereas the IS detects a more

subtle difference between two rather similar tensors. In Chapter 7 we will use and discuss

these two similarity measures more in detail.

5.2.2 The similarity based front propagation

As mentioned in the introduction we propose a front propagation method that is based on

the assumption that the diffusion is similar between two adjacent voxels within the same

tract. To perform the segmentation a small initial surface is placed inside the tract we wish

to segment and the surface is then propagated using the similarity measure in Eq. (5.2).

The front propagates into a voxel with a speed proportional to the similarity between the

diffusion tensor in the voxel and the diffusion tensors in the adjacent voxels lying inside the
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fiber. We define the front propagation speed as:

F (x) =

∑

y∈N (x) NTSP (D(x), D(y))

| N (x) | (5.5)

where NTSP is the normalized tensor scalar product as in Eq. (5.2). N (x) is the neighbor-

hood of x which in our case is defined as:

N (x) = {x − n,x − 2n}, (5.6)

where n is the normal which in this case is defined as:

n =
∇φ

max(| ∇φ |i)
, (5.7)

where i represents each component (x, y, z in the 3D case) of the gradient of φ. This means

that the neighbors of D(x) are the voxels found by following the normal to the surface one

and two voxels backwards from the original voxel, see Figure 5.1.

Figure 5.1: Choice of adjacent voxels with respect to the normal of the surface.

It is important to notice that the presented flow does not necessarily evolve in the

direction of the diffusion. It evolves in the direction where the diffusion properties do not

differ too much from the local neighborhood inside the fiber. This allows the surface to

propagate towards the sides of the fiber tract and thereby segment the whole tract.

5.2.3 Regularization

Due to a high level of noise in the DT-MRI a segmentation only based on properties of the

diffusion will be very irregular and sharp corners can occur that will create problems for the

evolution. To assure a regular evolution and to smooth the tracts while segmenting them we

regularize the flow by adding a curvature dependent speed. Lorigo et al. introduced the use

of a curvature definition from co-dimension 2 flows on surfaces with a thin, tubular structure

[69]. Instead of using either mean curvature or gaussian curvature, which normally destroy

the tubular structure, they use the minimal principal curvature which is a combination of

both curvatures see Eq. (4.7). Our level set equation now has the form:

∂φ

∂t
= (F + κmin) | ∇φ | (5.8)
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5.3 Implementation details

The method has been implemented in Matlab 6.1 (The MathWorks, Inc.) except for the

reinitialization of the signed distance function, which has been implemented in C and com-

piled with the mex-library, so the function can be called from Matlab. The general algorithm

is presented in Algorithm 5.1.

5.3.1 Thresholding

If the speed at one voxel is not equal to zero it will eventually lead to a propagation of

the front at that voxel, even though the speed might be very small. To prevent unwanted

propagation all speeds inferior to a certain threshold are set to zero. Thresholding is

a very abrupt method so it risks causing discontinuities in the propagation. Since it is

very important to maintain a continuous speed, we use the regularized Heaviside function,

defined in [91], to get a smoother thresholding.

HT (x) =











0 if x < T − ε
1
2 [1 + x−T

ε + 1
π sin(π(x − T )/ε)] if | x − T |≤ ε

1 if x > T + ε

(5.9)

where T is the selected threshold and ε is equal to 0.1 in all experiments.

The surface evolution is stopped when the propagation speed has been sufficiently small

for several successive iterations. We have defined sufficiently small when after 10 iterations,

the largest displacement of the surface is smaller than 0.1 voxel.

5.3.2 Weighting the Speed Terms

The diffusion and the curvature dependent speed is not always of the same order. To have a

satisfactory regularization without inhibiting the front propagation it is therefore important

to set the weighting factor between them correctly. The curvature term in Eq. (5.8) is then

referred to as ακmin,
∂φ

∂t
= (F + ακmin) | ∇Φ |, (5.10)

where α is the weighting parameter. In all our experiments α is set to 0.1, an experimentally

determined value that provides the best equilibrium between the two forces, see Figure 5.4

and the result section.

Finally, our surface evolution equation has the following form:

∂Φ

∂t
= (HT (F )F + ακmin) | ∇Φ | . (5.11)

5.4 Data

5.4.1 Synthetic Tensor Fields

To test the method we created a set of synthetic tensor fields. Tensor values for isotropic

and anisotropic tensors were taken from real data on DT-MRI of the brain of a healthy
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Algorithm 5.1: Level set evolution for fiber tract segmentation in DTI

1: Set initial departure region for the surface, Γ

2: Compute φ such that φ(Γ, t = 0) = 0 and | ∇φ |= 1

3: while not converged do

4: n = ∇φ/(max | ∇φi |)

5: ∀xi ∈ φ(xi, t) = 0 : xi−1 = xi − n

6: ∀xi ∈ φ(xi, t) = 0 : xi−2 = xi − 2n

7: NTSP1 = NTSP(D(xi), D(xi−1))

8: NTSP2 = NTSP(D(xi), D(xi−2))

9: F = (NTSP1 + NTSP1)/2

10: Threshold F , HT (F )

11: Compute κmin

12: χ = (HT (F )F + ακmin) | ∇Φ |

13: φ(x, t) = φ(x, t − 1) + ∆tχ

14: Reinitialize φ such that | ∇φ |= 1

15: end while

16: Segmentation result: Γ(t) := {x(t) | φ (x(t), t) = 0}

subject. The values of the anisotropic tensor have then been manipulated so that the

principal diffusion is in the x-direction.

Uniformly distributed random noise is added to the isotropic tensors so all of them will

not be identical, these are used as a background for the fibers that are modelled using

the anisotropic tensors. To obtain the desired direction of the anisotropic tensors they

are rotated by first multiplying the principal diffusion vector by a rotation matrix and

then projecting the remaining eigenvectors onto a plane which is orthogonal to the new

principal direction of diffusion. The original eigenvalues are kept and the tensors are then

reconstructed.

With this method two different 3D tensor fields are constructed, presented in Figure 5.2.

The images show the largest eigenvector of the tensors at a cut along the z-axis. The first

tensor field shows a semicircle to demonstrate the ability of following a curved fiber tract

and the second tensor field simulates a branching fiber tract. To make the tensor fields more

realistic, noise is added [96]. The six amplitude images from which the diffusion tensors
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originally would have been acquired if they originated from real DT-MRI are obtained by

making the inverse calculation and then noise is added on the amplitude images. The added

noise is an approximation of Rician noise [45, 51] as it would be on MR data. The tensor

images are then recreated and the resulting tensor fields can be seen in Figure 5.2.

Figure 5.2: Synthetic DT fields modelling a diverging and a curved fiber tract. The

principal directions of diffusion on a cut along the z-axis. (a) and (c): Before noise is

added. (b) and (d): After noise is added.

5.4.2 Real DT-MRI

MRI Data Acquisition.

The diffusion tensor images used here were acquired with a 1.5 T clinical MRI scanner

(Magnetom Symphony; Siemens, Erlangen, Germany). The data was produced with a

diffusion-weighted single-shot EPI sequence using the standard Siemens Diffusion Tensor

Imaging Package for Symphony. We acquired 44 axial slices in a 128 by 128 matrix covering
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the whole brain of healthy volunteers, from the vertex to the end of the cerebellum. The

voxel size was 1.64 mm by 1.64 mm with a slice thickness of 3.00 mm without gap. Timing

parameters were a TR of 1000 ms and a TE of 83 ms. Diffusion weighting was performed

along 6 independent axes and we used a b-value of 1000 s/mm2 at a maximum gradient

field of 30 mT/m. A normalizing image without diffusion weighting was also acquired.

In order to increase the signal to noise ratio the measures were repeated 20 times. An

anatomical T1 3D gradient echo volume of the entire head was also acquired during the

same session. The whole examination lasted about one hour. In the following example,

images from two healthy volunteers (male and female between 25- and 30-years old) were

considered. Informed consent was obtained in accordance with institutional guidelines.

The diffusion data were obtained from the Department of Radiology, University Hospital,

Lausanne, Switzerland.

Preprocessing of Data.

The preprocessing of the data and the geometric flow evolution was carried out in Matlab

6.1. The DT was computed for each voxel by linear combination of the log-ratio images

according to Basser and Pierpaoli [11]. The tensors were linearly interpolated component-

wise between slices along the z-axis, to obtain a volume with a 3D regular grid of 1.64

mm.

5.5 Results and validation

5.5.1 Synthetic Tensor Fields

The method was tested on the synthetic images with different levels of SNR, using an SNR

of 8, 16 and 32 on the MR amplitude images as in [96]. The segmentation is initiated by

placing a small initial surface somewhere inside the synthetic fiber. An idea of suitable

thresholds can be given by again looking at Table 5.1 where some typical values of the

NTSP between different combinations of the tensors are presented.

Correct segmentations were obtained with several different thresholds between 0.45 and

0.5 and these thresholds were then used on the real MR data. In Figure 5.3 the effects of

different choices of thresholds are shown, all synthetic tensor fields used for the segmentation

have a SNR=8. Even though the synthetic tensor fields are very noisy, the resulting surfaces

are relatively smooth due to our regularization that is performed as the surface is evolving.

In Figure 5.4 the level of regularization is varied. The segmentation results are shown

without regularization term, with a regularization term set too high and with an appropriate

value of the regularization term.

In Table 5.2 and Table 5.3, quantitative values for the segmentation results are presented.

The value is obtained by comparing the signed distance function (SDF) between the contour

of the synthetic fiber tract without noise and the segmented fiber tract when noise is added

with SNR = 8, and then calculating the error between the SDFs at the contours. The

tables present the mean(L1) and maximum(L∞) differences in value between the two SDFs.
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Figure 5.3: Effects of varying thresholds on the resulting segmentations of synthetic DT

fields with SNR=8. (a) and (d): segmentation is ideal with threshold = 0.45. (b) and (e):

segmentation is too large with threshold = 0.40, (c) and (f): segmentation is insufficient

with threshold = 0.55.
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Figure 5.4: Effects of varying regularization parameter on the resulting segmentations of

synthetic DT fields with SNR=8. (a) and (d): ideal regularization parameter, (b) and (e):

no regularization, the segmentation is too noisy, (c) and (f): regularization parameter is set

too high and has too high an influence on the real shape of the tracts. Threshold T = 0.45

for all images.
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Table 5.2: Quantitative values of the segmentation results for different thresholds. The

values are obtained by comparing the signed distance functions of the contour of the syn-

thetic fiber tract without noise and those of the segmented fiber tract when noise is added

with a SNR = 8.

form threshold α max mean

circle 0.40 0.1 2.98 0.56

0.45 0.1 2.1 0.48

0.55 0.1 47.5 20.5

fork 0.40 0.1 3.96 0.63

0.45 0.1 1.56 0.51

0.55 0.1 17.8 6.0

Table 5.3: Quantitative values of the segmentation results using different levels of regular-

ization. The values are obtained by comparing the signed distance functions of the contour

of the synthetic fiber tract without noise and those of the segmented fiber tract when noise

is added with a SNR = 8.

shape threshold α max mean

circle 0.45 0 2.32 1.07

0.45 0.1 2.1 0.48

0.45 2 3.3 0.29

fork 0.45 0 2.0 1.06

0.45 0.1 1.56 0.51

0.45 2 2.69 0.6
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Table 2 shows the results for different thresholds and table 3 for different weighting of the

regularization parameter. Both tables confirm the visual results that the best results are

obtained for a threshold equal to 0.45 and a weighting factor for the curvature α = 0.1.

Experiments were also made with smaller and larger neighborhoods than in Figure 5.1

and Eq. (5.5). For a smaller neighborhood the front propagation becomes too sensitive to

noise. A larger neighborhood, in the sense that we look further behind the surface in the

opposite direction of the normal, improves slightly the robustness of the method but the flow

has difficulties segmenting bending fiber tracts and it also increases the computation time.

A larger neighborhood, in the sense of adding voxels on the side of the normal, would make

it impossible to track thinner fiber tracts. The best compromise between robustness and

correctness of the segmentation is a neighborhood, lying on a line in the opposite direction

of the normal, of two voxels as shown in Figure 5.1.

5.5.2 Real DT-MRI

Results

The segmentation has been performed on three different DT-MR images. The initial surface

for the front propagation is placed by using color images representing directional information

according to a method presented by Pajevic and Pierpaoli [77]. The initial surface is then

placed inside an anisotropic region belonging to the fiber tract we wish to segment. The

initial surface can be as small as one voxel but in general we chose the initial surface to be a

one voxel thin tube that is directed along the supposed fiber. Two of the image acquisitions

are from the same person. The results have been validated visually by comparing with post-

mortem based neuroanatomical knowledge. Results are presented for one of the DT-MR

images.

On the synthetic images we saw that several different thresholds are possible for a

good segmentation. On the real MR data the same range of thresholds has been used and

depending on the segmentation we desire, the threshold has been slightly varied within this

range. In Figure 5.5 the cortico-spinal tract has been successfully segmented. To illustrate

the effect of different choices of threshold on real DT-MRI, two segmentations of the corpus

callosum have been made with different thresholds. The results can be seen in Figure 5.6.

For a stricter threshold only the medial part, i.e. the splenium, the truncus and the genu

of the corpus callosum is segmented. When choosing a lower threshold the segmentation

surface extends further towards the forceps major, the radiation of the corpus callosum, the

tapetum and the forceps minor.

In Figure 5.7 we segmented the inferior long association bundles as a whole, containing

the occipito-frontal, the longitudinal inferior and the uncinate fascicles. These bundles run

in an intricate and parallel fashion for most of their trajectories, therefore we treat them as

one entity. It is a good example of a case where the diffusion orientation plays a crucial role

since no contrast between this group and adjacent structures exists neither on fractional

anisotropy maps, T1 nor T2 images.



68
Chapter 5. A local front propagation method for white matter

segmentation

Figure 5.5: Segmentation of the left- and right cortico-spinal tract.
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Figure 5.6: Segmentation of the corpus callosum (a): Segmentation is limited to the sple-

nium, truncus and genu when threshold, T = 0.47, (b): in addition to (a) the segmentation

also includes the forceps major, the radiations, the tapetum and the forceps minor when

threshold, T = 0.45.
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Figure 5.7: Segmentation of the inferior long association bundles as a whole (occipito-

frontal, longitudinal inferior and uncinate fascicles).
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5.6 Discussion

We have presented a new method for segmentation of the main core of fiber tracts by

assuming that two adjacent voxels within the same tract have similar diffusion properties.

The method manages to segment the larger tracts in the brain. This presented segmentation

methodology can be very useful for several purposes such as studying the water diffusion

in a tract of interest, e.g. the genu of the corpus callosum and the centrum semiovale

in alcoholics [68, 82] or in the splenium of the corpus callosum in schizophrenic patients

[40]. Through its precise description of the contour of a white matter structure it allows

to compare its shape across a selected population, e.g. study of the corpus callosum sexual

dimorphism [34, 81].

The weakest point of the segmentation method is the sensitivity to the choice of pa-

rameters. Since there is no objective measure of the exact solution for the brain images it

is difficult to determine exactly the optimum thresholds and the a slightly different thresh-

old can give quite a different result. The balance between the propagation speed and the

regularization speed has also been determined on the synthetic images. We have seen that

ignoring regularization leads to a noisy and irregular surface. When the regularization force

is too strong the global shape of the segmented tract is deformed.

As mentioned in the introduction, most of the existing methods focus on following the

principal eigenvector of the DT. The DT contains a lot more information than just the

main direction and magnitude of the diffusion. The other eigenvectors and eigenvalues also

contain important data which are often ignored. Just looking at the principal direction also

leads to a larger sensitivity to noise since a smaller deviation of the principal direction will

lead to an important accumulative error. By exploring more of the tensor information we

have created a flow that is less sensitive to noise. The similarity measure we use is based

on the whole tensor and combines all eigenvectors which makes it insensitive to swapping

of eigenvalues, a phenomenon that can appear in the presence of noise. The similarity

measure is shape dependent and favors anisotropic diffusion which is a great advantage for

our application.

Using geometric flows for the segmentation has the advantage to other methods that

it permits local comparisons of the diffusion in the direction of the surface evolution. An

important advantage of our approach is the level set implementation. It provides an elegant

tool for propagating and smoothing the segmented tracts and makes it possible to follow

several paths simultaneously and effectively handle branchings and merging of fiber tracts.

Calculating the NTSP with adjacent voxels lying inside the propagating surface leads

to a regularization of the fiber tract in addition to the regularization performed with the

curvature based propagation force.

5.7 Conclusion

We have shown how similarity measures between tensors can be used for propagating an

interface. We have seen how it is possible to perform the propagation with a highly local
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dependence and using neither region nor boundary information. This propagation has been

used for segmentation of some of the principal fiber tracts in a human brain. The fiber tracts

are elongated regions of high anisotropy with diffusive properties that change throughout

the tract. This work has been published in [57] [55].

In the next chapter we will show another application of how to propagate a flow using

tensor similarity. This time the similarity will be used to define regions with high internal

coherence independently of their anisotropy. We have stepped outside of the white matter

to segment parts of the gray matter where the difference in diffusion between different parts

is very subtle.

In Chapter 6 we will see the extension of fibers tract segmentation to HARD data.



Evolving hyper surfaces

for segmentation in

position orientation space 6
6.1 Introduction

In Chapter 5 we presented a 3D geometric flow algorithm designed for segmenting fiber

tracts from DT-MRI. The method was based on the assumption that adjacent voxels in a

tract have similar properties of diffusion and we defined similarity measures between tensors

to propagate the surface. Various problems can benefit from fiber tract segmentation,

like quantitative investigation of the diffusion inside the chosen fiber tracts, white matter

registration and surgical planning. However as mentioned in Chapter 2 the DTI model has

several shortcomings concerning the resolution of complex brain white matter structures,

in particular in the presence of fiber crossings. Passing from DTI to HARD data, see

Section 2.3.4, can resolve this problem. Currently, the HARD data is used to map cerebral

connectivity through fiber tractography [48] but we will in this chapter show how to adapt

the approaches presented in Chapter 5 and Chapter 7 to the HARD problem.

In DTI several practical representations can be computed such as direction of principal

diffusion, anisotropy and comparisons between different compartments of diffusion by diag-

onalizing the DT. These simplifications are less straightforward for the ODF. Frank et al.

[41] presented a way of determining the anisotropy from HARD data but only anisotropy

is not sufficient for segmentation of white matter tracts and the problem of crossing fibers

remain unsolved. The field of ODF is often simplified to so called stix-maps. They re-

duce the ODF to a set of vectors representing its local maxima. The first idea we had to

tackle the segmentation problem for HARD data was to use the stix-maps for computing a

similarity measure based on the scalar product between its vectors. The front propagation

had the same local dependence as in Chapter 5, see Figure 5.1. The front propagation

speed was defined by first computing the scalar product between all the direction vectors

of the stix-map. The combination with the highest scalar value was kept and the rest were
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removed. If the angle between the two vectors that were kept was sufficiently small the

surface would be propagated. This gave some first results that were not too bad but the

flows had a tendency always to prefer straight lines. It is also highly questionable to reduce

the complete ODF to only one principal direction.

When tackling any kind of problem it can often be useful to augment the dimensionality

of the problem. By doing this on our data many of the problems encountered can be

solved simultaneously. Instead of considering a 3D map of ODFs, we define a 5D position-

orientation space (POS) as a combination of a spherical space of orientation and a Euclidean

space of position. Two fiber tracts with different directions of diffusion that are crossing each

other in the same voxel become separated in this 5D space and can be segmented separately

without interference from one another. Another positive aspect of this 5D space is that it

consists of only scalar values which allow us to adapt classical segmentation methods for

grayscale images. However, augmenting the dimensionality has some drawbacks, namely

the well-known ”curse of dimensionality” [16] which refers to the exponential extension of

the space as the dimension augment. This will make the computations very heavy.

Firstly we will explain the underlying principles of POS and show how to define it from

a 3D map of ODF. We will then show that it is possible to segment white matter structures

from HARDI MRI data by propagating a hyper-surface in this non-Euclidean 5D space.

As we have seen in Figure 4, the level set formalism is defined for N -dimensions and we

will here show how to practically apply it in 5D.

6.2 Position Orientation Space

A HARDI experiment provides a 3D map of ODFs. Thus, for every position vector x =

(x, y, z), in Euclidean 3D space, R
3, there is an ODF measuring the intensity of diffusion

in any direction, u = (ϕ, θ) where u is a vector restricted to the unit sphere, S2, with

(0 ≤ θ < 2π, 0 ≤ ϕ ≤ π). The cartesian product of R
3 and S2 forms POS that we note Ω:

(x,u) ∈ Ω = R
3 × S2. (6.1)

And its implied metric tensor allows us to determine the gradient operator as:

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
+ ϕ̂

∂

∂ϕ
+

1

sin(ϕ)
θ̂

∂

∂θ
. (6.2)

To get some intuition about what POS is and why it is useful for fiber tract segmentation

is it instructive to consider the case of a 2D map of ODF restricted to a plane. In Figure 6.1a

a 2D slice of ODFs is shown. The slice shows a crossing between two fiber tracts. The ODFs

in the figure are restricted to the plane and can therefore be described through only one

angle, θ. The intensity of the ODF varies with the angle. In the case where we only have

one fiber there will be a peak in the intensity for the angle that corresponds to the direction

of the fiber. In positions where two fiber tracts cross there will be two intensity peaks, one

for the direction of each fiber. These two cases are illustrated in Figure 6.1b.
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The third dimension represents the orientation of diffusion, hence the 2D ODF map is

mapped as a 3D scalar field. This means that even though the two fiber tracts cross over

in 2D, they will be separated in 3D and can therefore easily be segmented, see Figure 6.2.

Figure 6.1: Example of POS for a 2D slice of a volume of ODFs. The slice shows a

crossing between two fiber tracts. The intensity of the ODF varies with the angle, θ. In the

case where we only have one fiber there will be a peak in the intensity for the angle that

corresponds to the direction of the fiber. In positions where two fiber tracts cross there will

be two intensity peaks, one for the direction of each fiber.

Figure 6.2: Example of POS for a 2D slice of a volume of ODFs. The 2D ODF field is

mapped as a 3D scalar field. This means that even though the two fiber tracts cross over

in 2D, they will be separated in 3D and can therefore easily be segmented.
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6.3 Method and implementation

6.3.1 Creating POS

We have constructed the 5D POS from a 3D map of ODF. The values of the ODF are placed

on a 2D grid. Due to the symmetry of the diffusion data only a hemisphere is sampled so

we have that:

(ϕ, θ) ∈ {0,
π

n
, ..., π − π

n
} × {0,

π

n
..., π}, (6.3)

where n is the sampling step.

Due to the spherical geometry of the space there is a periodicity in the data. The two

extremities along the θ-axis are neighbors. Due to the symmetry of the diffusion data this

periodicity is also present along the ϕ-axis. If, due to the same symmetry, only a hemisphere

is considered, the periodicity along the ϕ-axis can be disregarded.

6.3.2 Evolution of the hyper-surface.

The hyper-surface is evolved according to Eq. (4.25). Once the POS is defined we have a

scalar image not too different from a classical gray scale image. The specific considerations

except for the high number of dimensions are the periodicity and the computation of the

gradients, see Eq. (6.2). Implementing a level set function in 5D is theoretically straight-

forward but practically difficult. One of the main problem is handling the storage of the

huge amount of data that is treated. Optimizing the computation of the level set function

and its re-initialization is crucial. There is however one important issue to consider theo-

retically: the computation of the curvature. Hence, we propose to use the theory developed

by Ambrosio and Soner [4] as presented in Section 4.2.2 to determine the mean curvature

in a 5D space, see Eq. (4.9) and Eq. (4.10).

6.4 Data

6.4.1 Synthetic data

To test the method we constructed a 3D volume of ODFs modelling two crossing fiber

tracts, see left figure in Figure 7.2. The ODFs are normalized by removing the minimum

from each ODF.

6.4.2 Real data set

The diffusion images were obtained on a healthy volunteer with a 3T Philips Intera scanner.

We used a diffusion weighted single shot EPI sequence with timing parameters: TR/TE/∆/

δ =3000/154/47.6/35 ms, bmax = 12000mm2/s and a spatial resolution of 2x2x3mm3. The

data were acquired by sampling q-space on a 3D grid with 515 diffusion encoded directions

restricted to the interior of a sphere of radius 5. From this acquisition the ODF map is

reconstructed according a standard DSI scheme [103].
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The diffusion data were obtained from Athinoula A. Martinos Center for Biomedical

Imaging, Massachusetts General Hospital and the Harvard Medical School, Boston, MA,

United States. Informed consent was obtained in accordance with institutional guidelines

for all of the volunteers.

6.5 Results and validation

6.5.1 Synthetic data

One surface was initialized by placing a small surface of a few voxels in each fiber tract.

The hyper surface was evolved until convergence and then projected back into 3D Euclidean

space. The result can be seen in Figure 6.3. We see how each fiber tract is segmented

completely without influence from the other crossing fiber.

Figure 6.3: a) Slice of the synthetic 3D volume of ODFs. b) The intensity of the different

angles plotted against each other. c) The 3D projection of the 5D result.

6.5.2 Real data set

The ODFs are normalized by removing the minimum from each ODF. The small initial

surfaces were placed inside a brain region known to contain well known fiber tracts. The

results are shown in Figure ?? and display the core of important fiber tracts such as the

corpus callosum (green), the cortico spinal tract (red) and the arcuate fasciculus in blue.

These are early results but show proof of principle. The current problem is the handling of

data storage and only smaller volumes can be treated at the moment.

6.6 Discussion and Conclusion

We have shown that extending the dimensionality of the segmentation space from 3D to

5D originally overlapping structures disentangle. We have seen from the result on synthetic
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Figure 6.4: Results from application on HARD MRI from a human brain. The red surface

is a part of the cortico spinal tract. The green surface is a segment of the corpus callosum.

Figure 6.5: Results from application on HARD MRI from a human brain. The red surface

is a part of the cortico spinal tract. The green surface is a segment of the corpus callosum

and the blue is the arcuate fasciculus. a) The 3D projection of the 5D results. b) A coronal

cut of the 3D projection of the result superposed on a coronal slice of the original ODFs.

c) A zoom of b) that shows overlapping surfaces that were distinct regions in 5D.
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data, that crossing fiber tracts in 3D are represented in 5D POS as separate objects char-

acterized by intense diffusion. The results shown for brain HARD MRI data are the early

results. Due to the huge 5D matrices only parts of the structures have been segmented.

However, they clearly show the potential of this approach to clearly delimit structures of

coherent diffusion. The problem of data handling will be solved with better computer power

and a more efficient implementation and data storage.

Further, we have shown that it is possible to implement the level set method for evolving

a hyper-surface in a non-Euclidean 5D space. To solve the problem of the implementation

of the mean-curvature flow we have proposed to use the theory developed by Ambrosio and

Soner [4].

Segmenting regions in HARD MRI is a new approach for interpreting data with a

different objective than classical fiber tractography. Fiber tractography provides a map

of the cerebral connectivity and aims at visualizing fiber tracts as a set of lines. Our

approach treats one fiber tract as one single object characterized by intense and coherent

diffusion. This representation gives a different view of the brain architecture that can be

more appropriate for applications such quantitative investigation of the diffusion as well as

for surgical planning and white matter registration.
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Region based

segmentation of tensor

fields 7
7.1 Introduction

In the two previous chapters the goal was to segment highly anisotropic parts of the tensor

fields, where the diffusive properties varied throughout the segmented structures. In this

chapter we search for structures with a highly coherent diffusion throughout the entire

structure. To maximize the coherence within the structure we define an energy functional

as in Section 4.3, and we use the calculus of variations to obtain the level set equation. This

yields a region-based speed that will be based on a similarity measure between diffusion

tensors. The region-based speed will drive a set of coupled surfaces towards the solution

of the segmentation problem. Firstly, we apply our method for segmenting the thalamus

and its nuclei. We then apply the same method for segmentation of tensor fields in other

domains than diffusion imaging, namely fluid dynamics where the tensor representation is

commonly used. The particular case considered in this chapter is fields of Reynolds stress

tensors which are explained more in detail in Section 7.6.

This chapter proposes several new strategies to efficiently segment complex objects in

tensor fields. First of all, we use a sensitive similarity measure, presented in Section 5.2.1,

that distinguishes very subtle differences between regions within, for example, the thalamus.

Secondly, we present a new way of selecting the most representative tensor of a group

of tensors for these kinds of applications. Most authors suggest to use the mean tensor

whereas we argue for the importance of using the tensor with the minimum variance with

its neighboring tensors. The third important point is the necessity of using several coupled

level sets to define the background. Methods differentiating only between foreground and

background will fail when applied to complex structures such as the brain. It is crucial for

a region-based approach to consider all the surrounding structures for a correct definition

of the speeds driving the segmentation.
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For DT-MRI in general, emphasis has mainly been put on identifying white matter

structures, but many gray matter structures can also be revealed through this new image

modality. Most gray matter structures contain passing fibers which will affect the mean

diffusion within the voxel and give the diffusion tensor a characteristic shape for that specific

structure. Only recently, DT-MRI has started being used for segmentation purposes. The

first approaches performed fiber tractography and used the result for segmentations [94].

Identification of the thalamic nuclei has been made by Behrens et al. [14] by mapping the

connections between the thalamus and the cortex. Wiegell et al. [108] were some of the

first to segment DT-MRI directly from the data by using a k-means algorithm, this method

was used to segment the thalamic nuclei. The most recent approaches have been to use

Partial Differential Equations (PDE), variational methods and level sets [39, 55, 57, 65, 84,

102, 110]. In the previous chapter we used the diffusive similarity between voxels to define

a geometric flow implemented with level set method for fiber tract segmentation. Similarity

measures based on the whole tensor information were used for propagating the flow. Since

then, several papers have provided a well developed theory on PDE and segmentation in

DT-MRI [39, 64, 65, 84, 101, 102]. Wang et al. [102] were the first to define regions

from the DT and they used region based forces for the front propagation. The region-

based force is defined from a distance metric between tensors. Wang et al. presented in

[101] the very interesting approach of Kullback-Leibler (KL) distances. The KL distance is

a frequently used concept in information theory and is a measure of the natural distance

between two random variables. From this distance, Wang et al. [101] have derived similarity

measures and segmented 2D tensor fields. Lenglet et al. [64] extended their work for 3D

images and explored the statistics of the KL distances to segment tensor fields with higher

internal variance. In this method however, we are not interested in allowing a high internal

variance, rather in detecting the very small variances that exist between the thalamic nuclei.

In fluid dynamics, numerous applications of the level set method for interface tracking exist

[71][109]. The main contribution of our method in this domain is the improved contrast

between different flow properties. This example shows that our segmentation method can

be applied to several types of tensor fields.

We will here present an energy functional based on the theory of geodesic active regions

(GAC) by Paragios and Deriche [78] as explained in Section 4.5. We will then show how it

leads to the level set equation that will propagate the surfaces. The method will be applied

on a synthetic tensor field and then on the thalamus and its nuclei where the results are

compared with anatomical atlases. Finally, we apply the method on fields of Reynolds

stress tensors from fluid mechanics.

7.2 Method

We have developed a region based approach for segmenting tensor fields: Each region

is represented by the tensor that best represents all the tensors within the region. The

probability of a voxel belonging to a certain region is then determined by tensor similarity

measures between the most typical tensor of each region and the tensors lying close to the
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region boundary.

To find the most representative tensor among a group of DTs, Jones et al. [61] use a

distance metric, dij , between two tensors, (Di, Dj):

dij =
√

(Di − Dj) : (Di − Dj). (7.1)

where : stands for the Tensor Scalar Product as defined in Eq. (5.1). For determining the

most representative tensor of the data set, this distance is computed between each pair of

tensors. For each tensor we compute ci:

ci =

√

∑n
i=1,j 6=i d

2
ij

n − 1
, (7.2)

and the most representative tensor is then the tensor with lowest value of ci. This corre-

sponds to the tensor with the smallest distance to all other tensors within the group.

The similarity measure that we use for comparing the tensors is the integrated similarity

presented in Eq. (5.4). The similarity measure is the percentage of the common diffusion

that each tensor has with the most typical tensor of each region. This percentage can be

considered as a probability measure of a voxel belonging to a certain region. We therefore

permit ourselves to set the energy functional as in the theories of Paragios et al. [78] where

the region term aims at minimizing an estimation of the entropy of the similarity measure:

E({Ri}1≤i≤N ) = α
N

∑

i=1

∫ ∫ ∫

Ri

− log(IS(Ds(x,y,z), Dtyp,i))dxdydz + (1 − α)
N

∑

i=1

∫ 1

0
dsi,

(7.3)

where dsi is the Euclidean arc length of the curves, {Ri}1≤i≤N are the regions and IS is the

integral similarity described in Eq. (5.4). Dtyp,i is the most representative tensor associated

with the level set, φi and it is computed according to Eq. (7.2). Ds(x,y,z) is the DT in voxel

s at position (x, y, z). Notice that compared with Eq. (4.20) the boundary information has

been removed by setting f(I) = 1.

Computing the Euler-Lagrange gives for each surface the propagation speed:

Fi(s) = −α log

(

IS(Ds, Dtyp,i)

IS(Ds, Dtyp,j 6=i)

)

+ (1 − α)Mi, (7.4)

where Mi is the mean curvature. It is continuously recalculated as the surface evolves. We

will name the image dependent part of the propagation force FD
i :

FD
i (s) = − log

(

IS(Ds, Dtyp,i)

IS(Ds, Dtyp,j 6=i)

)

. (7.5)

FD
i expands the surface, Γi, in the direction of the voxels of diffusion most similar to Dtyp,i.

To improve the segmentation we will chose to compare that probability of belonging to

Ri with the maximum of the probabilities of belonging to the other regions. We therefore

adjust Eq. (7.5) as follows:

FD
i (s) = − log

(

IS(Ds, Dtyp,i)

maxj(IS(Ds, Dtyp,j 6=i))

)

, (7.6)
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which means that we compare only with the region j 6= i that has the highest resemblance

with Ds.

7.2.1 Coupling Forces

When propagating several curves, overlapping can occur, meaning that a voxel has been

initially attributed to two different regions. To avoid this, an artificial force is added in

the direction of the normal to the corresponding level set motion equations. The force will

penalize voxels which have been attributed to more than one region. If necessary, voxels

that have not yet been labelled will also be penalized in order to force each voxel to belong

to a region. The coupling forces for each surface, Hi, are defined as in [78].

Hi (j, φj (s)) =
1

N − 1

{

+1, if φj(s) > a

− 1
tan(1) tan (φj(s)/a) , if |φj(s)| ≤ a

(7.7)

Here, a is a parameter to decide within which distance the coupling force shall act.

7.2.2 Final evolution

Each one of our surfaces, Γi, are now evolving according to the level set equation:

∂φi

∂t
= (FD

i + Mi + Hi) | ∇φ | (7.8)

where FD
i is the region based force Eq. (7.6), Mi is the mean curvature and Hi is the

coupling force.

7.3 Implementation details and parameters

The method has been implemented in Matlab 6.1 (The MathWorks, Inc.) except for the

re-initialization of the signed distance function, which has been implemented in C and

compiled with the mex-library. The algorithm can be seen in Algorithm 7.1.

Convergence

The evolution of the surfaces is automatically stopped when the zero level set has only

moved insignificantly after 10 iterations, in our case less than 0.1 voxel.

Weighting the Speed Terms

The diffusion dependent speed, Fi, and the curvature dependent speed, Mi, speed for

each surface Si, is not always of the same order. For a satisfactory regularization without

inhibiting the front propagation it is therefore important to set the weighting factor between

them correctly. Hence, we have the following relation:

∂φi

∂t
= (αFD

i + βMi + γHi) | ∇φi | (7.9)



7.3. Implementation details and parameters 85

where α, β, γ are weighting parameters. The parameters are set to α = 10, β = 1 and

γ = 1 for all experiments which has experimentally shown a good equilibrium between the

forces.

Algorithm 7.1: Level set evolution for region based segmentation of DTI

1: N = number of surfaces.

2: Set initial departure regions for all surfaces surface, Γi i = 1..N

3: ∀i compute φi such that φi(Γi, t = 0) = 0 and | ∇φi |= 1

4: while not converged do

5: for i = 1..N

6: ∀k ∈ φi < 0

7: ∀l 6= k ∈ φi < 0

8: dkl :=
√

(Dk − Dl) : (Dk − Dl)

9: ck =

��
n
k=1,l 6=k d2

kl

n−1

10: Dtyp,i = argmin(ck)

11: end for

12: for i = 1..N

13: FD
i = log

(

IS(Ds,Dtyp,i)

max(IS(Ds,Dtyp,j 6=i))

)

14: Mi = ∇ ·
(

∇φ
|∇φ|

)

15: Hi (j, φj) = 1
N−1

{

+1, ifφj > a − 1
tan(1)

tan (φj/a) , if | φj |≤ a

}

.

16: χ = (αFD
i + βMi + γHi) | ∇φi |

17: φi(x, t) = φi(x, t − 1) + ∆tχ

18: Reinitialize φi such that | ∇φi |= 1

19: end for

20: end while

21: Segmentation result: Γ(t) := {x(t) | φ (x(t), t) = 0}
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7.4 Data

The method has been tested on synthetic data and on diffusion data from two healthy

volunteers.

7.4.1 Synthetic data set

The method was first validated on a synthetic tensor volume containing regions of tensors

with slightly different diffusion properties. Values from different regions of the thalamus

were used. These tensors were then placed in six regions in a 3D volume and rician noise

was added [96]. A cut of a slice through the regions can be seen in Figure 7.1. To initialize

the surfaces we ran a k-means clustering algorithm as in [108]. The k-means operates on a

vector of parameters representing the tensors. This vector is constituted of the six values of

the DT and three position parameters. The position values are weighted according to their

relative importance. In our implementation this weight is 0.000000001. Once the clusters

are obtained, the center points of the clusters are used as initialization points.

The algorithm was then applied to the tensor fields with a signal-to-noise-ratio(SNR)

of 32. With a lower SNR similar regions can not be distinguished so for segmentation of

the thalamic nuclei good imaging acquisitions with a reasonably good SNR are needed.

7.4.2 Real data set

The images were obtained with a single shot EPI sequence on a 3T Intera scanner from

Philips. Six diffusion weighted images and 1 without diffusion weighting were acquired.

TR and TE were 4858 ms and 78 ms respectively and b value was set to 1000mm/s2. We

acquired 24 axial slices in a 256 by 201 matrix that was interpolated to a 256 by 256 matrix,

covering the region of the deep cerebral nuclei. The voxel size was 1.0 mm by 1.0 mm with

a slice thickness of 2.0 mm without gap. The data were again interpolated to 1.0mm by

1.0mm by 1.0mm. The diffusion data were obtained from the Department of Radiology,

University Hospital, Lausanne, Switzerland.

Informed consent was obtained in accordance with institutional guidelines for the vol-

unteers.

To validate the results, the segmented thalamus was defined according to the plane

crossing the anterior (AC) and the posterior (PC) commissures (AC-PC referential) and co-

registrated with digital images of the Schaltenbrand and Wahren stereotactic atlas (SWSA)

[86].

The thalamic cytoarchitecture

The thalamus can be considered as the central relay station for brain neuronal communi-

cation. Every sensory system (except olfaction) makes synapses here before projecting into

the cerebral cortex. Information received from diverse brain regions is passed on to the

cortex through the thalamus. These passing fibers will slightly influence the anisotropy and

shape of the diffusion tensor. Because these axonal projections have different orientations
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Figure 7.1: A cut of the synthetic tensor field used to test the segmentation method.

The form of the tensors can be seen in each voxel displayed on a color map representing

the anisotropy and principal direction [77].
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depending on the region they connect to, diffusion is differentially orientated. This will

allow us not only to segment the thalamus but also its nuclei.

The thalamus and its nuclei are structures that are hardly differentiated using other

imaging modalities such as Computerized Tomography or conventional Magnetic Resonance

Imaging (MRI), which do not provide the necessary image contrast. Therefore, radiological

identification of the individual thalamic nuclei is not currently possible and even the thala-

mus precise boundaries are difficult to identify. Often it is segmented by atlas matching or

by hand.

The thalamic cytoarchitecture is divided into several nuclei, each with a specific function.

The thalamic nuclei have traditionally been studied with histological methods and their

number varies depending on the method used. However, most studies identify 11 major

nuclei, some of them being subdivided. Wiegell et al. [108] have shown how Diffusion Tensor

MRI (DT-MRI) can differentiate the principal thalamic nuclei, non-invasively, basing on

the characteristic fiber orientation, which is assumed to stay the same within one certain

nucleus and varies from one nucleus to another. Identification of the thalamic nuclei in

DT-MRI has also been done by Behrens et al. [14] by performing tractograpy between the

thalamus and the cortex. Thalamic subregions were identified through their specific cortical

connectivity.

7.5 Results and validation

7.5.1 Synthetic data set

In Figure 7.2 the regions have been segmented on the synthetic tensor field without any

noise added. The results are displayed as curves on a background color that represents the

result from the k-means algorithm [108].It seems that our method is better to segment the

regions that are more elongated. The k-means clustering algorithm weights the distance

between the tensors as well as the similarity between them and when they are far apart

they get more easily attributed to another region. If the algorithm puts more weight to the

similarity than the spatial distance, the clusters become less centered and non-connected

clusters can appear. In Figure 7.2 the same segmentations have been made on a field with

a SNR = 32.

7.5.2 Segmentation of the thalamus

For the segmentation of the thalamus, a bloc of the complete images containing the desired

structure was selected. With an a priori knowledge of brain anatomy several surfaces were

initiated manually in the different structures by looking on color maps [77]. A typical choice

of initial surfaces can be seen in Figure 7.3. The high resolution of our images makes a clear

distinction between regions so that there is a significant difference between the anterior and

the posterior part of the thalamus. We therefore initiate two surfaces, one surface for the

anterior part and one surface for the posterior part of the thalamus. The posterior part

itself is one of the nuclei, the pulvinar nuclei.
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Figure 7.2: A cut of the segmentation result on a synthetic field. First line contains

the results from the k-means algorithm [108]. The second line is the results with the

method presented in this chapter. First column shows results without any noise added.

Second column with SNR = 32. The level set methods results in a better segmentation for

elongated structures and when noise is present and also seems more robust to noise.
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Figure 7.3: Placing of the initial surfaces for the segmentation of the thalamus. a) Color

map of a horizontal section of a tensor field. b) The selected cut where the segmentation

algorithm is run with the initial surfaces. They aim to segment the following structures:

A: Thalamus anterior, B: Thalamus posterior (pulvinar nuclei), C: Capsula interna, crus

posterius (cortico spinal tract), D: Radiato optica and Fasciculus longitudinalis superior,

E: The third ventricule.
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The thalamus has been segmented on two different subjects. The results for one of the

subjects can be seen in Figure 7.4, Figure 7.5 and Figure 7.6.

Figure 7.4: The segmentation of the thalamus displayed as a 3D surface on a horizontal

cut of the fractional anisotropy map. The anterior (red surface) and posterior part (pulvinar

nuclei, blue surface) are segmented separately.

Taking the segmentation one step further we have segmented the thalamic nuclei. For

this the thalamus segmentation is used as a mask. The surfaces are initialized by running

the k-means algorithm by [108]. The center of each cluster was then used as initial points

for the surfaces. The results can be seen in Figure 7.7, Figure 7.8 and Figure 7.9. From

the result the different nuclei have been identified by an expert by comparing with the

Schaltenbrandt atlas (SWSA) [86] that was co-registered on the resulting segmentation of

thalamic nuclei. Figure 7.10 shows the correlation between axial slices of the segmented

thalamus performed 2 and 7 mm above the anterior commissure(AC)- posterior commis-

sure(PC) plane. The nuclei could be identified as follows: Pu: Pulvinar, Ce: nucleus cen-

tralis, M : nucleus medialis, A : nucleus anterior, Lp : nucleus lateropolaris : Zc+Zim+Zo

: nucleus Zentrooralis caudalis, intermedius and oralis, Tmth: tractus mamillothalamicus,

Vc: nucleus ventrocaudalis, Vim: nucleus ventralis intermedius, Vo: nucleus ventrooralis.
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Figure 7.5: The segmentation of the thalamus displayed on horizontal cuts of the fractional

anisotropy map. The anterior (red surface) and posterior part (pulvinar nuclei, blue surface)

are segmented separately.
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Figure 7.6: The segmentation of the thalamus displayed on coronal cuts of the fractional

anisotropy map. The anterior (red surface) and posterior part (pulvinar nuclei, blue surface)

are segmented separately.
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Figure 7.7: The segmentation of the thalamic nuclei displayed on horizontal cuts of the

fractional anisotropy. Segmentation is made in 14 parts.
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Figure 7.8: The segmentation of the thalamic nuclei displayed on coronal cuts of the

fractional anisotropy. Segmentation is made in 14 parts.



96 Chapter 7. Region based segmentation of tensor fields

Figure 7.9: The segmentation of the thalamic nuclei seen in 3D. Segmentation is made in

14 parts.

7.6 Application of tensor segmentation in fluid dynamics

Diffusion Imaging is not the only domain in which tensor representations are used. The

tensor notation is a very common tool in fluid dynamics. The purpose of the tensors

remains the same as in diffusion, namely description of fluid motion. As in diffusion imaging

the fluids are treated on a macroscopic level governed by the continuum hypothesis that

reconciles the discrete molecular nature of the fluids (microscopic description) with the

continuum view (macroscopic description). In fluid dynamics there exists a length scale

that determines the appropriate view.

In this section we will focus on the most common fundamental class of fluids known as

Newtonian incompressible fluids. A fluid is described by a continuum density field, ρ(x, t),

and velocity field, U(x, t). In an incompressible fluid we have that ρ(x, t) = constant. The

behavior of the velocity field is governed by the Navier-Stokes equation:

∂ui

∂t
+ uj

ui

xj
=

∂p

∂xi
+

1

Re

∂2ui

∂xj∂xj
+

∂ui

∂xi
. (7.10)

This is the dimensionless version of Navier-Stokes where ui is the velocity in direction i and

p is the pressure. The first term:
∂ui

∂t
,

is the conservation of momentum and the last term:

∂ui

∂xi
,

governs the mass conservation. Re is the Reynolds number that characterizes the flow. It

is expressed as a function of the characteristic length, L, speed, U and molecular viscosity,

ν:
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Figure 7.10: The segmentation of the thalamic nuclei co-registered with SWSA. For

identification of the nuclei, see text.
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Re =
UL

ν
.

For small Reynolds numbers, Re → 0, the flow is considered laminar and for Re → ∞
the flow is turbulent. An often studied case is the transition between the two types of flows.

In the turbulent case it can be useful to decompose the velocity field U(x, t) into:

U(x, t) = 〈U(x, t)〉 + u(x, t) (7.11)

where 〈U(x, t)〉 is the mean velocity field and u(x, t) its fluctuation which average over time

〈u(x, t)〉 = 0. This separation is referred to as Reynolds decomposition. The case we will

study later on is a flow constant in the mean, U(x) which means that ∂Ui/∂t = 0. Using

this property and substituting with this decomposition in Eq. (7.10) gives us the Reynolds

averaged Navier-Stokes equation:

Uj
Ui

xj
=

∂p

∂xi
+

1

Re

∂2Ui

∂xj∂xj
+

∂

∂xj
〈uiuj〉. (7.12)

∂Ui

∂xi
= 0.

The interaction between the mean and the fluctuating field is described by the covariance

term 〈uiuj〉, known as the Reynolds stress tensor. The Reynolds stress tensor shows the

interaction between the fluctuating and field and the mean field. We will not go further

into details about the flow equations but focus on the Reynolds stresses. The Reynolds

stresses are components of a second-order symmetric tensor, just as the diffusion tensor. In

spite of this similarity, the Reynolds stress tensor (RST) have some properties that the DT

does not. In the RST, each component has a specific meaning. The diagonal components

(〈u2
1〉, 〈u2

2〉, 〈u2
3〉) are the normal stresses and the off-diagonal components are shear stresses.

The trace that for the DT corresponds to the mean diffusion is for the RST the definition

of the turbulent kinetic energy, k(x, t):

k = (〈u2
1〉 + 〈u2

2〉 + 〈u2
3〉)/2. (7.13)

This is the turbulent kinetic energy per the unit mass in the fluctuating velocity field.

The concept of anisotropy is also used in fluid dynamics. The isotropic stress is 2
3kδij

and the anisotropic stress is the deviation of the isotropic part.

aij = 〈uiuj〉 −
2

3
kδij . (7.14)

Even though the DT and RST differs in the meaning of their components the tensors still

have the same properties such as being, for 3D flows, 3×3 symmetric tensors. We therefore

decided to try if we could identify zones of different flow properties by applying our tensor

segmentation algorithm to a set of RST.

The data we used were obtained from a simulation of the motion of a Newtonian fluid

within a lid-driven cubical three-dimensional cavity. The flow is maintained by the con-

tinuous diffusion of kinetic energy from the moving wall carried out at Reynolds numbers
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above 10 000, see Figure 7.11 and Leriche et al. [66] for more details on the experiment

and numerical simulation. The data were obtained by a direct numerical simulation which

”consists in solving the full, non-linear time dependent Navier-Stokes equations without any

empirical closure assumptions for described initial and boundary conditions” [62]. The part

of the data we used were the RST obtained from the static mean flow.

Figure 7.11: Experimental set up of the lid-driven flow. The image shows the flow domain

and axes system. Reynolds number is given by Re = U0(2h)/ν. Figure copied from [66].

We started by computing the fractional anisotropy and color maps to see if these had

a meaning for the RST. Slices from these maps are shown in Figure 7.12. Cuts are shown

along each axis (x,y,z) at −0.93h, −0.5h and 0h. The cuts at (x, y, z) = −0.93h provides

representation of the near wall behavior which is expected to be very anisotropic. The walls

are situated at ±1h. The planes (x, y, z) = 0h are the planes of statistical symmetry.

The second important question to answer was whether the similarity measure we used

for the DT segmentation has a meaning for the RST. It is clear that the direct sense as

percentage of common diffusion between two sensors will not be the same. However, it

remains a good comparison of the kind of flow each tensor represents. As a first attempt we

simply applied our existing algorithm on the data. The results are shown in Figure 7.13.

For comparison the figure from [66] are included in Figure 7.14.
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Figure 7.12: Color map slices of the Reynolds stress tensors from a flow in a lid-driven

cubical cavity. a-c shows the xy-plane, d-f shows the xz-plane and g-i the yz-plane. a, d

and g shows the plane at −0.93h along the z-, y- and x-axis respectively. b, e and h shows

the plane at −0.5h and c, f and i at 0h.
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Figure 7.13: Results from segmentation of Reynolds stress tensors obtained from a flow

in a lid-driven cubical cavity.

Figure 7.14: Results from article by Leriche et al. [66]. The figure shows level curves for
√

U2
1 + U2

2 at the plane z = 0.427h.
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7.7 Discussion and Conclusion

In this chapter we presented a new method for segmenting tensor fields by using similarity

tensors. Compared with the previous chapter in which we used a similarity measure that

favored anisotropic regions, this measure shows strictly the percentage of common diffusion

between two tensors. The similarity is used to define an energy functional from which

region based forces can be derived. These forces drive a set of coupled level sets towards

the optimal segmentation. The method has been applied to DT-MRI of gray matter and to

fields of RST from fluid dynamics. In gray matter, the method has shown to be capable of

distinguishing and separating regions with only very subtle differences in diffusion such as

the difference between the thalamic nuclei. The application on RST is an early work but

shows promising results for enhancing the contrast between the different properties of the

flow. Furthermore, it shows that our proposed method can be used outside the diffusion

imaging domain. This is a first attempt to apply our method on different kinds of tensor

data. The application has been made without any modification of the method and we can

already see that it can be useful as a complementary visualization tool for 3D flows. By

modifying the similarity measure to better take into account the specific features of each

tensor component we can anticipate an even better result.

The method we propose to segment the thalamus and the thalamic nuclei is a con-

tinuation of our work on fiber tract segmentation. It distinguishes itself on three main

points. The first main difference of our approach is the similarity measure we use. It is

capable of detecting very subtle changes between tensors. When segmenting gray matter

structures these subtle differences are more important than for white matter segmentation.

The second important point in our work is the choice of the most representative tensor of

each level set. The approach proposed by Wang et al. [102] is to compute a mean tensor

for each region. For regions with high inter-resemblance, the mean tensor has a tendency

of developing towards an isotropic tensor and all regions will then be associated to similar

tensors. This can be avoided by using a method proposed by Jones et al. [61] that was orig-

inally used to find the tensor image that best represented a whole set of images. We have

transformed this method to find the tensor that best represents the set of tensors contained

within a surface. The third important difference is the use of several coupled level sets

that each represent a region we wish to segment. When segmenting structures with such

complex architecture as the brain, simply separating foreground and background is mostly

insufficient. Using such a simplification leads to either an over- or under segmentation of

the desired structure. Using several coupled level sets, each representing a region increases

robustness of the method.

When comparing results with the k-means algorithm we can state that the advantages

of the k-means algorithm are that it is fast and does not require any pre-initialization. The

advantages of our methods are a higher flexibility regarding the shape of the nuclei and that

it diminishes the influence of noise due to the self-regularization of the surfaces. It is also

difficult to include other similarity measures than direct comparison of tensor elements in

the k-means algorithm. Using the level set method we have more liberty to choose features
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on which we wish to base our segmentation.

The method generates good results for segmentation of the thalamus. As for the tha-

lamic nuclei, our validation study shows that the level set method applied on DT-MRI of

the thalamus provides an overall consistent segmentation of the thalamic nuclei related to

their anatomical position defined by the SWSA. For some nuclei (pulvinar), it was even

able to show subdivisions within the structure, already described in the SWSA. For others

(nucleus ventralis or zentrooralis), it could not recognize the caudal, intermediate and oral

portions of the nucleus.

The work on segmentation of the thalamus and its nuclei have been presented in [60] and

submitted to [59]. It is currently used in a project for finding the thalamus of schizophrenic

patients with the purpose of tracking fibers between the thalamus and the cortex. An

example of their early results can be seen in Figure 7.15.

Figure 7.15: Fiber tractography between the thalamus, segmented by our method, and

the cortex. Early results from a study on schizophrenic patients. Image presented with

courtesy of Leila Cammoun.
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Discussion and

conclusion 8
8.1 Review of discussed topics

Throughout this thesis we have explored the possibilities provided by the level set framework

for analysis of multi-valued images. Segmentation methods for tensor fields such as Diffusion

Tensors Images (DTI) as well as fields of functions i.e. High Angular Resolution Diffusion

(HARD) images have been presented.

For segmentation of tensor fields we have explored similarity measures for comparison of

tensors that depend on the specific case we wish to study. For white matter segmentation

in DTI the similarity measure emphasizes anisotropic regions, which is favorable for this

particular purpose. The segmentation is made on a local basis since white matter, in general

fiber tracts, experiences different diffusion in different parts of the structure. Structures such

as the deep cerebral nuclei that are mainly composed of gray matter have more homogenous

diffusion properties so in these structures we seek to maximize the internal coherence within

the entire structure. We can therefore have a region based approach to the segmentation

problem. This region based method has also been applied to tensor field in fluid dynamics

which demonstrates the generality of the problem.

For HARD images two methods for fiber tract segmentation have been presented based

on two different types of coherence. The coherence is either measured as the similarity

between fibers obtained from a tractography algorithm or the similarity of scalar values in

a five-dimensional non-Euclidean space. The similarity between two fibers is determined

by a counting strategy and is equal to the number of voxels they have in common. A

spectral clustering algorithm is then used for grouping fibers with a high inter-resemblance.

When segmenting white matter with the level set method we propose to expand the space

we are working in from a three-dimensional space of ODFs to a five-dimensional space of

position and orientation. This new high dimensional space is non-Euclidean but scalar and

105
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regions crossing in three dimensions become clearly separated regions in five dimensions.

By a careful definition of this space and an adaptation of the level set to five dimensions

the fibers can segmented as separated structures using a Chan-Vese level set model for

region-based segmentation for gray scale images.

8.2 Achievements

1. A novel approach to segmentation of tensor fields by using measures of similarity.

2. A fully automatic spectral clustering algorithm for grouping of fibers from HARDI,

based on the counting of voxels in common between fibers, has been developed. The

algorithm is fast, simple to implement and shows very promising results. It has a

great opportunity of becoming a helpful tool for visualization of fiber tractography

results as it provides a clear contrast between the major tracts as well as the cortical

zones. This work has been presented in [58].

3. A local front propagation algorithm based on tensor similarity. The algorithm is used

for fiber tract segmentation in DT-MRI. This work has been presented in [57] and

published in [55].

4. A region based approach for segmentation of tensor fields by maximizing the coherence

within each region. The method was applied to segmentation of structures mainly

composed of gray matter in DT-MRI using a region-based level set method. A new

way of representing regions by an appropriate choice of the most typical tensor of the

set of DT contained within the region was presented together with a new similarity

measure especially designed for detection of very subtle changes between DTs. We

presented segmentations of the thalamus and its nuclei that were validated by an

expert and superposition of anatomical atlases. This work has been presented in [60]

and is submitted for publication in [59].

5. A novel representation of HARD data was presented that extends the three-dimensional

view of diffusion functions to a five-dimensional space of scalars. A level set method

was implemented in 5D taking into consideration the non-Euclidean topology of the

space and the mean-curvature in this high-dimensional space. This will be presented

in [56].

8.3 Potential applications

Localization and definition of structures has numerous potential applications in medicine.

There are several advantages by considering white matter tracts as an entity with a clear

delineation of the structural borders instead of separate fibers. Firstly, it simplifies quan-

tification of the diffusion which is of highest importance for clinical studies. Secondly,

clearly delimited structures are more practical to use in direct clinical applications such as

neurosurgical planning.
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Our thalamus segmentation method is currently applied in a study of the pre-frontal

cortico-thalamic projections in schizophrenic patients where the thalamus segmentation is

used as a departure point for the fiber tractography algorithm. Several studies concern-

ing the shape and volume of the thalamus have also been used in studies of schizophrenia.

Despite the advanced development in medical image analysis, the localization of most struc-

tures is currently made by hand from anatomical MRI. This is both time consuming and

subjective. An automatization of this procedure would greatly improve the conditions un-

der which the clinical studies are made today. Further, diffusion weighted MRI can provide

an enhanced contrast for many structures as a more complete description of the structure

properties is given.

The principal application of the clustering algorithm is to enhance the imaging contrast

even further by providing a clear distinction between different white matter structures. Its

great advantage is its simplicity and rapidity and that it is operating on data from fiber

tractography which is becoming a frequently used tool. By mapping the fibers back into

voxel space a quantification of the diffusion can also be made.

8.4 Discussion and future directions

A striking problem today is the big gap between tools used in clinical research and the

technical possibilities developed in the image processing labs. The majority of all clinical

research based on diffusion imaging use scalar simplifications such as fractional anisotropy

and mean diffusion that are the most accessible and quantifiable measures. To ensure that

our technological advances in the image analysis field becomes more than just a playground

for computer scientists it is important that the tools we develop are reliable, user friendly

and provide quantitative results for inter-subject comparisons. Concerning the reliability

one important question to address is whether we can trust our images on which our anal-

ysis is founded. The diffusion tensor images are a great simplification of the underlying

neuronal architectonics but as the angular and spatial resolution increase, as in DSI, the

images becomes more anatomically plausible [105]. This argues that these images provide a

meaningful representation of the cerebral anatomy but are still in need of further improve-

ment and validation. Despite the higher precision and anatomical correspondence of DSI

compared to DTI only DTI is today clinically feasible due to the long acquisition times of

DSI. Even though the acquisition times can be reduced the low SNR remains a problem.

Continuing to explore tools for analyzing DTI in parallel with DSI is therefore still of in-

terest. Assuming that we can trust our images we still need a profound validation of the

methods before they can be used in clinical practice.

Diffusion imaging is a new and continuously developing technology and there are endless

possibilities of new developments to make for better exploitation of these new diffusion

data. Recent developments even permit investigations of gray matter such as cortex. A

key problem is quantification which is more complicated for DSI than for DTI. This is a

problem that just very recently has been addressed [33]. We will not discuss the general

possibilities of diffusion imaging but focus on the future paths for the tools developed in
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this thesis.

8.4.1 Region based segmentation of tensor fields

The most complete tool developed in this thesis is the region based segmentation of struc-

tures mainly composed by gray matter (see Chapter 7). This method can, with the right

initialization segment many other structures that the thalamus, such as the remaining deep

cerebral nuclei. The method in its present stage is close to becoming a practical tool and

what is mostly needed are automatic procedures for initialization of the algorithm. A

general problem with the level set method is that the solution is a local minimum and is

therefore be dependent on the initialization. This problem could be avoided by developing

hybrid methods that use a different segmentation method for a coarser pre-segmentation

and letting the level set method do the fine-tuning. Another solution is using multi scale

segmentation where the object is segmented on different scales obtained by smoothing the

image using a total variation flow [46]. Adding a priori knowledge about the shape of

structures could also improve the stability of the algorithm [22].

A practical application of the segmentation of the thalamic nuclei is as an aid in pre-

surgical planning. Nowadays, one of the most promising treatments of Parkinsons disease is

deep brain stimulation, which is a validated approach to place electrode in the thalamus. A

precise segmentation of the thalamus leads to more safe interventions and improved success

rate. Other practical applications are investigation of brain diseases such as stroke that are

known to affect the thalamus [25] [52].

In order to further validate our algorithm, one of our short term plans is to scan a

pathologic brain post mortem for possible application of our segmentation algorithm.

8.4.2 Position-orientation space

Considering the 3D maps of ODFs obtained from HARDI as a 5D space of scalars open up

for many new interpretations. This can help us quantifying the diffusion by considering the

directions separately. In DSI, the ODF is a simplification of the more detailed PDF which

contain a radial dependence which would lead to a six-dimensional space that can provide

even more useful information and interpretation.

So far we have only used this 5D space for white matter segmentation but this new way

of considering the diffusion maps useful for analysis of gray matter regions such as cortex

and deep cerebral nuclei.

Handling data of 5D is a heavy and time consuming procedure. To fully exploit this

new image representation current algorithms must be optimized.

8.4.3 Spectral clustering

The adjacency matrix used for fiber clustering is a common concept in network theory.

Considering the neuronal fibers as a network is of course nothing new so adapting theories

from this domain is a logical step. This aspect has been further developed in [47].
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The Euclidean space in which we map the fibers is very simple but does not have an

anatomical meaning. Using Talairach boxes [92] would provide this meaning and would also

make it possible to perform inter-subject clustering of fibers. We will continue to develop

the algorithm presented in this thesis.

8.4.4 Distance maps

When segmenting a structure with the level set method the final segmentation is expressed

in terms of a distance map where the boundary of the structure corresponds to the zero’th

level. This means that every other part of the brain is expressed in terms of closest distance

to the segmented structure. This is a concept often used in probabilistic atlas registration.

The distance function could also be seen as a map of the probability of being close to the

actual object. The distance map could define regions of elevated risk during neurosurgical

intervention. These two aspects of the distance maps are something we would like to further

explore in our future work.
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