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Abstract. Failure location in transparent optical networks is difficult because of cor-
rupted alarms and the large amount of alarms that a failure can trigger. One problem
that network operators often face is how to set the thresholds in monitoring devices. Set-
ting the thresholds low results in false alarms, whereas setting them high presents the risk
of missing a significant degradation in network performance because of missing alarms.
In this work, we show that for a network with binary alarms (alarms are either present or
not), there is an asymmetry between false and missing alarms. We prove that false alarms
can be corrected in polynomial time but the correction of missing alarms is NP-hard.
Because of this asymmetry between false and missing alarms, false alarms have a lesser
effect on the accuracy of the diagnosis results than missing alarms do. Network operators
therefore, when allowed, should set the threshold low to favor false alarms.
Keywords: Optical Networks, Network Measurements, Failure Location, Complexity
Theory.

1 Introduction

Transparent optical networks (TONs), where data travels along lightpaths without any
optical-to-electrical conversion, will be increasingly important in future high speed net-
works due to their large transmission bandwidth, lower cost and transparency to different
signal formats and protocols. Similar to opaque networks, transparent optical networks are
vulnerable to failures such as fiber cuts, hardware malfunctions, etc. Moreover, there are
new types of failures [1] and attacks [2] that are unique to transparent optical networks,
e.g. failures related to subtle changes in signal power such as optical signal-to-noise ratio,
cross-talk, and Kerr effects. Since the optical signals are not regenerated as in opaque
networks, failures in all optical networks are more difficult to detect and isolate with-
out significantly affecting the overall network performance. Good fault management is
therefore essential to ensure the continuous functioning of such networks. When a failure
occurs at the physical layer, the lightpaths that are interrupted have to be restored as
soon as possible to limit the damage and so that higher layers do not see the failure and
do not start their own restoration mechanisms. In the meantime, the failure has to be
located and repaired. Protection and restoration mechanisms for optical networks is an
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active field of research. This paper focuses on the failure location problem where the root
cause of a network failure has to be identified.

Failures are located from the alarms received by the management system. A single
failure can trigger many alarms from different monitors [3]. When there are two or more
simultaneous failures, the alarms arrive intermingled to the management system, thus the
problem of locating the failures becomes very difficult. Failures are less rare than one might
expect; [4] has recently reported failure rates of 1 per year, per 300km of fiber. Submarine
cables, which are vulnerable to damage from submarines, anchors and fishing gears, have
to be repaired once every five weeks [5]. Markopoulou et al. reported in [6] that about
11% of the failures at the optical layer in the Sprint IP backbone are multiple failures. In
real optical networks, the observation of the network state is also frequently disturbed by
the presence of corrupted alarms. Corrupted alarms are those that unexpectedly arrive at
the management system when they should not (false alarms) or those that do not arrive
at the manager when they should (missing alarms). In Wavelength Division Multiplexing
(WDM) networks, network operators have the option of trading false alarms for missing
alarms or vice versa by tuning the parameters of monitoring devices. Let us illustrate the
scenario by an example using the model for WDM networks in [3], shown in Figure 1.
In this example, the network contains a set of optical components at the WDM layer
such as optical transmitters (marked Tx in Figure 1), optical receivers (Rx), multiplexers
(MUX), demultiplexers (DEMUX), add/drop filters (ADF), switches, and optical fibers
(OF). Assume that in this network transmitter Tx3 sends an optical signal to Receiver
Rx4, but that the laser is slightly detuned, resulting in a shifted emitted wavelength. The
quality of the signal will be degraded because of interferences with other wavelengths.
To detect such a soft failure, the network needs to have some devices to monitor the
signal quality. These monitors can be devices at the WDM layer or devices at the upper
layers. For example, monitoring components at the SDH layer count the number of errored
blocks over a time window of 15 minutes or 24 hours. The error counter is reset at each
new time window. Whenever the number of errored blocks exceeds a threshold, an alarm
(“Degraded Signal” or “Excessive Error”) is sent. The threshold values recommended in
the ITU standard G.806 [7] can have any value in the range 10−5 . . . 10−3 for Excessive
Error alarms, and in the range 10−8 . . . 10−5 for Degraded Signal alarms. Setting the
threshold high will increase the probability of missing alarms and decrease the probability
of false alarms; setting the threshold low, on the contrary, will increase the probability of
false alarms and decrease the probability of giving missing alarms. Similar examples can
be found in most monitoring devices at the WDM layer [8].

Tx1

Tx3

MUX1

OF1

Rx1

  Rx2

Rx3

Tx4

Tx5

Tx6

MUX2
OF2

ADF

Rx4 Tx7

OF3
Tx2 DEMUX

OF = Optical fiber

Rx = Receiver

Tx = Transmitter

ADF = Add Drop Filter

Demux = Demultiplexer

Mux = Multiplexer

Monitoring equipment

Local Access
Port

Fig. 1. Example of a WDM network with monitoring equipment using the model in [3].



1.1 Related Work

The importance of failure monitoring in optical communication networks has generated a
wide body of approaches to solve it. They differ in the information they require from the
monitoring tools (timestamps, failure probabilities), the way they collect this information
(via passive or active monitoring), the methodology they use for making a location (expert
system or case-based rules, abstract network model or black box learning), etc (see [9]
for a complete review). In this paper, We use the model based approach of [3] where a
transparent optical network is modelled as a directed deterministic dependency graph. The
dependency relations are dictated by the established light paths in the network. There
is also much research dealing with monitoring the performance of transparent optical
networks. Recent progress in optical performance monitoring can be found in [8]. Other
researchers, e.g. [10], have proposed to use active probes as tools to monitor and diagnose
failures in transparent optical networks. A detailed survey of the existing commercial
optical equipment and monitoring devices in transparent optical networks is given in [3].

Accounting for the effects of noisy alarms is a significant challenge in network fail-
ure location. Although many researchers [3, 11, 12] have suggested that failure location
algorithms must be able to cope with erroneous alarms, most location algorithms today
have avoided the issue of alarm uncertainty because of the complexity of covering all
possible failures and all possible alarm uncertainties. A few works [3, 11, 12] in the liter-
ature incorporate missing and false alarms into fault location. In [11], Yemini et al. only
consider single failures. In [12], Steinder et al. use failure probabilities of network compo-
nents and the probabilities of corrupted alarms to develop a belief network to solve the
failure location problem. In [3], Mas et al. develop a fault location algorithm capable of
handling multiple failures and erroneous alarms in opaque optical networks without using
probabilities. However, the approach in [3] requires considering all different combinations
of failures and corrupted alarms in the network and therefore requires an exponential
location time (or an exponential memory space).

1.2 Our Contributions

In this paper, we first mathematically formulate the failure location problem as a maxi-
mum likelihood inference problem in Section 2. We then show in Section 3 that the failure
location problem is equivalent to the famous NP-hard set cover problem [13]. The benefits
of proving the equivalence of the two problems are two-fold. First, the results enable us to
adapt existing set cover algorithms in the literature to solve the failure location problem
in optical networks. Second, linking the failure location problem to the set cover problem
allows us to discover that false and missing alarms do not have equal effects on the failure
location. We show in Section 4 that false alarms can be corrected in polynomial time,
but that correcting missing alarms is NP-hard. The rather surprising advantage of false
alarms over missing alarms, in terms of time-complexity, carries directly to the accuracy
of the failure location: a polynomial time failure location algorithm is more accurate when
most of the corrupted alarms are false than when most of the corrupted alarms are miss-
ing. Our studies on real network topologies in Section 5 confirm the advantages of tilting
thresholds towards low values, so that corrupted alarms are rather false than missing. We
conclude the paper in Section 6.



2 Network Model and Problem Setting

2.1 Network Model

Optical communication networks consist of passive optical components taking care of
optical signal transmissions and of monitoring elements taking care of failure reporting [3].
A fault at an optical component not only results in faulty or abnormal behavior at that
component, but can also cause the faulty component to transmit abnormal signals to other
components. This manifestation is called fault propagation. Monitoring devices are used
to detect abnormal transmitted signals [8]. A fault at one component can cause multiple
monitors at various points in the network to ring alarms [3]. Failures of monitoring devices
can result in corrupted alarm but do not interfere with the signal transmission.

Specifically, we model the network by a directed graph G = (V , E) where each node
v ∈ V of the graph represents an optical component, and the directed edge (u, v) ∈ E
represents the fact that a faulty signal can be sent directly from u to v. The faulty signal
that propagates from a node u to a node v does not cause v to be faulty. However, it
may propagate further from v to other nodes directly connected to v, and so on. The
signal propagation, and hence the fault propagation of the network, is determined by
a set of channels, where each channel is equivalent to an established lightpath in the
network. A fault at one node in a channel will propagate to all other nodes that follow
it on the channel. We denote by C the set of optical components and by M the set of
monitors. The domain of an optical component v ∈ V, Domain(v), is defined as the set
of monitors that will ring alarms when v fails. Let us also denote the set of all ringing
monitors by MR ⊆ M and the set of all silent monitors by MS = M\MR. For a
subset C′ of C, we call MA(C′) the alarms that should be fired when all components of
C′ fail, i.e., MA(C′) =

⋃
c∈C′ Domain(c), if all alarms are perfect. If some of the alarms

are corrupted, i.e., provide wrong information, MA(C′) 6= MR. The set of false alarms
when all components of C′ are diagnosed as faulty is given by MF (C′) = MR\MA(C′).
Similarly, the set of missing alarms when all components of C′ are diagnosed as faulty is
given by MM(C′) = MS ∩MA(C′).

2.2 Problem setting

A location algorithm needs to determine the root cause of a system disorder based on the
observed alarms by returning the most probable explanation(s) for the observed alarms
to the network manager. Given the set of ringing alarms MR and the set of silent alarms
MS, the solution to a failure location problem is a set of components C′ that maximizes
the likelihood of occurrence of C′. The maximum likelihood failure location problem is
best explained in term of probabilities as

max
C′⊆C

Prob(C′|MR,MS) = max
C′⊆C

Prob(MR,MS|C
′)Prob(C′)/Prob(MR,MS). (1)

Denoting by |C| the cardinality of the set C, if we assume that all optical components can
fail with the same probability p independently of each other, that a monitor can give a
missing alarm with probability pm and a false alarm with probability pf , then Prob(C′) =

p|C
′|(1 − p)|C|−|C′| and Prob(MR,MS|C

′) = p
|MF (C′)|
f (1 − pf )

|MS |−|MM (C′)|p
|MM (C′)|
m (1 −



pm)|MR|−|MF (C′)|. In the formula for Prob(MR,MS|C
′), the first term p

|MF (C′)|
f comes

from false alarms, the second term (1 − pf )
|MS |−|MM (C′)| from the silent monitors that

are not missing alarms, the third term p
|MM (C′)|
m from missing alarms and the last term

(1 − pm)|MR|−|MF (C′)| from ringing monitors that are not false alarms. We have made the
implicit assumptions that given the set of faulty optical components C′ the alarm status
of monitoring devices are conditionally independent.

The probabilities p, pm and pf are difficult to obtain and are generally not available
in practice. Therefore, the maximization problem in (1) cannot be solved analytically as
is and requires some approximations. We propose a heuristic to solve the maximization
problem in (1) by first minimizing the number of corrupted alarms |MM(C′)|+ |MF (C′)|
and then minimizing the number of failures |C′|. In other words, the failure location
problem can be separated into two steps. The first step is to identify and correct corrupted
alarms, which we call the Error Correction (EC) problem. The second step is to identify the
failures, which we call the Multiple Fault (MFAULT) location problem, without corrupted
alarms. For a logical development of the paper, we first present the MFAULT problem in
Section 3 and then present the EC problem in Section 4.

3 The Failure Location Problem With Perfect Alarms

In this section, we study the failure location problem in the ideal scenario where there
are no corrupted alarms. The objective of the MFAULT problem is to cover all ringing
alarms but not silent alarms with the smallest number of failure candidates. The MFAULT
problem can be formulated as follows. We want to find a subset C′ of C such that the
number of failures |C′| is minimized and there are no false alarms, which we can write as

MF (C′) = ∅, (2)

and no missing alarm, which is to say that

MM(C′) = ∅. (3)

The MFAULT is equivalent to the famous set cover problem (SC) [15]. The SC problem
is a known NP-complete problem and can be defined as follows [13]: Given a finite set S,
a collection X of subsets of S, we need to determine a subset X ′ ⊆ X such that |X ′| is
minimized and

⋃
X∈X ′ X = S.

Theorem 1. Any instance of the MFAULT problem can be mapped into an instance of

the SC problem and vice versa.

The MFAULT problem therefore is NP-complete. In optical networks, failure location
needs to be fast so that repair actions can be done swiftly. For this reason, we choose
to adapt the greedy approximation algorithm for the set cover problem [14] to solve the
MFAULT problem. This algorithm is fast and yet is the best polynomial time approx-
imation algorithm for the SC problem (and hence the MFAULT problem) in terms of
the worst case performance. The MFAULT approximation algorithm presented below is
a greedy algorithm that chooses at each iteration the failure candidate whose domain
contains the largest number of ringing alarms.



The MFAULT algorithm

– Step 1: Initialize C′ to an empty set: C′ = ∅ .
– Step 2: While MR 6= ∅

1. Find a component c ∈ C and Domain(c) ⊆ MR that minimizes |MR\Domain(c)|.
2. Add c to the solution C′, C′ = C′ ∪ {c}.
3. Update the sets: MR = MR \ Domain(c) and Domain(ci) = Domain(ci) \

Domain(c) for all ci ∈ C.
– Step 3: Output C′.

4 The Failure Location Problem with Corrupted Alarms

The task of failure location is more difficult when there are corrupted alarms as in this case
it amounts to both correcting the corrupted alarms and localizing the faulty components.
In this section, we only address the Error Correction (EC) problem that amounts to
finding a set of components FD ⊆ C that minimizes the number of corrupted alarms
|MF (FD)|+|MM(FD)|. Once the identified corrupted alarms are corrected, the MFAULT
problem of Section 3 is solved and the minimal set of faulty components is located.

4.1 When There Are Only False Alarms

When there are false alarms only, which corresponds to the scenario where threshold
values in monitoring devices are set low, the error correction problem can be stated
as follows. Given a set of ringing alarms MR, some of them may be false alarms, we
need to determine a set of network components FD ⊆ C whose failures would minimize
the number of false alarms |MF (FD)| and satisfy Condition (3), i.e., MM(FD) = ∅.
Condition (3) guarantees that there are no missing alarms. We call this problem the False
Alarm (FALARM ) problem. The FALARM problem can be solved in polynomial time by
the following FALARM algorithm, which returns a set of identified false alarms MF (FD).

The FALARM algorithm

– Step 1: Initialize FD to an empty set: FD = ∅ .
– Step 2: Loop through all nodes in c ∈ C and check the condition Domain(c) ⊆ MR.

If this condition is satisfied for c, then add c to FD.
– Step 3: Output MF (FD).

We now prove that the above algorithm works correctly. Step 2 ensures that FD verifies
Condition (3), and thus that there is no missing alarm. By construction, Step 2 also implies
that FD is the largest subset of C that satisfies (3), as otherwise there would be a node
c′, c′ /∈ FD with Domain(c′) ∩MS = ∅ because of (3), which would in turn imply that
Domain(c′) ⊆ M\MS = MR, a contradiction. Consequently any feasible solution U of
the FALARM problem must be a subset of FD, whence

MA(U) =
⋃

c∈U

Domain(c) ⊆
⋃

c∈FD

Domain(c) = MA(FD)

and thus MF (FD) ⊆ MF (U). This shows that FD is the set of nodes whose failures give
the least number of false alarms, and justifies the answer in Step 3.



4.2 When There Are Only Missing Alarms

We now consider the dual case where there are only missing alarms. This scenario happens
when threshold values in monitoring devices are set high. In this case, we need to determine
a set of network components FD ⊆ C whose failures would produce the smallest set of
missing alarms, i.e., minimizes |MM(FD)| and satisfies Condition (2), i.e., MF (FD) = ∅.
Condition (2) is to guarantee that there are no false alarms.

We call this problem the Missing Alarm (MALARM ) problem. The MALARM prob-
lem can be shown to be NP-complete by a reduction from the the red-blue set cover
problem [16]. The red-blue set cover problem is defined as follows. Given a finite set S,
which contains two disjoint subsets R and B (R∪B = S and R∩B = ∅) and a collection
X of subsets of S, we need to determine a subset X ′ ⊆ X , such that every element of B
belongs to at least one member of X ′ and the number of elements of R that are covered
by members of X ′ is minimized. The proof is given in [15].

4.3 Approximation algorithm for the error correction problem

In real networks, one can never be sure that the corrupted alarms are only false or only
missing. It is therefore important to have an algorithm for the error correction problem
that works when there are both false and missing alarms. Finding an algorithm for the
EC problem is not easy for the following reasons. The red-blue set cover problem is not
only NP-hard, it is also much harder to approximate than the set cover problem [16]. To
date, there is no known approximation algorithm with a finite bound for the red-blue set
cover problem in the literature. The Error Correction (EC) algorithm below greedily tries
to cover as many ringing alarms and as few silent alarms as possible at each iteration by
picking a component c whose domain has the smallest number of silent monitors, i.e., c
minimizes |MS ∩ Domain(c)|. Although we cannot provide a bound on the performance
of the EC algorithm, our experiments in Section 5 show that the EC algorithm performs
quite well on real network topologies.

The EC algorithm

– Step 1:

1. Initialize FD to an empty set: FD = ∅.
2. Calculate MS ∩ Domain(ci) for each component ci ∈ C.
3. Find c that minimizes |MS ∩ Domain(c)|.

– Step 2: While |MR ∩ Domain(c)| − |MS ∩ Domain(c)| ≥ 0

1. Add c to FD: FD = FD ∪ {c}.
2. Update the sets: MR = MR\Domain(c), MS = MS\Domain(c) and Domain(ci) =

Domain(ci) \ Domain(c) for all ci ∈ C.
3. Recalculate MR ∩Domain(ci) and MS ∩Domain(ci) for each components ci ∈ C.
4. Find c that minimizes |MS ∩ Domain(c)|.

– Step 3: Output MF (FD) and MM(FD).

The EC algorithm has the following notable features. When all corrupted alarms
are false alarms, we have MS ∩ Domain({ci}) = ∅ and hence |MR ∩ Domain(ci)| ≥
|MS ∩ Domain(ci)| for components ci that are faulty. Therefore, the EC algorithm is



equivalent to the FALARM algorithm in the sense that it adds to the set FD all the
components c that satisfies the condition Domain(c) ⊆ MR. When all corrupted alarms
are missing alarms, the EC algorithm greedily tries to minimize the number of missing
alarms.

5 Experimental Evaluation

We evaluate the effectiveness of our failure location algorithms (the MFAULT and EC
algorithms) in 4 benchmark network topologies [10]: NSFNET, ARPA2, Smallnet and
Bellcore. We particularly evaluate the effect of false and missing alarms on the accuracy
of the failure location algorithm. Due to space constraints, we only present here the
results on the NSFNET topology. Similar results are obtained in other topologies. We
first describe the specific parameter settings in Section 5.1 and then show the results of
our evaluations in Section 5.2 and 5.3.

5.1 Simulation Settings

The performance of the algorithms are evaluated in terms of two metrics: the detection
rate (DR), which is the percentage of components that are correctly diagnosed as faulty,
and the false positive detection rate (FPR), which is the percentage of components that
are working correctly but are diagnosed as being faulty. With F denoting the set of the
actual faulty components, and C′ the set of components identified as faulty by a location
algorithm, these two rates are given by [12]:

DR =
|F ∩ C′|

|F|
; FPR =

|C′\F|

|C′|
.

To create plausibly realistic failure scenarios in each topology, we first fix the number
of channels (lightpaths) to 10% ( which is a reasonable approximation for the utilization
of current optical networks) of the total number of source and destination pairs in the
topology. For each channel, the source and the destination are chosen uniformly. We
assume that the routing path of each channel is determined by a shortest path routing
algorithm. Monitors are placed at all active input ports of network nodes, that is, ports
traversed by a lightpath. To quantify the corrupted alarms, we use two metrics: the missing
alarm ratios MR, i.e., the ratio of the number of generated alarms that were lost to the
number of all generated alarms, and the false alarm ratio FR, i.e., the ratio of the number
of false alarms to the number of all received alarms.

5.2 Effectiveness of the Failure Location Algorithm

Figure 2(a) plots the Detection Rate (DR) and False Positive Rate (FPR) when applying
the EC and MFAULT algorithms to locate failures in the NSFNET topology with 20
channels when there are no corrupted alarms, i.e., MR = 0 and FR = 0. In this case,
the failure location algorithm reduces to the MFAULT algorithm. We observe that the
failure location algorithm achieves very accurate results with a Detection Rate above
90% and a False Positive Rate below 8%. Another interesting observation is that the DR
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Fig. 2. Performance of the failure location algorithm on the NSFNET topology with 20 channels when there are
no corrupted alarms and when there are corrupted alarms.

and FPR do not change much with the failure probability of network components. This
observation suggests that our failure location algorithm performs well for small and large
failure probabilities of network components.

Figure 2(b) plots the performance of the failure location algorithm when MR,FR > 0.
To evaluate the effectiveness of the EC algorithm, we also plot the results when applying
only the MFAULT algorithm in the non-ideal scenarios. We observe that when there are
corrupted alarms, the EC algorithm helps improve the accuracy of the overall failure
location by a large margin. The results demonstrate that even though the number of
corrupted alarms is small, their effect on the failure location algorithm is substantial and
cannot be neglected. Figure 3(b) also shows that in the non-ideal scenario, the False
Positive Rate is higher than in the ideal scenario. This observation is explained by the
fact that the EC algorithm is an approximation algorithm and its solution is not optimal.

5.3 Effect of False and Missing Alarms

We now evaluate the impact of false and missing alarms on the failure location algorithm.
To compare the effect of false and missing alarms, we fix the total number of corrupted
alarms, i.e., MR + FR is fixed, but not the nature, i.e., MR and FR change. We run
simulations on the NSFNET topology with 20 channels. The component failure probability
is fixed at 0.01. The average number of monitors in this setting is 40 monitors. The average
number of corrupted alarms is kept at 0.8 alarms (2% of the number of monitors). We
vary the fraction of missing alarms among the corrupted alarms from 0 to 1, where 0
means there is no missing alarms and 1 means all corrupted alarms are missing alarms.
The results are plotted in Figure 2(c).

We observe that as the fraction of missing alarms increases, the DR of the failure
location algorithm decreases rapidly whereas the FPR does not change much. These results
follow from our theoretical studies in Section 4 that when the majority of corrupted
alarms are false alarms, these alarms can be corrected exactly by the EC algorithm;
whereas when the majority of corrupted alarms are missing these alarms are only corrected
approximately by the EC algorithm. We would like to emphasize here that the asymmetry
between missing and false alarms is not an artifact of our EC algorithm. This asymmetry
comes from the fact that false alarms are easier to correct than missing alarms, which we
have solidly proved in Section 4.



6 Conclusions

We studied the failure location problem in transparent optical networks with noisy alarms.
Is it better to have false or missing alarms? We showed that the former are preferable
to the latter, both in terms of accuracy and of time complexity of the alarm correction.
Quite surprisingly, false alarms can be corrected in polynomial time, but correcting missing
alarms is NP-hard. We believe that network management and failure location algorithms
should therefore put a strong bias in favor of false alarms over missing alarms, especially
in large scale systems.
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