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Abstract

In this paper we consider a closed social network with a certain proportion of liars who are
trying to influence their peers’ reputation about some subject. Each person’s reputation
about this subject is based on both own direct experience and second hand information
from their peers which cannot be verified. Given certain assumptions on when people
believe or do not believe second hand information, we investigate the liars’ impact on
their peers’ reputation about the subject. We present a mathematical model for this
situation and show that there is a threshold proportion of liars below which they have
no impact. Above it, liars do have an impact. We quantify this impact and give the
threshold proportions. We compare our results in two fundamentally different scenarios:
In the first one, reputation is passed on as second hand information. In the second one,
direct experience only is passed on as second hand information. We find that in the latter
scenario liars have less impact.

Keywords: Social networks, reputation, liars, model, phase transition

1 Introduction

In this paper we consider a dense, closed social network. By this we mean that everyone in
it is connected to everyone else by similarly strong relationships. People in the network are
assumed to take an interest in the behaviour of some subject which can be either positive or
negative. They interact with this subject directly. They also interact with each other, e.g.
in conversations, and thereby pass on their own experiences with the subject to their peers.
Based on both direct experience and indirect information they form their reputation about
the subject. An example is the social network of truck drivers interested in the quality of
food of a highway restaurant. Alternatively, the subject might be part of the social network
itself and there might be more than one subject. This is the case when people in the network
gossip about each other.

Sharing experiences with one’s peers serves the purpose of using information more effi-
ciently: By also considering other people’s experiences, one is able to get a more accurate idea
about the actual subject behaviour faster. However, it might be the case that not every peer
in the social network passes on their experiences with the subject truthfully. There might
be liars. In the absence of trust, these might have have a detrimental effect on the overall
reputation of the subject in the network.
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So the question arises whether second hand information is or should always be believed.
We assume that this is not so. Rather, if a person is confronted with information that is not
verifiable, they will probably believe it only if, to them, it seems likely. However, they will
ignore it if, to them, it seems unlikely. Moreover, they will not necessarily attach the same
weight to an experience reported by a peer compared to their own direct experiences. We
also assume that people gradually forget experiences they have made a long time ago and
that in the current reputation about the subject recent experiences are given greater impact
as a result.

We present a mathematical model for this situation and analyze the impact that liars can
have when they consistently report either negative or positive behaviour about the subject
in an attempt to influence the overall reputation of the subject. We show that there is a
threshold proportion of liars below which they have no impact. Above it, liars do have an
impact. We quantify this impact and give the threshold proportions.

We compare the liars’ impact in two fundamentally different scenarios: In the first one,
reputation, which is based on all their experiences including indirect ones, is passed on as
second hand information. In the second one, only direct experience is passed on as second
hand information. We find that in the latter scenario liars have less impact.

The idea of reputation also plays an important role in Peer-to-Peer communication systems
where one often encounters free-riding, a well-known problem in economics [Sam54]. That
is, users consume without contributing which leads to a loss in performance. Reputation
systems are one of the approaches that have been introduced to solve the free-rider problem
in Peer-to-Peer communication systems. A popular example of a reputation mechanism is
the rating used in EBAY [RZ02]. However, this is based on a centralized mechanism, which
is not appropriate for Peer-to-Peer communication systems.

In a decentralized reputation system users keep track of their peers’ behaviour and ex-
change this information with others. Each user merges their own first hand information with
the second hand information they receive in order to compute a reputation value about each
of their peers. This might be an automated procedure. Users with a good reputation are
then favoured, thus providing an incentive to behave well. However, reputation system must
be robust against liars. A simple idea to address this problem was suggested originally in the
context of Mobile Ad-Hoc Communication Networks by Buchegger and Le Boudec [BLB04].
Here, a user believes second hand information only if it does not differ too much from the
user’s reputation value. This is called the deviation test. In fact, the authors considered a
more complex system that also allows the use of second hand information from trusted peers,
but in simulations the deviation test on its own was found to perform surprisingly well.

It has since been analyzed in detail in the case of 2 users, one honest the other a liar. In
[MLB05b] we considered a model that simplifies the reputation counters in order to obtain
a one-dimensional system which is easier to analyze. In [MLB05a] we then looked at the
original two-dimensional system. In the context of social networks, the interpretation is now
different, but the analytical results of the present paper can be viewed as a generalization to
a network of N people of our results in [MLB05a].

Similar questions have also been considered in the context of social networks. Moerbeek
and Need [MN03], for example, examine to what extent foes deteriorate a person’s labor
market position. In comparison to their work, we address a more general question, not
specific to the labor market context. Another difference is in our approach. We do not collect
and analyze a data set. Instead, we specify a set of assumptions that we consider reasonable.
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On the basis of this, we build and analyze a mathematical model. Other authors have also
used mathematical techniques in social networks. Barnes et al. [BCL98], for example, model
interpersonal relationships using algebraic semigroups.

Burt [Bur01] investigates how the competitive advantage known as social capital depends
on the structure of the social network. He also focuses on closed networks rather than net-
works of interdependent groups (brokerage, cf. also [Bur99]) and evaluates two competing
hypotheses. Firstly, the so-called bandwidth hypothesis that network closure enhances infor-
mation flow. This is found in closure models of social capital and as well as in reputation
models in economics. Secondly, the so-called echo hypothesis that closure models merely cre-
ate an echo that reinforces predispositions and leads to ignorant certainty. This is found in
the social psychology of selective disclosure. Evidence considered in the literature as well as in
[Bur01] supports echo over bandwidth. Bandwidth and echo models represent a fundamental
choice for theoretical models of trust. The lying in our model can be interpreted as selective
disclosure in this context. We shall see that passing on reputation as second hand information
more likely creates an echo scenario. Passing on only direct experience more likely creates a
bandwidth scenario.

The rest of this paper is structured as follows. The precise modeling assumptions are
listed in Section 2. In Section 3 we introduce our model and investigate the liars’ impact
in the scenario where reputation is passed on as second hand information. In Section 4 we
repeat this analysis in the scenario where direct experience only is passed on. Further details
and the simulation results confirming our analysis for both these scenarios can be found in
the appendix. An interpretation of our results and directions for further work are given in
Section 5.

2 Modeling assumptions

2.1 Subject behaviour

We study the case when there is a single subject whose reputation is considered. Its actual
behaviour is assumed to be either positive or negative with probabilities θ and 1 − θ respec-
tively. Thus, when a person interacts with the subject itself it experiences positive behaviour
with probability θ and negative behaviour otherwise. This is assumed to be independent of
all other experiences. Hence the actual behaviour is represented by the parameter θ, a real
number in [0, 1].

This subject might or might not be one of the N people in the network. People in the
network might also be interested in the behaviour of some external subject such as the quality
of service of a restaurant.

The case when when there are M subjects of interest can be decomposed into M separate
instances of our model. The M sets of reputation values do not interfere with each other
and can be considered independently. In particular, we might take N subjects, one for each
person in the network. This is the case when people in the network gossip about each other.

2.2 Reputation

The total of N people splits into Nh honest people 1, 2, . . . , Nh and Nl liars Nh + 1, . . . , N .
They have corresponding reputation values Ri about the subject. Notice that liars can change
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their own opinion anyway they want. The question is whether they can influence the reputa-
tion values of the honest people, so these are the ones that we will consider.

The reputation values are also real numbers in [0, 1] and reflect the belief that person i has
about the actual subject behaviour θ at a given time. This opinion might change with new
information obtained from interactions with the subject itself or with a peer in the network.

Each person i in the network remembers both positive and negative information. (xi
n)

and (yi
n) are the components of the reputation counter that keep track of positive experiences

and negative experiences respectively. The actual reputation value Ri
n is then computed as

the proportion xi
n/(xi

n + yi
n).

A direct (first hand) experience is an experience of the subject’s behaviour. People always
believe their own direct experiences so that reputation values are updated accordingly. An
indirect (second hand) experience arises from interactions with peers. A person believes an
indirect experience only if the reported information does not deviate too far from their current
reputation value Ri

n. This behaviour is controlled by the threshold parameter ∆ ∈ (0, 1). A
large ∆ means that this person naively believes most second hand information. A small ∆
means a more critical attitude. Even if believed, the indirect experience does not necessarily
have the same impact as a direct experience. Thus, it is scaled by a weighting parameter
ωweight > 0. See Table 1 for a summary of the notation.

There are two fundamentally different possible assumptions as regards to reports of second
hand information by honest people. They might report their current reputation values and
thus their actual opinion based on all their experiences including indirect ones. Or they
might report their own direct experiences only. Both are acceptable assumptions and it will
be interesting to see how exactly they compare (cf. Sections 3 and 4).

Moreover, we assume a discount factor 0 < ρ < 1, typically very close to 1. Discounting
takes place whenever there is a new experience. This it to account for people gradually
forgetting experiences they have made a long time ago. As a result, recent experiences are
given greater impact. Discounting also allows for people to adapt to changes in the subject’s
behaviour.

2.3 Interaction

The interaction model describes how people interact with the subject and their peers in the
network. The idea here is that person i meets or has a conversation with the subject or a peer
j in the network and thus receives new information. We shall assume that each person i makes
direct experiences at the points of a Poisson process in time, at rate λd > 0. Interactions of
person i with j (such that i receives second hand information from j) occur according to a
Poisson process with rate λi > 0. All processes are assumed to be independent. Without loss
of generality, we might assume λd = 1 by rescaling time.

Thus, each person makes experiences at the points of a Poisson process with rate λ =
λd + λi. The subscripts n in xi

n, yi
n and Ri

n are thus to be interpreted as the jump times T i
n

of a Poisson process at rate λ. We shall often write n instead of Tn for ease of notation.
A given event is a direct experience with probability p = λd/(λd + λi). It is an indirect

experience from a liar with probability q = λiNl/(λd + λi)(Nh + Nl − 1) and from an honest
peer with probability r = λi(Nh − 1)/(λd + λi)(Nh + Nl − 1), all independent of other events.

Although the interaction pattern might differ between scenarios, the model above is a
natural one to examine. It assumes a symmetric closed network, that is, people interact
with one another equally frequently. Social Networks often have a much more asymmetric,
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symbol meaning
θ probability of positive subject behaviour

Nh number of honest people
Nl number of liars
λd direct experience rate of person i for all i = 1, 2, . . . , Nh
λi indirect experience rate of person i from j for all j = 1, 2, . . . , N
p probability of an experience being direct
q probability of an experience being indirect from a liar
r probability of an experience being indirect from an honest peer

xn = xTn positive component of reputation counter
yn = yTn negative component of reputation counter
Rn = RTn reputation value of honest person after nth interaction
x0, y0, R0 initial values of reputation counters and values

∆ threshold parameter for indirect experiences
ωweight weighting factor attached to indirect experiences
ωmax maximal impact of a second hand report

ω ωweightωmax
ρ discount factor

Table 1: Summary of notation.

complex structure. However, one has to start with a model that is tractable. Moreover, this
model is quite appropriate for certain scenarios, e.g. online communities.

2.4 Liars

We have not yet specified what exactly to expect of the liars. We shall assume that liars always
lie maximally, i.e. they will always report either extremely negative or extremely positive
behaviour about the subject when interacting with their peers. They do so in attempt to
achieve maximal impact. In fact, we focus on the extremely negative part, as the other one
is similar by symmetry.

3 The liars’ impact when reputation is passed on

In this section we analyze the liars’ impact in the scenario where reputation values are passed
on as second hand information, that is the actual opinion based on all previous experiences
including indirect ones. The other scenario will be investigated in Section 4.

3.1 Model formulation

For each person i = 1, 2, . . . , Nh we consider the two-dimensional process formed by the
positive and negative component of the reputation counters (xi

T i
n
, yi

T i
n
) as given in (1) for

n ≥ 0. The T i
n are the jump times of the Poisson process associated with person i. The four

possible cases correspond to a positive direct experience, a negative direct experience and an
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indirect experience from a liar or from an honest peer respectively (cf. Sections 2.1 and 2.3).

(xi
T i

n+1

, yi
T i

n+1

) = ρ(xi
T i

n
, yi

T i
n
)

+



































(1, 0) w.p. pθ

(0, 1) w.p. p(1 − θ)

ωweight(0, ωmax)1

{

xi
T i

n

xi
T i

n
+yi

T i
n

≤ ∆

}

w.p. q

ωweight(., .)1

{
∣

∣

∣

∣

xi
T i

n

xi
T i

n
+yi

T i
n

− a
a+b

∣

∣

∣

∣

≤ ∆

}

w.p. r

(1)

Upon each interaction, both components are discounted individually. Whereas direct experi-
ences are always believed and counted with 1, indirect experiences are only believed if they
do not deviate from the person’s reputation value by more than ∆. This is modeled by the
indicator function. They are also weighted by ωweight as described in Section 2.2. We assume
that a second hand report is bounded by some maximal ωmax > 0 on the sum of the compo-
nents. This is to ensure that a liar cannot simply report a very large number of interactions
to in order to increase impact. The initial reputation counter is (x0, y0). The quantity we
are interested in is Rn = xn/(xn + yn), in some sense the proportion of positive experiences.
We examine how well this compares to the true θ, that is the actual proportion of positive
behaviour of the subject in question.

We still need to specify the increment (., .) in the fourth case of a second hand report
(a, b) from an honest peer. Essentially, there are three ways. Namely,

(a, b),
1

a + b
(a, b) or

1

1 + a + b
(a, b) (2)

all with the same reputation value a/(a + b). The latter two will be relevant in the next
section with direct experience, because in that case scaling is necessary to ensure finiteness.
For our current scenario with reputation, however, the first alternative is the most suitable
one. Scaling is not necessary, because reputation counters are known to lie in a bounded
region if ωweight is not too big.

Let us assume that the componentwise sum of the reported reputation counters does
not exceed 1/(1 − ρ). Reputation counters outside this region are considered invalid. Thus,
ωmax = 1/(1 − ρ). Choosing ωweight ≤ 1 − ρ now ensures that reputation counters do not
blow up. In the formulation below we have written the process in terms of ω = ωweightωmax,
ranging from 0 to 1. This is done in a way compatible with our assumptions in the previous
section.

(xi
T i

n+1

, yi
T i

n+1

) = ρ(xi
T i

n
, yi

T i
n
)

+







































(1, 0) w.p. pθ

(0, 1) w.p. p(1 − θ)

(0, ω)1

{

xi
T i

n

xi
T i

n
+yi

T i
n

≤ ∆

}

w.p. q

ω(1 − ρ)(xj

T j
n
, yj

T j
n
)1

{
∣

∣

∣

∣

∣

xi
T i

n

xi
T i

n
+yi

T i
n

−
xj

T
j
n

xj

T
j
n

+yj

T
j
n

∣

∣

∣

∣

∣

≤ ∆

}

w.p. r

(3)

From our interaction model it follows that at each time T i
n where there is an indirect experience

from an honest peer j, that person j is chosen uniformly at random from the honest people
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other than i. Reputation counters only change with interactions, i.e. (xj
t , y

j
t ) = (xj

T j
n
, yj

T j
n
) for

T j
n ≤ t < T j

n+1.

3.2 Mean-field approach

Instead of considering the honest people’s reputation counters individually, we will consider
their average. Let Tn denote the jump times of the Poisson process associated with the average
reputation. That is, the set of these jump times is the union of the sets of jump times of the
individual people’s processes. The average reputation counter is then given by

(xTn , yTn) = (1/Nh)

Nh
∑

i=1

(xi
Tn

, yi
Tn

). (4)

This can be interpreted as the overall reputation of the subject in the system. Moreover,
we make the (strong) assumption that all honest people’s reputation counters are equal and
hence the average. We will judge this assumption by how well the theoretical predictions will
match the simulation results.

We now consider the following mean deterministic differential equation for the average
reputation counter.

ẋ(t) = −λ(1 − rω)(1 − ρ) x(t) + λpθ

ẏ(t) = −λ(1 − rω)(1 − ρ) y(t) + λp(1 − θ) + λqω1
{

x(t)
x(t)+y(t) ≤ ∆

} (5)

This can be obtained from (3) via a fast-time scaling and by means of averaging the dynamics
as shown in Appendix A.1. The system is discontinuous, but linear above and below the line
of discontinuity x(t)/(x(t) + y(t)) = ∆. We can solve it separately on each region. The
exponential decay term is e−λ(1−ρ)(1−rω), thus the speed of convergence decreases in r.

(x, y) =
1

(1 − rω)(1 − ρ)
(pθ, p(1 − θ)) (6)

is a fixed point if ∆ < ∆c4 = θ. If it exists, it is asymptotically stable and trajectories from
x(t)/(x(t) + y(t)) > ∆ are attracted to it. The corresponding reputation value is R∗

1 = θ.

(x, y) =
1

(1 − rω)(1 − ρ)
(pθ, p(1 − θ) + qω) (7)

is a fixed point if ∆ ≥ ∆c1 = (pθ)/(p + qω). If it exists, it is asymptotically stable and
trajectories from x(t)/(x(t) + y(t)) ≤ ∆ are attracted to it. The corresponding reputation
value is R∗

3 = θp/(p+ωq). If only one of the two fixed points exists then the trajectories from
the other region lead into its region and thus are also attracted to it. That is all trajectories
are attracted to it. Otherwise, both are asymptotically stable on their respective region.
Thus, we have the following result.

Theorem 1 If ∆ < ∆c1 = pθ/(p + qω), (6) is the unique fixed point of the mean differential
equation (5). It is asymptotically stable and all trajectories are attracted to it. If ∆c1 ≤ ∆ <
∆c4 = θ there is a second, false fixed point (7) and both are asymptotically stable, attracting
trajectories from x(t)/(x(t) + y(t)) > ∆ and x(t)/(x(t) + y(t)) ≤ ∆ respectively. Finally,
if ∆c4 ≤ ∆, then only the latter, false one is asymptotically stable and all trajectories are
attracted to it.
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Note that it is the ratio of p and ωq and only this ratio that is important for the false fixed
point.

As a result, the differential equation for the reputation system exhibits a phase transition
behaviour. We have phrased this in terms of the threshold ∆. This is also visualized in blue
in Figure 4.2: For sufficiently small ∆, liars do not have any impact. Only for intermediate
values, liars have some impact. For large ∆ liars have maximal impact. They brainwash
everyone in the network.

These results can also be stated in terms of the lying probability q. Liars do not have any
impact if

q <
1

ω

θ − ∆

∆
p (8)

Otherwise, they have some impact and if moreover ∆ < θ liars have maximal impact and
brainwash everyone in the network.

Under the assumption of a symmetric social network we can rephrase these results once
more in terms of the proportion of liars in the network. Liars do not have any impact if their
proportion is below some threshold. Otherwise, they have some impact. If moreover ∆ < θ
liars have maximal impact and brainwash everyone in the network.

In Appendix B.1 we provide simulation results confirming the analytical results of this
Section.

4 The liars’ impact when direct experience only is passed on

In the previous section we analyzed the liars’ impact in the scenario where reputation values
are passed on as second hand information. We now consider the scenario where only direct
experience is passed on.

4.1 Model formulation

For each i = 1, 2, . . . , Nh we consider the two-dimensional process (xi
T i

n
, yi

T i
n
) given in (9) below

for n ≥ 0 where, as before, the T i
n are the jump times of the Poisson process associated with

person i.

(xi
T i

n+1

, yi
T i

n+1

) = ρ(xi
T i

n
, yi

T i
n
)

+







































(1, 0) w.p. pθ

(0, 1) w.p. p(1 − θ)

ωweight(0, ωmax)1

{

xi
T i

n

xi
T i

n
+yi

T i
n

≤ ∆

}

w.p. q

ωweight

xij

T i
n
+yij

T i
n
+1

(xij
T i

n
, yij

T i
n
)1

{∣

∣

∣

∣

∣

xi
T i

n

xi
T i

n
+yi

T i
n

−
xij

T i
n

xij

T i
n
+yij

T i
n

∣

∣

∣

∣

∣

≤ ∆

}

w.p. r

(9)

for suitably defined (xij
T i

n
, yij

T i
n
), that is (xij

T i
n
, yij

T i
n
) is a counter of the direct experiences made

by person j that they have not yet reported to person i by time n. From our interaction
model it follows that at each time T i

n where there is an indirect experience from an honest
peer, person j is chosen uniformly at random from the honest people other than i.
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Recall the three ways of choosing the increment (., .) given a second hand report (a, b)
in (2). We now also require scaling to ensure finiteness, otherwise a second hand informa-
tion from a single interaction could have arbitrary impact. This does not seem a realistic
assumption. Thus we only consider the latter two

1

a + b
(a, b) or

1

1 + a + b
(a, b). (10)

The latter is increasing in a+ b whereas the second is not. This is another desirable property,
because then 10 positive out of 20 experiences will be given more impact than 1 positive out
of 2. Thus, we shall focus on the latter increment. Independently of this choice, in fact, we
obtain ωmax = 1, that is ω = ωweight. Also, independently of this choice, note that we require
a large enough expected number of experiences for this not to introduce a skew. For, suppose
a person reports 100 experiences, 80 of which are positive. It might be the case that if this
is done in 100 separate reports of one experience each, the 20 negative ones are not believed,
whereas if the aggregate is reported in a single report they are. In the first case the reputation
value for the report would be 1, in the latter case it would be 0.8. We shall return to the
effects of this later.

(xi
T i

n+1

, yi
T i

n+1

) = ρ(xi
T i

n
, yi

T i
n
)

+







































(1, 0) w.p. pθ

(0, 1) w.p. p(1 − θ)

(0, ω)1

{

xi
T i

n

xi
T i

n
+yi

T i
n

≤ ∆

}

w.p. q

ω

xij

T i
n
+yij

T i
n
+1

(xij
T i

n
, yij

T i
n
)1

{
∣

∣

∣

∣

∣

xi
T i

n

xi
T i

n
+yi

T i
n

−
xij

T i
n

xij

T i
n
+yij

T i
n

∣

∣

∣

∣

∣

≤ ∆

}

w.p. r

(11)

4.2 Mean-field approach

As in the previous section, we will consider the average reputation counter (xTn , yTn) =
(1/Nh)

∑Nh
i=1(x

i
Tn

, yi
Tn

) and make the (strong) assumption that all honest people’s counters
are equal and hence the average. Moreover, we now consider the average of the second hand
information and assume all are equal to that average. We obtain this average as the expected
value and substitute in. The probability of a person passing on information to a peer before
obtaining another direct experience is

γ =
λi/(Nh + Nl − 1)

λd + λi/(Nh + Nl − 1)
=

r

p(Nh − 1) + r
. (12)

Thus the number of experiences passed on as second hand information is distributed Geo(γ).
The expected number is (1 − γ)/γ = (Nh − 1)p/r, a fraction θ of which positive. This
assumption is not appropriate for a very small number of expected reports (Nh − 1)p/r, i.e.
for a very small number of people. Recall, however, from the previous section that the system
itself introduces a skew in this case. We demonstrate this effect in AppendixB.2.

We now consider the following mean deterministic differential equation for the average
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reputation counter.

ẋ(t) = −λ(1 − ρ) x(t) + λpθ + λrωθ(1 − γ)1
{
∣

∣

∣

x(t)
x(t)+y(t) − θ

∣

∣

∣
≤ ∆

}

ẏ(t) = −λ(1 − ρ) y(t) + λp(1 − θ) + λrω(1 − θ)(1 − γ)1
{
∣

∣

∣

x(t)
x(t)+y(t) − θ

∣

∣

∣
≤ ∆

}

+λqω1
{

x(t)
x(t)+y(t) ≤ ∆

}

(13)

This can be obtained from (11) via a fast-time scaling and by means of averaging the dynamics
as shown in Appendix A.2. This system is discontinuous along the line x(t)/(x(t)+y(t)) = ∆.
Moreover, it might be discontinuous along x(t)/(x(t)+y(t)) = θ−∆, x(t)/(x(t)+y(t)) = θ+∆
or both. So the system might have one, two or three lines of discontinuity, but is linear in
between. We can solve it separately on each of the possible regions, similarly to the solution
of (5). The exponential decay term is eλ(1−ρ).

(x, y) =
1

1 − ρ
(pθ, p(1 − θ)) (14)

is a fixed point if ∆ < θ and ∆ < 0. That is, never.

(x, y) =
1

1 − ρ
(pθ + rω(1 − γ)θ, p(1 − θ) + rω(1 − γ)(1 − θ)) (15)

is a fixed point if ∆ < θ and ∆ ≥ 0. That is if ∆ < θ. If it exists, it is asymptotically stable
and trajectories from x(t)/(x(t) + y(t)) > ∆, |x(t)/(x(t) + y(t)) − θ| ≤ ∆ are attracted to
it. Moreover, trajectories from x(t)/(x(t) + y(t)) > ∆, |x(t)/(x(t) + y(t)) − θ| > ∆ (if this is
non-empty) lead into the same region and thus are also attracted to it. That is, trajectories
from x(t)/(x(t) + y(t)) > ∆ are attracted to it.

(x, y) =
1

1 − ρ
(pθ + rω(1 − γ)θ, p(1 − θ) + rω(1 − γ)(1 − θ) + qω) (16)

is a fixed point if ∆ ≥ θ p+rω(1−γ)
p+rω(1−γ)+qω and ∆ ≥ θ

(

1 − p+rω(1−γ)
p+rω(1−γ)+qω

)

. If it exists, it is

asymptotically stable and trajectories from x(t)/(x(t)+y(t)) ≤ ∆, |x(t)/(x(t)+y(t))−θ| ≤ ∆
are attracted to it.

(x, y) =
1

1 − ρ
(pθ, p(1 − θ) + qω) (17)

is a fixed point if ∆ ≥ θ p
p+qω and ∆ < θ

(

1 − p
p+qω

)

. If it exists, it is asymptotically stable

and trajectories from x(t)/(x(t) + y(t)) ≤ ∆, |x(t)/(x(t) + y(t)) − θ| > ∆ are attracted to it.

(14) and (15) correspond to the true subject behaviour θ. At this value, honest reports
are believed and accepted, thus the conditions for (14) cannot be satisfied. At (16), lies are
accepted, but the honest peers reports, too. Finally, at 17, lies are accepted whereas honest
peers’ reports are not. The reputation values corresponding to the three possible fixed points
and the simplified conditions are summarized in Table 4.2. The bifurcation plot is given in
Figure 4.2.

Thus, there are four critical points.

∆c1 = θ
p

p + qω
(18)
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Fixed point Reputation value Conditions

True (15) R∗
1 = θ ∆ < θ

Intermediate (16) R∗
2 = θ p+rω(1−γ)

p+rω(1−γ)+qω ∆ ≥ θmax(p+rω(1−γ), qω)
p+rω(1−γ)+qω

False (17) R∗
3 = θ p

p+qω ∆ ∈
[

θ p
p+qω , θ qω

p+qω

)

Table 2: Summary of fixed point reputation values and their conditions.
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Figure 1: Bifurcation plot showing the existence of fixed points as a function of ∆: As ∆
increases from 0 to 1 the number of fixed points changes. Black: In the scenario where direct
experience only is passed on. Depending on the parameters there might be one, two, or three
fixed points. Blue: In the scenario where reputation is passed on. As ∆ increases from 0 to
1 the number of fixed points changes from one to two and back to one.

∆c2 = θ
max (p, qω)

p + qω
(19)

∆c3 = θ
max (p + rω(1 − γ), qω)

p + rω(1 − γ) + qω
(20)

∆c4 = θ. (21)

Note that ∆c1 ≤ ∆c2 and ∆c3 < ∆c4 , but ∆c2 might be less, more or equal to ∆c3 . Hence
there might be two, three or four distinct critical points.

It can be checked that if only the true fixed point (15) exists, then the trajectories from
the other regions lead into its region and thus are also attracted to it. Similarly, if only the
intermediate fixed point (16) exists, then all trajectories are attracted to it. If both exist but
not the false one (17), then trajectories from the potential other region are also attracted to
the intermediate fixed point (16). If the true and the false fixed points (6) and (17) exist,
then trajectories from the potential intermediate region might be attracted to either one,
depending on the parameter values. Finally, if all three exist, they are asymptotically stable
and attract trajectories from their respective region only. Thus, we have the following result.

Theorem 2 (i) Suppose qω ≤ p. If ∆ < ∆c3, (15) is the unique fixed point of the mean
differential equation (13). It is asymptotically stable and all trajectories are attracted to it. If

11



∆c3 ≤ ∆ < ∆c4 there is a second, intermediate fixed point (16) and both are asymptotically
stable, attracting trajectories from x(t)/(x(t) + y(t)) > ∆ and x(t)/(x(t) + y(t)) ≤ ∆ respec-
tively. Finally, if ∆c4 ≤ ∆, then only the latter, intermediate one is asymptotically stable and
all trajectories are attracted to it.
(ii) Otherwise, qω > p. Suppose ∆c2 < ∆c3. If ∆ < ∆c1, (15) is the unique fixed point.
It is asymptotically stable and all trajectories are attracted to it. If ∆c1 ≤ ∆ < ∆c2 there
is a second, false fixed point (17) and both are asymptotically stable, attracting trajectories
from their respective region and one of them from the potential intermediate region, too. If
∆c2 ≤ ∆ < ∆c3, (15) is again the unique fixed point of the mean differential equation (13).
It is asymptotically stable and all trajectories are attracted to it. If ∆c3 ≤ ∆ < ∆c4 there is a
second, intermediate fixed point (16) and both are asymptotically stable, attracting trajectories
from x(t)/(x(t)+y(t)) > ∆ and x(t)/(x(t)+y(t)) ≤ ∆ respectively. Finally, if ∆c4 ≤ ∆, then
only the latter, intermediate one is asymptotically stable and all trajectories are attracted to
it.
(iii) The case ∆c2 > ∆c3 is essentially the same except that now if ∆c3 ≤ ∆ < ∆c2 all three
fixed points are asymptotically stable and attract trajectories from their respective region.
(iv) Finally, the case ∆c2 = ∆c3 is the same except that now there is no such intermediate
regime.

As a result, the differential equation for this scenario, too, exhibits a phase transition be-
haviour. For sufficiently small ∆, liars do not have any impact. Only for intermediate values,
liars have some impact. For large ∆ liars have maximal impact. They brainwash everyone in
the network.

These results can also be stated in terms of the lying probability q. Liars do not have any
impact if

q <
1

ω

θ − ∆

∆
p (22)

when θ > 2∆ and if

q ≤
1

ω
p and q <

1

ω

θ − ∆

∆
(p + rω(1 − γ)) (23)

when θ ≤ 2∆. Otherwise, they have some impact and if moreover ∆ < θ liars have maximal
impact and brainwash everyone in the network.

Again, under the assumption of a symmetric social network we can rephrase these results
in terms of the proportion of liars in the network. Liars do not have any impact if their
proportion is below some threshold. Otherwise, they have some impact. If moreover ∆ < θ
liars have maximal impact and brainwash everyone in the network.

In Appendix B.1 we provide simulation results confirming the analytical results of this
Section.

5 Conclusions and Further Work

In this paper, we have introduced a mathematical model for the formation of reputation in
a social network and investigated the impact of liars. We have observed a phase transition
behaviour and investigated it in detail via a mean-field approach. Thus, we can give precise
conditions under which the liars will have an impact and we can specify what this impact will
be.
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We first investigated the scenario where reputation is passed on as second hand informa-
tion. We found that second hand information from honest peers does not help with getting
a more accurate opinion about the actual subject behaviour. This is as one might expect,
because their reputation values are subjected to the liars also and experiences are echoed back
and forth. We then looked at passing on direct experiences only to account for the situation
where people pass on information that they have seen with their own eyes exclusively. Here,
the liars’ impact is more complex to describe. Second hand information from honest peers
now does have an impact on accuracy of opinion.

We now compare the results in more detail, first phrased in terms of the threshold ∆. A
small threshold means that people do not naively believe all second hand information. There
are two critical values R∗

1 and R∗
3 such that: For small ∆ < R∗

3, there is no difference, the
true fixed point being unique. For R∗

3 ≤ ∆ < R∗
1 there might or might not be a difference. If

there is, liars have less impact in the scenario where direct experience only in passed on. For
R∗

1 ≤ ∆, liars have less impact in the direct experience scenario with the intermediate fixed
point being unique rather than the false one.

We now compare the results phrased in terms of the lying probability q. When θ > 2∆
there is no difference. When θ ≤ 2∆, the results are the same qualitatively. However, the
condition on the lying probability q for the liars not to have an impact is less strict in the
scenario with direct experience only. That is, liars do not have an impact even when the lying
probability q is larger (cf. (8) and (23)). Thus, liars have less impact in the scenario where
direct experience only is passed on.

We have assumed independent subject behaviour. It would be interesting to consider the
case when direct experiences are correlated.

Another extension is to consider strategic lying, that is liars attempting something more
subtle than simply telling extreme lies. For example, they could lie in some proportion of
reports only or they could always report intermediate behaviour in an attempt to conceal
their lies.

Finally, it would be interesting to extend our results from the symmetric situation we
have considered thus far to an asymmetric situation. In many social networks, people are not
symmetric in terms of their interactions. Lai and Wong [LW02], for example, have examined
the tie effect on information dissemination in the context of rumour spreading. They find
that information transmitted via kin ties tends to arrive at the respondent faster than via
non-kin ties or other communication channels.

One might even want to account for a proportion of people that never interacts with the
subject directly. People might also differ in terms of their thresholds, some believing even
rather unlikely reports, others hardly believing anything that they have not witnessed or
verified themselves.
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A Derivation of the Differential Equation

In this section, we show how the deterministic mean differential equation can be obtained
from the stochastic process as used in Sections 3.2 and 4.2 via a fast-time scaling and by
means of averaging the dynamics.

A.1 Reputation is passed on

First, for the scenario where reputation is passed on (Section 3.2). We consider a family of
processes indexed by N and then a continuous-time rescaled version where the number of
jumps of the average reputation in the interval [t, t + ε) is Poisson(NελNh) and the average
jump is of size

1
NNh

[

−(1 − ρ) xN
t + pθ + rω(1 − ρ)xN

t

]

1
NNh

[

−(1 − ρ) yN
t + p(1 − θ) + qω1

{

xN
t

xN
n +yN

t
≤ ∆

}

+ rω(1 − ρ)yN
t

] (24)

Note that the indicator function in the fourth possible case is trivially 1 under the assumption
that all reputation counters are the same. We obtain

xN
t+ε − xN

t = NελNh
NNh

[

−(1 − ρ) xN
t + pθ + rω(1 − ρ)xN

t

]

yN
t+ε − yN

t = NελNh
NNh

[

−(1 − ρ) yN
t + p(1 − θ) + qω1

{

xN
t

xN
n +yN

t
≤ ∆

}

+ rω(1 − ρ)yN
t

] (25)

Dividing by ε and taking the limit we are thus led to consider the deterministic mean differ-
ential equation 5.

A.2 Direct experience only is passed on

Next, for the scenario where direct experience only is passed on (Section 4.2). As before, we
consider a family of processes indexed by N .

(xN
Tn+1/N , yN

Tn+1/N ) = (1 −
1 − ρ

NNh
)(xN

Tn/N , yN
Tn/N )

+
1

NNh



































(1, 0) w.p. pθ

(0, 1) w.p. p(1 − θ)

(0, ω)1

{

xN
Tn/N

xN
Tn/N

+yN
Tn/N

≤ ∆

}

w.p. q

ω(1 − γ)(θ, 1 − θ)1

{
∣

∣

∣

∣

xN
Tn/N

xN
Tn/N

+yN
Tn/N

− θ

∣

∣

∣

∣

≤ ∆

}

w.p. r

(26)

We then consider a continuous-time rescaled version. The number of jumps in [t, t + ε) is
Poisson(NελNh). The average jump is of size 1

NNh
times

[

−(1 − ρ)xN
t + pθ + rωθ(1 − γ)1

{
∣

∣

∣

xN
t

xN
t +yN

t
− θ
∣

∣

∣
≤ ∆

}]

[

−(1 − ρ)yN
t + p(1 − θ) + rω(1 − θ)(1 − γ)1

{
∣

∣

∣

xN
t

xN
t +yN

t
− θ
∣

∣

∣
≤ ∆

}

+ qω1
{

xN
t

xN
t +yN

t
≤ ∆

}]

(27)
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Thus, we obtain xN
t+ε − xN

t and yN
t+ε − yN

t as NελNh
NNh

times
[

−(1 − ρ)xN
t + pθ + rωθ(1 − γ)1

{∣

∣

∣

xN
t

xN
t +yN

t
− θ
∣

∣

∣
≤ ∆

}]

[

−(1 − ρ)yN
t + p(1 − θ) + rω(1 − θ)(1 − γ)1

{∣

∣

∣

xN
t

xN
t +yN

t
− θ
∣

∣

∣
≤ ∆

}

+ qω1
{

xN
t

xN
t +yN

t
≤ ∆

}]

(28)
Dividing by ε and taking the limit we are led to consider the the deterministic mean differential
equation 13.

B Simulations

In this section, report our simulation results. Firstly, in the scenario where reputation is
passed on (cf. Section 3) and then in the scenario where direct experiences only are passed
on (cf. Section 4).

B.1 Reputation is passed on

In this section, we look at the simulations results in the scenario where reputation is passed
on (cf. Section 3). We used formulation (3) to compute 40000Nh steps, keeping track of
the average reputation values as well as two people’s individual reputation values and then
plotting them against n. As before, the lower and upper boundaries in the plots correspond
to reputation values 0 and 1 respectively; the upper and lower intermediate lines correspond
to R∗

1 and R∗
3 respectively. The average reputation values as used in the mean-field approach

(4) are plotted in black. They are obtained by averaging over the two reputation counters first
and then computing the resulting reputation value. The more intuitive average reputation
which averages the individual reputation values is plotted in grey. Note that the two agree
if the individual reputation counters are the same. We also plot the individual reputation
values of two people in blue and in yellow. 25 independent runs were carried out for each set
of parameters.

Parameter set 1 θ = 0.8, p = 0.1, q = 0.3 and r = 0.6 with various values of ∆. The
number of honest people Nh is initially taken to be 5. This corresponds to having Nl =
(Nh − 1)q/r = 2 liars. We also initially take ω = 1 and ρ = 0.995. We used both the extreme
initial values R0 = 0 and R0 = 1. Thus, from the previous mean-field results, the predicted
fixed points are R∗

1 = 0.8 and R∗
3 = 0.2. The critical values are ∆c1 = 0.2 and ∆c4 = 0.8.

In Figure 2 we show a typical sample path for ∆ = 0.15 < ∆c1 . The average reputation
values increase from the extremely negative initial value past R∗

3 to R∗
1 and remain within

its neighbourhood until the end of the simulation. This is as expected from the mean-field
results. Moreover, the individual reputations and hence the intuitive average behave the same
way.

In Figure 3 we show a typical sample path for ∆ = 0.85 > ∆c4 . Here, starting from the
extremely positive initial value, the average and individual reputation values decrease past
R∗

1 to R∗
3 and remain within its neighbourhood until the end of the simulation. This is again

as expected from the mean-field results.
In both cases, we have chosen the discount factor large, ρ = 0.995 to illustrate the degree

of convergence. For even larger values, convergence is slower but variability is even smaller.
Thus, in particular the two graphs confirm the fixed points.
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Figure 2: Typical sample path for parameter set 1. Here, ∆ = 0.15 < ∆c1 . The average (black
and grey) and individual (blue and yellow) reputation values increase from the extremely
negative initial value and then remain close to R∗

1.

Figure 3: Typical sample path for parameter set 1. Here, ∆ = 0.85 > ∆c4 . The average
and individual reputation values decrease from the extremely positive initial value and then
remain close to R∗

3.

Figures 4 and 5 each show a typical sample path for ∆c1 < ∆ = 0.4 < ∆c4 with extremely
negative and positive initial values respectively. As expected, they show the same behaviour,
namely that R∗

1 and R∗
3 are both fixed points and the average reputation settles down for some

time in their neighbourhoods in an alternating fashion. Moreover, the individual reputations
and hence the intuitive average behave the same way. In particular, they do so simultaneously,
although this is not necessarily the case, as we will see below. Here, we have chosen the
discount factor small, ρ = 0.9, for better illustration. This explains the higher variability
compared to the earlier Figures.

For a larger number of people, both honest and a proportional number of liars, we observe
the same behaviour, only the variability of the average reputation values is smaller. In
particular, we have carried out simulations for Nh = 101 and Nl = (Nh − 1)q/r = 50. The
sample paths for ∆ = 0.15 < ∆c1 and ∆ = 0.85 > ∆c4 are essentially the same as in Figures
2 and 3 respectively. We include the plots for ∆ = 0.25 and ∆ = 0.75 below (Figures 6 and
7). In particular, they confirm that ∆ = 0.25 > ∆c1 and ∆ = 0.75 < ∆c4 , because in both

Figure 4: Typical sample path for parameter set 1 except ρ = 0.9. Here, ∆c1 < ∆ = 0.4 < ∆c4 .
The average and individual reputation values increase from the extremely negative initial
value and then settle down for some time in a neighbourhood of R∗

3 and R∗
1 in an alternating

fashion.
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Figure 5: Typical sample path for the same parameters as in Figure 4. The average and
individual reputation values decrease from the extremely positive initial value and then settle
down for some time in a neighbourhood of the R∗

1 and R∗
3 in an alternating fashion.

Figure 6: Typical sample path for parameter set 1 except that now Nh = 101. Here, ∆c1 <
∆ = 0.25 < ∆c4 . The average and individual reputation values increase from the extremely
negative initial value and then settle down for some time in a neighbourhood of R∗

3 and R∗
1.

cases both R∗
1 and R∗

3 appear to be fixed points. The corresponding plots for the earlier case
Nh = 5 are again essentially the same, only the variability of the average reputation is larger.

Moreover, corresponding simulations have been carried out for parameter sets with ω < 1,
in particular for the same parameter set as above but now with ω = 0.1. The theoretical
results were confirmed in this case, too. Below we show a typical sample path for ∆c1 =
8/13 ≤ ∆ = 0.65 < ∆c4 with ρ = 0.999. We use this to illustrate that the individual
reputation values can be at different fixed points, in which case the average reputation values
take different intermediate values.

As a result, the simulations have confirmed the analytical results. They have shown
that the individual reputation values are determined by the same fixed points and critical
points, although variability is higher than the variability of the average reputation values.
In the case of both fixed points, the individual reputations can behave as predicted for the
average reputation, whereas the average reputation values take intermediate values. This is
to be expected, because in this case the assumption of equal reputation values is no longer

Figure 7: Typical sample path for the same parameters as in Figure 6. The average and
individual reputation values decrease from the extremely positive initial value and then settle
down for some time in a neighbourhood of R∗

1 and R∗
3.
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Figure 8: Typical sample path for parameter set 1 except that now ω = 0.1 and ρ = 0.999.
Here, ∆c1 = 8/13 < ∆ = 0.65 < ∆c4 . The average and individual reputation values increase
from the extremely negative initial value. The individual reputation values settle down for
some time in a neighbourhood of R∗

3 and then one after the other increases further to R∗
1, the

average reputation values taking different intermediate values.

satisfied. As such, our approach based on the assumption that all people have equal reputation
is justified, although in the case of two fixed points the assumption itself might not hold.

B.2 Direct experience only is passed on

In this section, we look at the simulations results when direct experience only is passed on (cf.
4). From Theorem 2, we know that there are essentially four possible cases for the structure
of the bifurcation plot 4.2 in terms of the overlap between the ranges of the two false fixed
points, or rather three: (a) if p ≥ qω then R∗

3 is not a fixed point; (b) if p < qω and ∆c3 ≥ ∆c2

then R∗
3 is a fixed point on a certain range and this does not overlap with the range on which

R∗
2 is a fixed point; (c) if p < qω and ∆c3 < ∆c2 then R∗

3 is a fixed point on a certain range
and this does overlap with the range on which R∗

2 is a fixed point. For each case, simulations
have been carried out to confirm the mean-field results. In this paper, for suitable length of
presentation, we shall focus on one of the cases, however. Perhaps the most interesting is (c)
where there can be three fixed points simultaneously, so this is the one we look at.

We used formulation (11) to compute 40000Nh steps, keeping track of the average rep-
utation values as well as two people’s individual reputation values and then plotting them
against n. The colour code in the following figures is as before (cf. Section B.1). The three
intermediate lines in the plots correspond to R∗

1, R∗
2 and R∗

3 in decreasing order. As before,
25 independent runs were carried out for each set of parameters.

Parameter set 2 θ = 0.8, p = 0.2, q = 0.6, r = 0.2, ω = 0.75 with various values of
∆. The number of honest people Nh is initially taken to be 100. This corresponds to having
Nl = (Nh − 1)q/r = 297 liars. We also initially take ρ = 0.999. We used both the extreme
initial values R0 = 0 and R0 = 1. Thus, from the mean-field results, the predicted fixed points
are R∗

1 = 0.8, R∗
2 = 2788/7985 = 0.34915466 and R∗

3 = 0.2 respectively. From the values
above we compute the critical values as ∆c1 = 0.2, ∆c3 = 3600/7985 = 0.45084534, ∆c2 = 0.6
and ∆c4 = 0.8. Recall that the values of R∗

2 and ∆c3 depend on γ = 1/Nh.

In Figure 9 we show a typical sample path for ∆ = 0.15 < ∆c1 . Indeed, the average and
individual reputation values increase from the extremely negative initial value past R∗

3 and R∗
2

to R∗
1 and remain within its neighbourhood. A similar behaviour is observed when starting

from the extremely positive initial value.
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Figure 9: Typical sample path for parameter set 2 with ∆ = 0.15 < ∆c1 . The reputation
values increase past R∗

3 and R∗
3, but settle down at R∗

1.

Figure 10: Typical sample path for parameter set 2 with ∆ = 0.85 > ∆c4 . The reputation
values decrease past R∗

1, but settle down at R∗
2.

In Figure 10 we show a typical sample path for ∆ = 0.85 > ∆c4 . Here, the average and
individual reputation values decrease from the extremely positive initial value past R∗

1 to R∗
2.

Similarly, starting from an extremely negative initial value, the reputation values are found
to increase past R∗

3 to R∗
2.

The two graphs confirm the values of R∗
1 and R∗

2 their being the unique fixed point on
∆ ≤ ∆c1 and ∆ > ∆c4 respectively.

In Figure 11 we show a typical sample path for the same parameters as in Figure 10, only
Nh = 3. The reputation values settle down lower than the intermediate false fixed point. The
expected number of experiences in a second hand report is now 2, in the previous example it
was 99. Thus the effect is as expected from the comments in the Section 4.2. The Figure also
illustrates that some individual reputation values converge slower, but once approaching the
true fixed point, they all decrease quickly.

In Figure 12 we show a typical sample path for parameter set 2 except ρ = 0.995 and
we carry out 80000Nh steps with ∆c2 < ∆ = 0.32 < ∆c3 . The individual reputation values
increase and settle down to R∗

3 before increasing further, one by one, past R∗
2 and settling

down at R∗
1. The averaged reputation values take different intermediate values but also settle

down at R∗
1. Starting from the extremely positive initial value, the reputation values are

Figure 11: Typical sample path for the same parameters as in Figure 10, only now Nh = 3.
The reputation values settle down below R∗

2; the small number of experiences reported per
interaction has a noticeable effect.

19



Figure 12: Typical sample path for parameter set 2 except ρ = 0.995 and we carry out
80000Nh with ∆c2 < ∆ = 0.32 < ∆c3 . The individual reputation values increase and settle
down to R∗

3 before increasing further, one by one, past R∗
2 and settling down at R∗

1.

Figure 13: Typical sample path for parameter set 2 except ρ = 0.99 with ∆c2 < ∆ = 0.7 <
∆c4 . The individual reputation values decrease and settle down to R∗

1 before decreasing
further, one by one, and settling down at R∗

2.

found to decrease to R∗
1.

This confirms the value of R∗
3 and also R∗

1 and R∗
3 being the stable fixed points on ∆c1 ≤

∆ = ∆c3 . It also suggests that the true fixed point is a stronger attractor than the false fixed
point for ∆ = 0.32.

In Figure 13 we show a typical sample path for parameter set 2 except ρ = 0.99 with
∆c2 < ∆ = 0.7 < ∆c4 . The individual reputation values decrease and settle down to R∗

1

before decreasing further, one by one, and settling down at R∗
2. The averaged reputation

values take different intermediate values but also settle down at R∗
2.

In Figure 14 we show a typical sample path for the parameter set except ρ = 0.995 with
the same ∆ = 0.7. The reputation values increase past R∗

3 and settle down to R∗
2.

This confirms R∗
1 and R∗

2 being the stable fixed points on ∆c2 ≤ ∆ = ∆c4 . It also suggests
that the intermediate fixed point is a stronger attractor than the true fixed point for ∆ = 0.7.

Finally, in Figure 15 we show a typical sample path for parameter set 2 except ρ = 0.96
with ∆c3 < ∆ = 0.5 < ∆c2 . The individual reputation values settle down near R∗

3 and R∗
2

and R∗
1 in an alternating fashion. The averaged reputation values take different intermediate

Figure 14: Typical sample path for the same parameters as in Figure 13 except ρ = 0.995.
The individual reputation values increase past R∗

3 and settle down at R∗
2.

20



Figure 15: Typical sample path the parameter set 2 except ρ = 0.96 with ∆c3 < ∆ = 0.5 <
∆c2 . The individual reputation values settle down near R∗

3 and R∗
2 and R∗

1 in an alternating
fashion.

Figure 16: Typical sample path for the same parameters as in Figure 15, only ρ = 0.995 and
Nh = 1000. The individual reputation values settle down at R∗

3 and R∗
2 in an alternating

fashion.

values just below R∗
1.

It is hard to see what happens near R∗
3 and R∗

2. We thus repeat the same simulations with
ρ = 0.995. Figure 16 shows a typical sample path. We also chose Nh = 1000 here. It can
now be seen that the individual reputation values settle down at R∗

3 and R∗
2 in an alternating

fashion. The averaged reputation values take slightly different and intermediate values. For
Nh = 100 the individual reputation values do not do so and also the averaged reputation
values are lower. This appears to be be due to too small a number of honest people again.

This confirms R∗
1, R∗

2 and R∗
3 being stable fixed points on ∆c3 ≤ ∆ = ∆c2 . It also suggests

that the true fixed point is a stronger attractor than the others for ∆ = 0.5.

As a result, the simulations have confirmed the analytical results. They have shown that
the individual reputation values are determined by the same fixed points and critical points,
although variability is higher than the variability of the average reputation values. In the
case of several fixed points, the individual reputation values can behave as predicted for the
average reputation, whereas the average reputation values take intermediate values. Again,
this is to be expected, because in this case the assumption of equal reputation values is no
longer satisfied. As such, our approach based on the assumption that all people have equal
reputation is justified, although in the case of two or three fixed points the assumption itself
might not hold.
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