
Inf Syst Front (2006) 8:115–131

DOI 10.1007/s10796-006-7976-9

Systemic classification of concern-based design methods
in the context of enterprise architecture
Pavel Balabko · Alain Wegmann

C© Springer Science + Business Media, LLC 2006

Abstract Enterprise Architecture (EA) is a relatively new

domain that is rapidly developing. “The primary reason for

developing EA is to support business by providing the funda-

mental technology and process structure for an IT strategy”

[TOGAF]. EA models have to model enterprises facets that

span from marketing to IT. As a result, EA models tend to

become large. Large EA models create a problem for model

management. Concern-based design methods (CBDMs) aim

to solve this problem by considering EA models as a com-

position of smaller, manageable parts—concerns. There are

dozens of different CBDMs that can be used in the context

of EA: from very generic methods to specific methods for

business modeling or IT implementations. This variety of

methods can cause two problems for those who develop and

use innovative CBDMs in the field of Enterprise Architec-

ture (EA). The first problem is to choose specific CBDMs

that can be used in a given EA methodology: this is a prob-

lem for researchers who develop their own EA methodology.

The second problem is to find similar methods (with the

same problem domain or with similar frameworks) in order

to make a comparative analysis with these methods: this is a

problem of researchers who develop their own CBDMs re-

lated to a specific problem domain in EA (such as business

process modeling or aspect oriented programming). We aim

to address both of these problems by means of a definition of

generic Requirements for CBDMs based on the system in-

quiry. We use these requirements to classify twenty CBDMs

in the context of EA. We conclude with a short discussion

P. Balabko (�)· A. Wegmann
Ecole Polytechnique Fédérale de Lausanne,
CH-1015 Lausanne, Switzerland
e-mail: balabko@mail.ru

A. Wegmann
e-mail: alain.wegmann@epfl.ch

about trends that we have observed in the field of concern-

based design and modeling.

Keywords Classification . Concern . Design . Enterprise

architecture . Systemic inquiry . Organization level

1. Introduction

This paper presents a classification of concern-based design
methods (CBDMs) and considers how CBDMs can be used

in the context of Enterprise Architecture (EA).

EA is a multi-disciplinary approach that enables enter-

prises to anticipate or react to necessary business or technical

changes. In an EA project, the EA team develops an EA model
(also called enterprise model) that represents the enterprise.

The model is usually structured in hierarchical organization
levels. The highest level typically describes marketing con-

cerns, the middle level describes business processes, and the

lower level describes the IT systems. The rational behind

structuring EA models with hierarchical levels can be found

in Wegmann (2003).

Usually, EA models become very large because they cover

a very wide range of concerns from marketing down to IT im-

plementation issues. As a result, EA models are often incom-

plete, inconsistent or unspecified. Enterprise models exem-

plify traditional modeling problems such as the one defined

by Clarke et al. (1999): “models are often large and mono-

lithic”, “designs are too difficult to reuse” and “there is a sig-

nificant structural misalignment between requirements and

code, with design caught in middle”. This results in models

that are very difficult to understand and therefore these mod-

els cannot be used for reasoning about or for designing busi-

ness and IT systems. The solution to this problem is to make

EA models as a composition of smaller, manageable parts:

concerns. In order to do this, concern-based design methods

Springer

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147901423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


116 Inf Syst Front (2006) 8:115–131

(CBDMs) should be used. In our paper, we compare and rec-

ommend CBDMs that can be used in EA methodologies.

The main question of this paper is: What are the CBDMs

that can be used in the context of EA and how can they be

used? To see how specific CBDMs can be used to specify

EA, we have to make a more systematic analysis of concern-

based modeling in the context of EA. To make this analysis,

we use an approach that was developed for analyzing sys-

tems: the Systems Inquiry (see http://www.isss.org). System
Inquiry incorporates four interrelated directions: systems phi-
losophy, systems theory, systems methodology and systems
application. Systems philosophy is concerned with a system’s

view on the world. This direction studies WHAT exists and

HOW we understand what we know. Systems theory tries to

“recognize system properties, that are general, and structural

similarities in different fields”. Systems methodology studies

different methods and “identifies specific, strategies, meth-

ods and tools appropriate to work with our system”. Systemic
application studies the application of specific models, meth-

ods and tools in some functional context. In our work this

context is EA. Therefore, we study the application of spe-

cific CBDMs in the context of EA, i.e. how these specific

methods can be used to support EA modeling.

We use system inquiry as a base to define the generic
requirements for CBDMs to be used in EA. These require-

ments are then used to generate a list of classified CBDMs
(starting from a list of existing CBDMs). This list allows the

researchers (i.e. designers of EA methodologies) to select the

list of relevant CBDMs for their EA methodologies. Using

relevant CBDMs improves the structure of the enterprise

models and makes them simpler to use. It also improves the

traceability between design models at different organization

levels.

In our work we consider twenty specific CBDMs and ana-

lyze how they can be used in the context of EA. In order to do

this we use systems inquiry (Section 2). In Section 3 we use

these requirements to see how the specific CBDMs can be

used to support EA modeling (the systemic application). In

Section 3.1 we start with the brief description of the twenty

CBDMs. In Section 3.2 we check how the requirements for

CBDMs are satisfied by each CBDM. This results in the

CBDM Requirements Checklist table. Then we use this table

to associate each method with organization levels where the

method can be used. This results in the classification of CB-
DMs in the context of EA (Section 3.3). In Section 4 we dis-

cuss the generated classification. Section 5 is the conclusion.

2. Requirements for CBDMs in the context of EA
based on the “systems inquiry”

In this section, we define requirements for CBDMs in the

context of EA based on the four directions of Systems Inquiry.

In Section 2.1 we consider systems philosophy that defines the

main concepts of CBDMs. In Section 2.2 we consider systems
theory that defines the most general principles of CBDMs.

In Section 2.3 we consider systems methodology that studies

the properties of CBDMs useful in the context of EA. In the

summary of each section, we define the specific requirements

for CBDMs in the context of EA. These requirements will

be used in Section 3 as a basis for the classifications of the

CBDMs that we provide in our paper.

The requirements for CBDMs that we give in this sec-

tion come from different disciplines (philosophy, psychol-

ogy, system science etc) and have often solid foundations1 in

these disciplines. However, due to the page limit, we mostly

omit the description of these foundations and only give prac-

tical description of requirements in the context of EA.

2.1. Systems philosophy of CBDMs

In this section, we consider the main modeling elements used

in CBDMs and principles that explain how these elements

should be used in modeling. CBDMs use many concepts:

“view, viewpoint, role, perspective, aspect, subject, etc” (see

Nassar et al. (2003)). They share many commonalities. How-

ever, as the CBDMs are developed to be used by different spe-

cialists, these commonalities disappear behind the difference

of names. In this section we consider concepts that serve as

a basis for all CBDMs in the context of EA. We also explain

how these concepts can be used in the EA design process.

Organization levels. Organization levels reflect the per-

spectives perceived by different specialists. The idea that

the specialists perceive the reality (or the Universe of

Discourse—UoD) from multiple perspectives comes from

constructivism. Kant claims that “we cannot know things

in themselves and that knowledge of the word is possi-

ble only by imposing pre-given categories of thought in

otherwise inchoate experience” (see social constructivism

in Audi (1999)). The same idea can be found in Berke-

ley’s “ubjective idealism.” He claims that the perception

of the reality (or the UoD) is observer dependant. An ob-

server gets his “abstract ideas” about the UoD by pulling

out certain features or qualities from reality and leaving

the rest behind. In the context of EA this means that each

EA team members has a certain perspective on the UoD,

where the perspective explains and justifies in its own way

the knowledge about a system. Many design methods (es-

pecially in the context of EA) support modeling with orga-

nization levels. For example, RM-ODP (ISO/IEC and ITU-

T, 1996) defined five viewpoints: Enterprise, Information,

Computational, Engineering and Technology; the Zach-

man framework (Zachman, 1987) defines six architectural

1 You can find more about the CBDM foundations in our technical
report: http://lamspeople.epfl.ch/balabko/foundations.pdf.

Springer



Inf Syst Front (2006) 8:115–131 117

perspectives corresponding to the following specialists: a

planner, an owner, an architect/designer, a builder, a sub-

contractor and a user. The concepts of viewpoint and archi-

tectural perspective are equivalent to organization level. It

is now necessary to explain why these perspectives are per-

ceived as hierarchical. At a given level a system is perceived

as a whole and at another level the system is perceived as

a set of its parts. The result of this part/whole relationship

is the construction of a hierarchical perception of the re-

ality. This idea can be found in Miller (1995) where he

shows that the way science has developed is by analyzing

the reality as a hierarchy of systems.

EA team members have to understand how to organize

the management of model elements at the given organization

level. In our work we consider the management of model

elements based on compositions of small, manageable parts:

concerns. We describe the concepts that EA team members

need to represent the concerns at the given organization level.

The three following concepts serve as a basis for concern-

based modeling: objects, roles and collaborations.

Object is “a model of an entity. An object is characterized

by its behavior and, dually, by its state” (ISO/IEC and ITU-

T, 1996).

Objects collaborate with each other to reach certain goals.

Collaboration is used to describe a set of collaborating ob-

jects. In our work we use collaborations to represent con-

cerns at a certain organization level. A concept similar to

collaboration that can be used to represent concerns is Role
Model, introduced by T. Reenskaug. “Role Model speci-

fies the set of collaborating roles along with their state and

behavior” (Reenskaug, 1996). Another similar concept is

pattern. Patterns can be considered as collaborations “that

capture the essential structure and insight of a successful

family of proven solutions to a recurring problem” (see

http://www.cmcrossroads.com/bradapp/docs/). The struc-

ture of patterns can be expressed as the collaboration be-

tween several objects. Patterns were introduced by Alexan-

der et al. (1977) and became popular with the “Design Pat-

terns: Elements of Reusable Object-Oriented Software”

book (Gamma et al., 1994).

Objects in collaborations play roles.

Role stands for “an abstraction of the behavior of an ob-

ject” (ISO/IEC and ITU-T, 1996) intended for achieving a

certain common goal in collaboration with other objects.

A role is usually modeled as a set of actions and state vari-

ables related to a given collaboration. Roles are usually

used in EA to talk about the business or IT requirements

of a system (at the Marketing, Company or IT Application

Organizational levels). A concept similar to role is feature.

This concept is also used for the specification of system

requirements. Turner et al. (1998) defines feature as “a

clustering of individual requirements that describe a co-

hesive identifiable unit of functionality”. Another concept

similar to role is perspective defined by Motschnig-Pitrik

as “the data structure modeling an object relative to a con-

text” (Motschnig, 1999). Two concepts similar to role at the

implementation level are aspect and subject. Aspect was

first defined in AOP by Kiczales et al. (1997) and is used

for encapsulating a crosscutting code. It wraps a supple-

mentary code and also stores information about join points

and pointcuts.2 Such join points indicate when the supple-

mentary code should be executed. The term subject was

proposed in the context of Subject Oriented Programming

(SOP) by Harrison and Ossher (from IBM) as an exten-

sion of the object-oriented paradigm to address a problem

of handling different subjective perspectives on objects to

be modeled. According to Harrison and Ossher (1993) the

term subject means a collection of state and behavior spec-

ifications reflecting the perception of the world. SOP uses

them to represent a subjective view on objects. Any object

can be seen as a composition of several subjects, where

each subject can be managed separately.

As we mentioned above, role is a behavior intended for

achieving a certain goal in collaboration with other roles.

Goals are important in the context of EA because they

allow humans to specify what systems do instead of how

systems do things. Goals are the products of their foresight

and intent (teleological principle). Goals are also used by

humans to interpret the functionality of systems (teleo-

nomic principle). In the context of EA, the hierarchy of

organization levels is used to model goals: at a given orga-

nization level any part of a system (or a system itself) can

be considered as a whole that has functionality with a cer-

tain result (the goal of this functionality). At the lower level

of the organization hierarchy, this functionality is achieved

through the collaboration of parts.

Another important concept related to CBDMs is context:

Context. In EA projects, EA team members need to reason

about large systems. These large systems can be observed

in different situations modeled as contexts. “Contexts pro-

vide means to focus on aspects that are relevant in a par-

ticular situation while ignoring others” (Motschnig-Pitrik,

2000). Modeling systems in multiple contexts is useful in

the analysis of large systems because it allows for dealing

with their complexity in a systematic way.

In our work we understand the context as the model of

a meaningful situation. The situation represents what is

2 Join points are well-known points in the dynamic execution of a pro-
gram. And pointcuts are sets of join points.

Springer



118 Inf Syst Front (2006) 8:115–131

around the system of interest: objects from its environ-

ment together with the joint behavior in which they are

all involved. I.e. a context can be modeled as collabora-

tion (a set of objects in the environment of the system with

their behaviors). Each role of the system of interest relates

to given context. Making context explicit makes easier to

understand different roles of a system.

Now we describe two principles that we believe are important

in the context of EA, from the pragmatic point of view. Both

these principles improve the understandability of models:

State-Behavior Holism. In order to design systems, we

have to describe the systems’ states and behaviors.3 Many

design methods and languages tend to separate systems’

states from their behaviors. For example, UML has sepa-

rate behavior (Sequence Diagrams, Activity Diagrams) and

state structure (Class Diagrams as conceptual diagrams).

These diagrams are related by means of contracts. The

separation of state information from behavior allows for

building more compact design diagrams. However, in most

interesting systems, state and behavior are highly inter-

twined and hard to separate. It becomes difficult to un-

derstand models of such systems when a modeler has to

keep state and behavior, not related explicitly, in mind. The

separation of state from behavior information goes against

Holism, an ability to think about the system as a whole. An

example of design methodology that is based on holism is

the Object-Process Methodology (OPM) (Dori, 2000). It

proposes a method for the complete integration of the sys-

tems’ states and behaviors within a single graphical model.

The holistic representation of state and behavior allows for

modeling the life cycle of system attributes (or concepts).

In visual modeling a state-behavior holism principle

may play an important role. Instead of the separation of

state and behavior information, CBDMs may use the sepa-

ration of concerns to reduce the complexity of design mod-

els. The separation of concerns based on roles, patterns and

architectural views is more practical than a separation of

systems’ state from behavior.

Diagrammatic Representation is important in the context

of EA. EA design models should be used by specialists with

different backgrounds. These specialists have to commu-

nicate in languages that avoid using notations specific only

for a certain domain. For example, engineers and business

analysts (or other domain experts) should have a com-

mon language. This is where the visual modeling helps:

“Conceptual graphs and other diagrams have been used

3 We use definitions based on RM-ODP (ISO/IEC and ITU-T, 1996):
Behavior: A collection of actions and a set of (sequential) relations
between actions. State: A collection of attributes, attribute values and
relations between attributes.

successfully as a communication medium between engi-

neers and domain experts” (Sowa, 1999). Diagrams are

more convenient than textual notations for modeling EA

because they help to make explicit relations, contexts (see

Sowa (1999)) and they are based on multiple dimensions

(x, y, z, and color dimensions). The Requirements 1 table

gives the overview of the requirements identified in this

section.

2.2. Systems theory of CBDMs

The systems theory of CBDMs defines the most general prop-

erties of CBDMs. In this section we analyze these properties.

Separation of concerns is widely used in software engi-

neering: “Separation of concerns is at the core of software

engineering. In its most general form, it refers to the abil-

ity to identify, encapsulate, and manipulate only those parts

of software that are relevant to a particular concept, goal,

or purpose” (Ossher and Tarr, 2001). In our work we con-

sider concern-based methods not only at the IT level (that

corresponds to software engineering), but at all organization

levels of EA hierarchy. When we mention CBDMs, we refer

to all design methods that represent design models as sets

of concerns. Each concern is an abstraction that represents a

part of a system relevant to a particular concept or a purpose.

We believe that there are two common forms of abstraction4:

generalization and composition. Thus, we consider general-

ization and composition as the most common properties of

all CBDMs.

We start with the definitions of generalization and compo-

sition that can be used in the context of EA. Then we continue

with the identity relation that plays an important role in the

composition of design parts.

Generalization relationship is a form of abstraction that al-

lows a modeler to classify modeling elements in terms
of types and instances, where a type is “a predicate char-

acterizing a collection of <X>s” (ISO/IEC and ITU-T,

1996).

Composition relationship is a form of abstraction in the form

of a relation between the whole and its parts. There are sev-

eral influential works that consider composition in the con-

text of design methods (Motschnig-Pitrik and Kaasbøll,

1999a; Kilov, 1999; Steimann et al., 2003; Gerstla and

Pribbenow, 1996; Barbier et al., 2003). The diversity of

the properties of composition that we can see in the above

mentioned works can be explained by different back-

grounds of authors aiming to define the primary properties

4 Steimann et al. (2003) considers three main forms of abstraction:
composition, classification and generalization. However, in our work we
consider classification as the result of generalization: instances become
classified based on defined types and subtypes.

Springer



Inf Syst Front (2006) 8:115–131 119

Requirements 1: System philosophy

Requirements Ref# Name of a concepts or a principle Description

Support of main concepts r1.1 Organization level Views of different specialist that

collaborate in an EA project.

r1.2 Object The individual, logical component that

can play roles in collaborations.

r1.3 Role An abstraction of the behavior of an

object intended for achieving a certain

common goal in collaboration with

other roles

r1.4 Collaboration A set of collaborating roles along with

their state and behavior

Main Principles r1.5 “Explicit context” principle CBDMs should support the explicit

modeling of context.

r1.6 “Goal driven” principle Context should define consequences of

the behavior of an object that is placed

in this context

r1.7 State-Behavior Holism Principle CBDMs should not tend to separate the

state and behavior information of a

described system

r1.8 Principle of Diagrammatic Representation Models built in the context of EA should

be based on diagrams that can serve as a

means of communication between

different specialists.

of composition. Peter Gerstl, for example, mainly consid-

ers the composition of physical objects. Frank Barbier and

Renate Motschnig-Pitrik look at composition as concep-

tual modelers of IT systems. Friedrich Steimann considers

composition in the context of UML models. Our goal is

to find a few properties between all afore mentioned ones

(they are too numerous and some of them overlap), which

will be useful to define composition in the context of EA.

These properties should be applicable at all levels of the

EA hierarchy, i.e. we need properties that can be used by

specialists coming from different domains. Therefore, we

consider the three properties taken from Gestalt (Rescher

and Oppenheim, 1955) (a psychological theory that con-

siders how humans perceive composition in general):

Part relationships: “the parts of the whole must stand in

some special and characteristic relation of dependence with

one another; they must satisfy some special condition in

virtue of their status as parts of a whole” (Rescher and Op-

penheim, 1955); This requirement reflects the structural-

ism view on composition: a whole is derived from its parts.

Composition structure: “the whole must possess some

kind of structure in virtue of which certain specifically

structural characteristics pertain to it”. The “. . . struc-

tural features of wholes are of interest because one

important idea covered by the term ‘whole’ is that

of a structured organization of elements. A structured

whole in this sense involves three things: (1) its parts,

(2) a domain of ‘positions’ that these parts ‘occupy’

(this need not necessarily be spatial or temporal, but may

have any kind of topological structure whatever), and (3)

an assignment specifying which part occupies each of the

positions of the domain” (Rescher and Oppenheim, 1955).

This requirement also reflects the structuralism view on

composition: it defines how the whole is composed from

its atomic parts.

Emergence: “the whole must possess some attribute in

virtue of its status as a whole, an attribute peculiar to it and

characteristic of it as a whole” (Rescher and Oppenheim,

1955); This reflects the Gestalt view on composition that

attributes of wholes cannot be derived from attributes of

parts. The similar idea can be found in Kilov (1999): “There

exists also at least one property of a composite instance

independent of the properties of its component instances.”

The “part relationship” requirement for composition states

that parts of a whole are mutually dependant. This depen-

dence is specified by relations between parts. In the context

of EA, there is a dependence relation that is especially im-

portant: identity.

Identify: In its classical form, identity is a relation between

two elements (in the form: “a = b ↔ ∀F(Fa → Fb)”).

This means that the identity of a and b is implied by their

sharing of all their properties. If a and b are identical rela-

tive to one property (predicate), but not to another then this

relation is called relative identity. If we read the definition of

identity from right to left, we can see that if the two elements

are indiscernible, then this means that these two elements

Springer



120 Inf Syst Front (2006) 8:115–131

Requirements 2: System theory

Requirements Ref # Name of a concept or a principle Description

Support of Generalization r2.1 Generalization A form of abstraction that allows a modeler to classify

modeling elements in terms of types and subtypes

Compatibility with Composition

principles

r2.2 Part relationships “The parts of the whole must stand in some special and

characteristic relation of dependence with one another;

they must satisfy some special condition in virtue of their

status as parts of a whole.”

r2.3 Composition Structure “The whole must possess some kind of structure in virtue of

which certain specifically structural characteristics

pertain to it.”

r2.4 Emergence property “There exists also at least one property of a composite

instance independent of the properties of its component

instances.”

Compatibility with identity

principles

r2.5 Explicit identity modeling Identity relationship between objects should be specified

explicitly in the composition of concerns.

r2.6 Explicit cross-level traceability CBDMs that support modeling at several organization

levels, should support the cross-level identities or

traceability.

r2.7 Support of relative identity Relative identity should be used.

are identical. The indiscernibility of two elements can be ex-

plained by the fact that these two elements model the same

entity in the UoD. Based on this observation there is another

definition of identity that states: two elements are identical

if they reference the same entity in the UoD. In linguistics

there is a similar concept called coreference5 that expresses

the relation between signs.

In the context of EA we see the following requirements for

modeling identities:

Explicit identity modeling: In the system design using CB-

DMs, the identity relationship between objects should be

specified explicitly in the composition of concerns.

Explicit cross-level traceability: CBDMs that support mod-

eling at several organization levels, should support the

cross-level identities or traceability.

Support of relative identity: In the context of EA “relative

identity” should be used. This means that identities should

be specified in the form: “x is the same F as y”, where F
is a predicate defined at a certain organization level.

The Requirements 2 table gives the overview of the require-

ments identified in this section.

2.3. Systems methodology of CBDMs

Systems methodology identifies and studies specific methods

and tools appropriate in a given context. In our paper we study

specific CBDMs in the context of EA. In EA an enterprise is

represented as the composition of multiple organization lev-

els reflecting views of different specialists. Any organization

5 Coreference is the reference in one expression to the same referent in
another expression.

level may use CBDMs specific for this level. Therefore al-

most any CBDM can be used in the context of EA (at a certain

organization level). We provide a list of all CBDMs consid-

ered in our paper in the next section, where we consider how

these methods can be used in the context of EA.

Instead of identifying specific CBDMs that can be used

in the context of EA, in this section we draw attention to

some important properties of the EA methodologies. An EA

methodology includes the three main development activities

that should be used for each organization level (see Fig. 1

where we show an example with two organization levels):

� Multi-level modeling: identifying existing entities (such

as processes, goals and tools) in the UoD and represent-

ing them in the multi-level enterprise model (as-is model).

Each organization level represents entities that are inter-

esting to a given specialist.
� Multi-level evolution: modifying the as-is model to fill the

gap between what exists and what should exist to achieve

a certain goal of a project. The result of modification is a

to-be model at each organization level.

Fig. 1 The role of verification and validation in the three basic devel-
opment activities (modeling, evolution and deployment)

Springer



Inf Syst Front (2006) 8:115–131 121

� Multi-level deployment: transforming the TO-BE model

into new or modified entities (processes and tools) in the

UoD.

The three development activities can be repeated several

times. When the first iteration is finished (i.e. the deploy-

ment has been completed), then the to-be model takes the

place of a new as-is model, the evolution and deployment are

done in the second iteration and so forth.

The result of the three development activities is available

only after the model deployment (when a model becomes

executable). In many cases, checking as-is and to-be models

before the deployment can save the time and resources of an

enterprise. There are two processes that are used to check

the models: validation and verification (see Fig. 1). The Re-

quirements 3 table gives the overview of the requirements

identified in this section.

3. Classification of CBDMs

In this section, we consider twenty CBDMs and analyze how

these methods can be used in the context of EA. We begin

this section with the list of twenty CBDMs that we classify in

our paper (Section 3.1). We check how the requirements for

CBDMs (from Section 2) are satisfied by each CBDM from

Section 3.1. This results in the CBDM Requirements Check
table (Section 3.2). We use this table to associate each method

with organization levels where this method can be used. This

results in the classification of CBDMs in the context of EA.

3.1. CBDM requirements check

We begin with a brief description of CBDMs that we consider

in our paper. These CBDMs are sorted based on their appli-

cation domains. The CBDM application domains represent

our understanding of the positioning and goals of CBDMs

as presented by their authors. We use the following applica-

tion domains: generic methods, DB and conceptual modeling

methods, business process related methods, design pattern

modeling methods, methods based on architectural connec-

tors, programming and modeling for programming methods.

The list of CBDMs in this section is not exhaustive, but we

included several influential methods in each domain. For each

method we describe its goal, main concepts and principles.

We also show how these concepts and principles relate to the

ones from the previous section.

3.1.1. Generic methods

Generic CBDMs use general terms to describe the deliver-

ables of EA. These methods usually cover several EA orga-

nization levels. Generic CBDMs can be used together with

specific CBDMs: in this case generic deliverables at a given

organization level can be substituted with specific deliver-

ables, more adequate for a certain specialist. We have con-

sidered the following generic CBDMs:

� Object-Oriented role analysis and modeling OORam:
a generic method developed by T. Reenskaug

Goal: Modeling complex systems as structures of interact-

ing objects.

Concepts and Principles: object (r1.2), role (r1.3), role
model (or collaboration, r1.4), synthesis of role models
(or composition) based on generalization of behavior

(r2.1), behavior substitution (or behavior identity, r2.5)

and sequential composition (part relationship r2.2).

Description: OORam is a highly successful generic

methodology applied mostly in software engineering

and with some opportunities for business analysis

(Reenskaug et al., 1996). This is the first work that

systematically studied and used the concept of role,

role model and composition of role models. OORam

Requirements 3: System methodology

Name of a concept

Requirements Ref# or a principle Description

Support of the methodological properties r3.1 Verification Compares two levels of system specification for

proper correspondence.

r3.2 Validation Determines how well the model describes the actual

behavior of the system. Consistency checking and

the model simulation are the most common formal

techniques that can be used for model validation.

Consistency checking guarantee that a model does

not have contradictions. Simulation allows a

modeler to consider specific scenarios and

interpret them. System design verification can also

be achieved through cross-level correctness
preserving transformations.

r3.3 Executable The possibility to execute deployed models.

Springer



122 Inf Syst Front (2006) 8:115–131

pays attention to the safe synthesis that guaranties the

integrity of the base model activities in the derived

models.

Tool: “OOram Professional” was developed. However,

this case tool is not supported any more.

Advantages: Simple, visual (r. 1.8), encourages model and

software reuse.

� Systemic Enterprise Architecture Methodology
(SEAM): a generic method developed by A. Wegmann

Goal: Systemic hierarchical system modeling in the con-

text of EA.

Concepts and Principles: organization level (r1.1), object
(r1.2), role or localized action (r1.3), joint action (or

collaboration, r1.4), the explicit modeling of context

and environment (r1.5), visual representation of post-

conditions (state-behavior holism, r1.7).

Description: SEAM (Wegmann, 2003) is a new generic

method in the field of EA. This method has solid theo-

retical foundations and aims to be used by practitioners

in the field of EA. It supports many properties that we

have identified in Section 2.

Tool: SEAMCad (see http://lamspeople.epfl.ch/le/SEAM

tool/SeamCadl/toc.htm) is under development.

Advantages: Visual (r.1.8), systemic, good support for the

hierarchical modeling, proposes a unified otology for

all EA levels and, therefore, can be used as basis for the

development of the specific EA methods.

� View Points Framework: a generic framework proposed

by B. Nuseibeh et al.

Goal: To make explicit inter-viewpoint relations.

Concepts and Principles: viewpoint (organization level,

r1.1), viewpoint relationship rules (part relationships,

r2.2), agent (object, r1.2), correspondence between

types in different viewpoints (explicit traceability, r2.6).

Description: ViewPoints Framework is a viewpoint method

construction framework that defines how to construct

methods that integrate multiple viewpoints. It sug-

gests how to create viewpoint templates and use these

templates for building hierarchical specifications. This

framework addressed “the notion of interViewpoint

communication as a vehicle for Viewpoint integration”

(Nuseibeh et al., 1993). Inter-viewpoint communica-

tions are based on the inter-viewpoint rules defined in

viewpoint templates. The paper (Nuseibeh et al., 1993)

that describes the basics of ViewPoints framework in

2003 got the Most Influential Paper Award in ICSE, one

of the leading conferences in Software Engineering.

Tool: The direct successor of the ViewPoints frame-

work is xlinkit framework (Nentwich et al., 2003) (see

http://www.xlinkit.com) that aims in consistency check-

ing and repairing of software engineering artifacts. The

xlinkit framework has a case tool of the same name.

Advantages: Helps to make relations between viewpoints

more formal and, therefore, allows for the consistency

checking between viewpoints.

� Generic Context Framework: a generic framework pro-

posed by R. Motschnig-Pitrik

Goal: To decompose Information Bases (IBs) using con-

texts.

Concepts and Principles: information units (all possible

model elements such as objects, attributes, methods);

context (something like a role in our terminology, r1.3)

refers a subset of information units, i.e. context is used

to split IBs; authorization (specify user rights for the

execution of actions), change propagation (specify part-

relationships between contexts, r.2.2) and owner (a user

who create a context).

Description: This framework originally proposed in

Mylopoulos and Motschnig-Pitrik (1995) is inspired by

data base views. It considers general abstractions for

partitioning information bases with contexts. Later this

framework was presented as a generic one for any mod-

eling notation (Motschnig-Pitrik, 2000). It proposes a

context to be a “first-class citizen” associated with prop-

erties and behavior of objects. This framework was ap-

plied in the context of OO modeling, which resulted

in the extension to UML that supports the modeling of

views (Motschnig-Pitrik, 2000b).

Advantages: This generic framework is strongly influenced

by the data base views and, therefore, it is most appro-

priate for the development of IBs specific frameworks.

3.1.2. DB and conceptual modeling

A group of methods that make an accent on the information

modeling for information systems.

� Lodwick: a modeling language proposed by Friedrich
Steimann

Goal: To define the semantics of roles in conceptual mod-

eling.

Concepts and Principles: object (r1.2); role (r1.3); role
and object type hierarchies (generalization, r2.1); static
model or invariant model; dynamic model that specifies

all possible sequences of model snapshots.

Description: Lodwick is one out of few languages based

on logic (order-sorted logic more precisely). It “is in-

tended to be an exploratory language for object-oriented

modeling with roles at the conceptual level” (Steimann,

2000).

Springer



Inf Syst Front (2006) 8:115–131 123

Advantages: Lodwick provides a good formal definition of

roles and their properties that can be used to explain the

semantic of roles in CBDMs. Lodwick allows for the

expression of many propositions about roles such as:

“roles can play roles,” “a role can be transferred from

one object to another,” “an object my play the same role

several times” etc.

� Object-Role Modeling (ORM): a modeling method

proposed by Halpin

Goal: To simplify the conceptual design by using natural

language, intuitive diagrams and representing informa-

tion in terms of simple or elementary facts.

Concepts and Principles: object (r1.2); role (r1.4); facts or
n-ary predicates (resemble to collaborations, r1.4) that

can be regarded as sentences with one or more “object-

holes” where each hole represents a role; constraints
between roles (part relationships, r2.2); role general-
ization (r2.1); visual and simple (r.1.8)

Description: ORM is a method for performing informa-

tion analysis and design at the conceptual level. It is

considered as an alternative to Entity-Relationship — a

group of conceptual modeling methods. “Early versions

of ORM were developed in Europe in the mid-1970s (for

example, binary relationship modeling and Natural Lan-

guage Information Analysis Method (NIAM))” (Halpin,

2001). ORM is one of the methods appropriate for EA

because it “simplifies the design process by using natu-

ral language, as well as intuitive diagrams which can be

populated with examples” (Halpin, 2001).

Tool: Microsoft Visio for Enterprise Architects; in ad-

dition, ActiveQuery can be used for querying ORM

models.

Advantages: ORM diagrams are simple and can be used

by many different specialists (and especially business

people). ORM models can be converted to database

schemas, ER and UML diagrams.

� Metapattern: a conceptual modeling method proposed by

P. Wisse

Goal: Information analysis and design that uses context

and time as first-class modeling elements.

Concepts and Principles: object (r1.2); context (r1.5);

intext (or role, r1.3); information objects (or role at-

tributes); pointer information object (or identity rela-

tion, r2.5);

Description: Metapattern (Wisse, 2000) uses a simple vi-

sual notation in the form of a directed graph where nodes

represent objects and edges represent contextual rela-

tions between objects. Any object in Metapattern can

be defined only in the context of another object using

a contextual relation. The directions of contextual rela-

tions show the order of nested contexts.

Tool: KnitbITs is a commercial tool for prototyping. It as-

sists strategic planning for enterprise engineering.

Advantages: Highly focused analysis tool that provides a

formal treatment of context; a visual notation (r1.8) for

the representation of roles, contexts and relations be-

tween them for modeling at the high level of abstraction.

� VBOOL and VUML: a methodology and modeling lan-

guage proposed by Nassar and others

Goal: To introduce the notion of a user view associated to

every actor of a system.

Concepts and Principles: actor that interact with a sys-

tem (object, r1.2); view of an actor on a system (role,

r1.3); view dependencies (part relationships, r2.2); view

extension (specialization/generalization, r2.1).

Description: View Based Object-Oriented Methodology

Language (VBOOL) (Marcaillou et al., 1994) is an OO

language based on multiple inheritance (inspired by Eif-

fel) with the explicit notion of user views. View based

Unified Modeling Language (VUML) (Nassar et al.,

2003) is an extension of UML that introduces user views

associated to every stakeholder of a system. VUML was

inspired by VBOOL.

Tools: VBOOL interpreter.

Advantages: Allows for the specification of user needs and

access rights in a visual way (based on the extension of

UML class diagrams).

3.1.3. Business process (BP) related methods

BP related methods aim at the analysis and design of work-

flows and processes in an organization.

� Role Activity Diagrams (RAD); a visual language pro-

posed in by Holt and enriched by Ould

Goal: To express coordinated human behavior.

Concepts and Principles: role (r1.3); actor (or objects,

r1.2); interaction (or detailed collaboration, r1.4); goal
of a role in collaboration (r1.6).

Description: RADs are based on concepts proposed by

Holt et al. (1983). Later RADs were improved by Ould

(1995). RADs were a major feature of the Business Pro-

cess Reengineering movement in the 1990’s. RADs are

similar to UML Activity Diagrams (ADs) with swim

lanes. They are different in the visual notation and the

model elements that can only be modeled in RADs

(goals, data flows, interactions between roles). These

model elements make RADs more comfortable for busi-

ness process modeling (see Odeh et al. (2002) for details

Springer



124 Inf Syst Front (2006) 8:115–131

on the comparison). RADs are based on the underlying

Petri-Nets formalism.

Tools: RADRunner (see http://www.rolemodellers.com) is

a commercial product with the underlying XML di-

alect, Playwright, that allows for the integration with

web technologies.

Advantages: Allows business processes to be expressed

visually (r1.8) at a high-level of abstraction. RADs are

well known and supported with a powerful tool.

� Role Interaction Nets (RINs); a visual language proposed

by Singh and Rein

Goal: To express coordinated human behavior.

Concepts and Principles: role (r1.3); actor (or objects,

r1.2); interaction (or detailed collaboration, r1.4); out-
put (or goal of a role in collaboration, r1.6).

Description: RINs (Singh and Rein, 1992) are very similar

to RADs: they both use similar concepts, principles and

based on the Petri Nets formalism. However, RINs did

not advance as much as RADs. As a result, RINs are not

referenced in recent research publications.

Tools: Deva (Rein, 1993) is a role-based collaborative tool

that allows people to coordinate their work. This tool

does not exist anymore.

Advantages: Allows business processes to be expressed

visually (r1.8) at a high-level of abstraction.

3.1.4. Design pattern modeling methods

Design patterns are proven solutions to recurring problems.

Patterns in the field of object-oriented analysis and design

were first studied by Gamma in his book “Design Patterns:

Elements of Reusable Object-Oriented Software” (Gamma

et al., 1994). These patterns are usually described using class

diagrams. Some researchers go beyond class diagrams and

develop new languages for the specification of design pat-

terns. Here we overview one approach, relevant to the subject

of our paper, that specifies patterns as a set of collaborating

objects.

� Role Diagrams: proposed by Dirk Riehle

Goal: To specify design patterns as a set of collaborating

objects and show how design patterns are applied to

objects.

Concepts and Principles: class, i.e. a set of objects of a

given type (r1.2); role (r1.3); collaboration (r1.4); role

and class generalization (r2.1); composition constraints
(r2.2); a role diagram represents a set of collaborating

roles together with composition constraints, generaliza-

tion and composition relations between roles; a class
model shows how classes play roles from role diagrams.

Description: Role diagrams are the major contribution of

the Riehle’s research work. They are quite simple and

powerful for solving concrete design problems. Role

diagrams where inspired by OOram and the work of

Alexander et al. (1977).

Advantages: Convenient for the description of design pat-

terns in a visual way (r1.8) (Riehle, 1996), (Riehle,

1997); convenient for the design of new OO Frame-

works (Riehle and Gross, 1998).

3.1.5. Architectural connectors

Methods based on the architectural connectors (we take this

name from Fiadeiro and Lopes (1997)) aim to separate object

essential behaviors (services provided by this object) and

object interactions. This separation allows for the explicit

representation of object interactions in the form of contracts,

communication objects or connectors.
� CDE from ATX Software: proposed by J. Fiadeiro, L.

Andrade at al.

Goal: To separate basic business components from coor-

dination elements (business rules) managed by config-

uration elements (business policies).

Concepts and Principles: components or basic business

blocks (i.e. objects, r1.2); coordination contract (some-

thing like collaboration, r1.4); configuration elements or

business policies (goal of a coordination contract, r1.6);

computation, coordination and configuration layers (or-

ganization levels, r1.1).

Description: It uses coordination contracts to represent

explicitly the rules that determine Java object interac-

tions (Andrade and Fiadeiro, 1999; Fiadeiro and Lopes,

1997). Coordination contracts support interactions to be

externalized as first-class citizens, allowing for the on-

line deployment of coordination contracts.

Tool: CDE is the Java-based Coordination Development

Environment (CDE). CDE also allows for the simulation

of the coordination mechanism using an animation tool

integrated in CDE.

Advantages: Allows for the dynamic reconfiguration of

a system caused by the changes of business policies

and rules.

� Sina: a programming language proposed by Mehmet Ak-
sit at al.

Goal: To structure, abstract and reuse object interactions.

Concepts and Principles: object (r1.2); Abstract Commu-
nication Types, ACTs (represent object collaborations,

r1.4, or inter-object constraints, i.e. part relationship,

r2.2); composition filters are used to intercept and redi-

rect messages from objects to ACT objects.

Springer



Inf Syst Front (2006) 8:115–131 125

Tool: Sina (Aksit and Tripathi, 1988) is a programming

language with the explicit representation of object in-

teractions in the form of Abstract Communication Types

(ACTs) (Aksit et al., 1993). ACTs represent explicitly

complex communications between objects, such as dis-

tributed algorithms, coordinated behavior, inter-object

constraints.

Advantages: Makes the complexity of programs manage-

able by moving the interaction code to separate modules;

can implement the synchronization among participating

objects.

� ConcernBASE: a language and method proposed by M.
M. Kandé

Goal: To provide a software engineering approach that al-

lows for the separation of concerns in software archi-

tecture descriptions.

Concepts and Principles: components (i.e. objects, r1.2);

connectors (similar to collaborations, r1.4); connector

consists of two or more connection points (similar to a

role in our terminology, r1.3) and one connection role or

a communication protocol between connection points.

Description: ConcernBASE (see http://lgl.epfl.ch/ re-

search/concernbase/index.html) is a concern-based and

architecture-centered software engineering method. To

represent object interactions, ConcernBASE uses con-

nectors. “A connector is an abstraction that explicitly

represents a locus of definition for component intercon-

nections and communication responsibilities” (Kandé

and strohmeier, 2000).

Tool: The Concern BASE Modeler tool is an integrated

tool for the development of UML-based architectural

descriptions using the Concern-BASE approach. This

tool is currently under development.

Advantages: UML-based; complements current Architec-

ture Description Languages (ADLs) with the separation

of concerns mechanism.

3.1.6. Programming and modeling for programming

The common goal of methods from this section is to imple-

ment roles as source-code entities and then assign these roles

to objects.

� Methods for Implementing Roles proposed by D. Notkin
and M. VanHilst

Goal: To implement roles as C++ code entities and com-

pose them into classes using separate composition state-

ments.

Concepts and Principles: roles in the form of C++ tem-

plates (r1.3); classes (that instantiate objects, r1.2); com-

position statements that specify how roles are com-

posed with classes (something like composition struc-

ture, r2.2); roles/responsibility matrix where rows repre-

sent collaborations (r1.4) and columns represent classes.

Description: This method implements roles as source code

entities using C++ class templates defined in a styl-

ized way (VanHilst and Notkin, 1996). These templates

are composed into C++ classes at compile time us-

ing separate composition statements. The composition

statements are based on the roles/responsibility matrix

that is used to define relations between roles’ attributes

and methods, and the order in which these roles are

composed.

Tool: C++: it uses the features associated with class tem-

plates in C++.

Advantages: Improves C++ code maintainability and

reuse; requires no special tools.

� Subject-Oriented Programming (SOP): proposed by

Harrison and Ossher

Goal: An extension of OOP that addresses a problem of

handling different subjective perspectives on objects to

be modeled;

Concepts and Principles: object (r1.2); subject is a collec-

tion of object’s state and behavior specifications related

to a particular concern (like role, 1.3); concern is an ex-

pectation or a goal that a stakeholder has on a system

(can be represented as collaboration with a goal, r1.4);

composition specification (specifies part relationships,

r2.2) that includes composition relationship (or identity

relationship, r2.5) and integration specifications (tells

how the identical elements should be treated: merged,

overwritten or selected depending on a context).

Description: Subject Oriented Programming is a program-

ming paradigm proposed by Harrison and Ossher (from

IBM) (Harrison and Ossher, 1993). SOP uses subjects to

represent a subjective view on objects. Any object can be

seen as the composition of several subjects, where each

subject can be managed separately. The most known

implementation of SOP is the Hyper/J language (see

http://www.alphaworks.ibm.com/tech/hyperj).

Tools: Hyper/J—a Java application that allows for the com-

position of conventional Java classes according to com-

position rules. Hyper/J composes Java class files based

on the special options file. This options file indicates

files that participate in a composition, how parameters

or actions with the same names should be treated, and

other complimentary information.

Advantages: SOP is as generic programming paradigm that

allows for the separation of concerns. The separation of

concerns helps to trace requirements (in the form of use-

cases or features), to code (in the form of programming

Springer



126 Inf Syst Front (2006) 8:115–131

concerns); SOP improves comprehensibility; SOP has

an open-ended semantics of composition that allows for

the definition of complex composition patterns.

� Aspect-Oriented Programming (AOP): programming

language introduced by Xerox

Goal: To localize code that is scattered across several

classes.

Concepts and Principles: source code (instantiates objects,

r1.2); advice is the cross-cutting code to be added to the

source code of objects (something like role, r1.3); point-
cuts specify the composition structure of a source code

with advices, r2.3; aspect is the combination of point-

cuts and advices.

Description: Aspect-Oriented Programming was named by

Gregor Kiczales and his group (Kiczales et al., 1997).

It was based on the ideas of adaptive programming that

were developed in the early 90th (Lieberherr, 1992).

AOP paradigm introduces a new concept to OOP called

Aspect for encapsulating a crosscutting code. There are

many examples of aspects: error checking and han-

dling, synchronization, context-sensitive behavior, per-

formance optimizations, monitoring and logging, de-

bugging support, multi-object protocols.

Tools: The first version of the AOP language and language

processor, AspectJ, that interleaves or weaves objects

and aspects was done by Gregor Kiczales, Crista Lopes

and other researchers at Xerox PARC. Now AspectJ

has evolved into a powerful AOP framework. The in-

formation about other AOP frameworks can be seen on

http://aosd.net/technology/practitioners.php.

Advantages: Modularization: redundant code can be placed

in aspects; Concentration on the business logic: security,

synchronization and other non-business concerns can

be handled with aspects; Comprehensibility; Debug-

ging: debugging code can be outside of the main

code; Acceptance in industry: integration with devel-

oper frameworks such as JBoss (JBossAOP), NetBeans

and Eclipse.

� Aspect-Oriented Design; design method proposed by

Elizabeth A. Kendall

Goal: A role-based design method and its implementation

in AOP.

Concepts and Principles: classes (that instantiate objects,

r1.2); aspects and roles (r1.3); role models (i.e. collab-

orations, r1.4).

Description: Kendall (1999) proposes an aspect-oriented

design method that can be implemented using AOP. This

design method is specified with role diagrams proposed

by Riehle (1997). It also uses the graphical notation

of role composition inspired by Kristensen (1995). E.

Kendall considers different options for mapping roles

from role diagrams to aspects in AOP and discusses the

advantages and problems of these options. In Kendall

(1998) E. Kendall discusses how goals of a system

can be specified and assigned to roles that appear in a

model.

Advantages: Simple visual (r1.8) notation that allows for

choosing different options of role model implementa-

tions; intuitive for the implementation of design patterns

with AOP.

� Stratified Architectures: a method and architecture pro-

posed by Colin Atkinson and Thomas Kühne

Goal: To provide a method for hierarchical modeling that

uses concern-based abstractions.

Concepts and Principles: strata or level of abstraction

(r1.1); object (r1.2); object interaction (i.e. collabora-

tion, r1.4); interaction refinement based on the intro-

duction of new system concerns.

Description: Colin Atkinson and Thomas Kühne in Atkin-

son et al. (1999) propose a systematic organization of

concern-based models in a form of hierarchical struc-

ture. This structure allows for the abstraction of “system

details step by step so that certain aspects [concerns] can

be ignored at a sufficiently high level of abstraction”

(Atkinson et al., 1999).

Advantages: Comprehensibility: stratified architectures

make explicit why and where (at which level) a par-

ticular concern is introduced in a system, and what are

the implication of this concern on the system’s overall

structure; System redesign becomes easier.

� OO Modeling with roles: a methods proposed by

Kristensen

Goal: Modeling of perspectives based on the aggregation

of roles.

Concepts and Principles: perspective (similar with orga-

nization levels, r1.1); intrinsic object (or object, r1.2);

role object (or role, 1.3); generalization (r2.1); emergent
methods and attributes (r.2.4); method and attribute de-

pendencies (or part relationships, r2.2) such as heredi-

tary, aggregated, modified methods.

Description: Bækdal and Kristensen use roles to spec-

ify systems from different perspectives (Bækdal and

Kristensen, 1999); (Kristensen, 1995). Each perspec-

tive models a system with its own aggregation hierar-

chy: a perspective defines roles at the lowest level of

abstraction and then aggregates them in a form of a

hierarchy.

Springer



Inf Syst Front (2006) 8:115–131 127

Table 1 CBDM requirements checklist table

o
b

je
c
t

ro
le

c
o

ll
a
b

o
ra

ti
o

n

O
rg

a
n

iz
a
ti

o
n

 
le

ve
ls

 (
v
ie

w
s
)

"E
x
p

li
c
it

 
C

o
n

te
x
t"

"G
o

a
l 
D

ri
v
e
n

" 
c
o

n
te

x
ts

/r
o

le
s

S
ta

te
- 

B
e
h

a
v.

 
H

o
li
s
m

d
ia

g
ra

m
m

a
ti

c
 

re
p

re
s
e
n

ta
ti

o
n

E
m

e
rg

e
n

t 
P

ro
p

e
rt

ie
s

P
a
rt

 
re

la
ti

o
n

s
h

ip
s

C
o

m
p

o
s
it

io
n 

S
tr

u
c
tu

re

E
x
p

li
c
it

 I
d

e
n

tity
 

re
la

t.

E
x
p

li
c
it

 
T
ra

c
e
a
b

il
it

y

R
e
la

ti
v
e
 I
d

e
n

tit
y

a
p
p
ro

x.
 1

9
7
5

O
b
je

ct
 R

o
le

 
M

o
d
e
lin

g

H
a
lp

in

F
O

R
M

 in
 M

S
 V

is
io

 f
o

r 
E

n
te

rp
ri

se
 A

rc
h

it
e

ct

Y Y Y Y Y Y

su
p

p
o

rt
s 

co
n

ce
p

tu
a

l 
q

u
e

ri
e

s

IT
, 
B

u
si

n
e
ss

1
9
8
3

R
A

D
 

H
o
lt 

a
t 
a
l

R
A

D
R

u
n

n
e

r

Y Y Y Y Y Y Y

S
im

u
la

tio
n

B
u
si

n
e
ss

1
9
8
8

S
in

a

A
ks

it

S
in

a
 la

n
g
u
a
g
e
 

Y Y Y

o
n
ly

 t
h
ro

u
g
h
 

d
e
le

ga
tio

n

Y Y Y IT

1
9
9
2

R
IN

s

S
in

g
h
 R

e
in

D
e
va Y Y Y Y Y Y Y

S
im

u
la

tio
n

B
u
si

n
e
ss

1
9
9
3

S
O

P

W
ill

ia
m

 
H

a
rr

is
o
n

H
yp

e
r/

J

Y Y Y Y Y Y Y IT

1
9
9
3

V
ie

w
P

o
in

ts
 M

e
th

o
d
 

C
o
n
st

ru
ct

io
n
 

F
ra

m
e
w

o
rk

 

B
. 
N

u
se

ib
e
h

xl
in

ki
t

Y Y Y Y

C
o

n
si

st
e

n
cy

 C
h

e
ck

in
g

C
o

n
si

st
e

n
cy

 C
h

e
ck

in
g

IT
, 
B

u
si

n
e
ss

1
9
9
4

V
B

O
O

L
, 
V

U
M

L

M
a
rc

a
ill

o
u
 a

t 
a
l.

V
B

O
O

L
, 
V

U
M

L

Y Y Y Y Y

IT
, 
B

u
si

n
e
ss

1
9
9
5

G
e
n
e
ri
c 

C
o
n
te

xt
 

F
ra

m
e
w

o
rk

R
. 
M

o
ts

ch
n
ig

-
P

itr
ik

e
xt

e
n
tio

n
 t
o
 U

M
L

Y

n
o
t 
in

 t
h
e
 s

a
m

e
 

m
e
a
n
in

g

Y Y Y Y Y

IT
, 
B

u
si

n
e
ss

1
9
9
5

O
O

 M
o
d
e
lin

g
 

w
ith

 R
o
le

s

B
. 
K

ri
st

e
n
se

n

Y Y Y Y Y Y Y Y Y IT

1
9
9
5

O
O

R
a
m

R
e
e
n
sk

a
u
g

T
A

S
K

O
N

/ 
O

O
ra

m

Y Y Y Y Y Y Y Y Y Y

IT
, 
B

u
si

n
e
ss

1
9
9
6

A
O

P

K
ic

za
le

s 

A
sp

e
ct

J

Y Y Y Y Y IT

1
9
9
6

M
e
th

o
d
s 

fo
r 

Im
p
le

m
e
n
tin

g 
R

o
le

s 

N
o
tk

in
 

C
+

+

Y Y Y Y Y Y IT

Y
e
a
r

A
u

th
o

rs

M
e
th

o
d

/ 
L

a
n

gu
a
g

e
 N

a
m

e

Composition

System Philosophy

Main principles

System Theory

g
e
n

e
ra

li
s
a
ti

o
n

 Main Concepts

T
o

o
l 
 o

r 
L

a
n

g
u

a
g

e
 

Idenity principles

S
y
s
te

m
ic

 A
p

p
li
c
a
ti

o
n

System Methodology

V
e
ri

fi
c
a
ti

o
n

E
x
e
c
u

ta
b

le

V
a
li
d

a
ti

o
n

 

(Continued on next page)

Springer



128 Inf Syst Front (2006) 8:115–131

Table 1 (Continued)

Advantages: Simple and rich visual notation (r1.8) that

allows for modeling the specialization and the compo-

sition of roles, relations between roles, assignments of

roles to other roles and etc.

3.2. Classification of CBDMs in the context of EA

We begin this section with the CBDM Requirements Check-

list Table (see Table 1) where we show how CBDMs from

Section 3.1 satisfy requirements for CBDMs. To make a

conclusion about the evolution of considered CBDMs, we

sort the considered CBDMs by the date of their appear-

ance. We associate this date with a first major publication

that we have found in the literature. Note that we also in-

cluded in this table the Systemic Application column that in-

dicates where each CBDM is more appropriate: in business or

IT.

We use Table 1 to associate each method with organization

levels where this method can be used. This results in the

classification of CBDMs in the context of EA (see Fig. 2, next

page). Methods that support multiple levels of EA are more

interesting for enterprise architects. Such methods allow an

architect to build an abstract picture of an enterprise that

makes clear the goals and functionality of the enterprise for

its stakeholders.

4. Discussion

In this section we give several observations based on the

description of methods from Section 3.1 and the analysis of

Table 1 and Fig. 2:

1. Only generic CBDMs can be used for modeling at

almost all EA organization levels (from marketing

Springer



Inf Syst Front (2006) 8:115–131 129

Fig. 2 The classification of
CBDMs in the context of EA
(System Application).

to IT implementation). See, for example, OORAM

(Reenskaug et al., 1996) or SEAM (Wegmann, 2003).

However, often these generic methods cannot be used

by all specific specialists in EA team. For example

OORAM or SEAM methods are not very appropri-

ate for programmers who work with concerns be-

cause these methods are not capable of representing

explicitly all the features of concern-based program-

ming languages (like point-cuts in AOP). Therefore

EA projects are forced to use several CBDMs that have

to be aligned. This alignment can be done by means

of choosing a set of similar (or compatible) methods

for an EA project or by using a generic method as an

alignment tool.

2. CBDMs can be divided roughly into two groups: CB-

DMs for systems analysis or requirements engineer-

ing (methods focusing mostly at company organiza-

tion levels, see Fig. 2) and CBDMs for code and data

design or programming (methods mostly at IT applica-

tion organization levels, see Fig. 2). These two groups

of methods are very different in their objectives. There-

fore, this results in a weak integration between methods

from these groups. To increase the integration, there is

a need for EA methodologies that will help researchers

and practitioners to understand and integrate objectives

of both groups.

3. Early CBDMs (earlier than the middle of the 90’s)

aimed mostly to define the main concepts for the

representation of system concerns and the semantics

of these concepts. Recent-CBDMs, such as OORAM

(Reenskaug et al., 1996), SEAM (Wegmann, 2003),

Metapattern (Wisse, 2000) and others, aim at building

models that can be understood by humans (“human-

friendly” models). The problem of making existing

approaches more convenient for human reasoning is

clearly stated in Chang et al. (1999): “We would like to

emphasize informal and yet conceptually precise and

practically significant approaches, rather than merely

formal languages theory using different formalisms

and therefore making them hard to comprehend and

compare”.

4. Methodological properties of CBDMs are not devel-

oped enough: only a few methods support system de-

sign verification, consistency checking or model sim-

ulation. We understand, however, that the develop-

ment of methodological properties (especially sys-

tem design verification) for CBDMs in the context

of EA is clearly a difficult task. It requires the in-

tegration of different CBDMs (at different organi-

zation levels) and the integration of hard (formal

techniques) issues with soft (philosophic) issues of

modeling.

Springer



130 Inf Syst Front (2006) 8:115–131

5. Conclusion

This survey presents the analysis of requirements for

concern-based design methods (CBDMs) in the context of

enterprise architecture (EA). Based on these requirements,

twenty CBDMs were analyzed. This analysis can be used

by EA researchers and practitioners to choose appropriate

methods for their EA methodologies and to compare CB-

DMs that they use with similar methods. The important

issue (about the requirements for CBDMs) that was not han-

dled in our paper is the question of completeness: Why

is the considered set of requirements good enough in the

context of EA? In this paper we leave this question open

and will investigate it in our future work. The fact that we

have used system inquiry as the base of the analysis frame-

work gives us confidence that most of requirements were

captured.

We believe that the identified requirements and the anal-

ysis method are useful in the context of EA from the “prag-

matic” point of view. We hope that our work will help re-

searches to develop and improve their EA methodologies and

will bring some order in the mass of concern-based design

methods.

References

Aksit M, Tripathi A. Data abstraction mechanisms in SINA/ST,
OOPSLA’88, ACM press, San Diego, September 1988;267–
275.

Aksit M, Wakita K, Bosch J, Bergmans L, Yonezawa A. Abstracting
object interactions using composition filters. ECOOP’93 Work-
shop on Object-Based Distributed Programming, LNCS, Springer-
Verlag, 1993;152–184.

Alexander C, Ishikawa S, Silverstein M. A Pattern Language:
Towns, Buildings, Construction. Oxford University Press,
1977.

Andrade L, Fiadeiro J. Interconnecting Objects Via Contracts. UML’99,
Springer Verlag, 1999;566–583.

Atkinson C, Kühne T, Bunse C. Dimensions of component-based de-
velopment. ECOOP’99 Workshop on Component-Oriented Pro-
gramming 1999;185–186.

Audi R. The Cambridge Dictionary of Philosophy. 2nd ed., Cambridge
University Press, 1999.

Barbier F, et al. Formalization of the whole-part relationship in the
unified modeling language. IEEE Transactions on Software Engi-
neering 2003;29(5):459–470.

Bækdal LK, Kristensen BB. Aggregation from multiple perspec-
tives by roles. IEEE TOOLS PACIFIC 99. Melbourne, Australia,
1999;139–150.

Chang SK, et al. The future of visual languages. IEEE Symposium on
Visual Languages. Tokyo, Japan, 1999;58–63.

Clarke S, Harrison W, Ossher H, Tarr P. Subject-oriented design: To-
wards improved alignment of requirements, design, and code.
OOPSLA’99 1999;325–339.

Dori D. Object-Process Methodology. A Holistic Systems Paradigm.
Heidelberg, New York: Springer Verlag, 2000.

Fiadeiro JL, Lopes A. Semantics of Architectural Connectors, TAP-
SOFT’97, Springer-Verlag, 1997;505–519.

Gamma E, et al. Design patterns: Elements of Reusable Object-Oriented
Software. Addison-wesley professional computing series, Addison
Wesley Publishing Company, 1994.

Gerstla P, Pribbenow S. A conceptual theory of pan-whole relations and
its applications. Data & Knowledge Engineering 1996;20:305–
322.

Harrison W, Ossher H, Subject-oriented programming (a critique of
pure objects). OOPSLA’93, ACM, 1993;411–428.

Holt AW, Ramsey HR, Grimes JD. Coordination system technology as
the basis for a programming environment. Electrical Communica-
tion 1983;77(4):307–313.

Halpin T. Object role modeling: An overview. Microsoft Corporation
2001, retrieved from http://msdn.microsoft.com/library/ on Febru-
ary 16, 2004.

Recommendation X.902, Open Distributed Processing—Basic Ref-
erence Model—Part 2: Foundations ISO/IEC and ITU-T
1996.

Kandé MM, Strohmeier A. Towards a UML Profile for Software Archi-
tecture. UML’2000. York, UK, 2000;513–527.

Kendall EA. Goals and roles: The essentials of object oriented busi-
ness process modeling. ECOOP’98 Workshop on Object Oriented
Business Process Modeling, 1998.

Kendall EA. Role model designs and implementations with aspect Ori-
ented programming. OOPSLA’99. ACM, 1999;353–369.

Kiczales G, et al. Aspect-Oriented Programming. ECOOP’97. Springer-
Verlag, 1997;220–242.

Kilov H. Business Specifications: The Key to Successful Software En-
gineering. Prentice-Hall, 1999.

Kristensen BB, Object-Oriented Modeling with Roles. OOIS’95.
Springer, 1995; 57–71.

Lieberherr KJ. Component enhancement: An adaptive reusability mech-
anism for groups of collaborating classes. IFIP 12th World Com-
puter Congress on Algorithms, Software, Architecture-Information
Processing ’92, 1992;179–185.

Marcaillou S, Kriouile A, Coulette B. VBOOL, une extension d’Eiffel
intégrant le concept de point de vue. MCSEAI’94 1994; 115–
125.

Miller JG. Living Systems. University of Colorado Press, 1995.
Motschnig-Pitrik R, Contexts and views in object-oriented languages.

IEEE CONTEXT 99. LNCS, 1999;1688:256–269.
Motschnig-Pitrik R, Kaasbøll J. Part-whole relationship categories

and their application in object-oriented analysis. IEEE Trans-
actions on Knowledge and Data Engineering 1999a;11:779–
797.

Motschnig-Pitrik. R. Contexts as means to decompose information
bases and represent relativized information. CHI Workshop #11.
Hague. Netherlands, 2000.

Motschnig-Pitrik R. A generic framework for the modeling of contexts
and its applications. Data & Knowledge Engineering. Elsevier Sci-
ence Publishers, 2000a;32:145–180.

Motschnig-Pitrik R. The viewpoint abstraction in object-oriented mod-
eling and the uml. ER’2000. Salt Lake City, Utah, 2000b;543–557.

Mylopoulos J, Motschnig-Pitrik R, Partitioning information bases with
contexts. CoopIS’95. Vienna, 1995; 44–54.

Nassar M, et al. Towards a view based unified modeling language.
ICEIS’03, Angers, France, 2003;257-265.

Nentwich C, Emmerich W, Finkelstein A, Consistency management
with repair actions. IEEE ICSE 03. Portland, Oregon, 2003;455–
464.

Nuseibeh B, Kramer J, Finkelstein A. Expressing the relationships
between multiple views in requirements speccification. ICSE’93
1993;187–196.

Odeh M, Beeson I, Green S, Sa J. Modeling processes using RAD
and UML activity diagrams: An exploratory study. Arab Con-
ference on Information Technology (ACIT’2002), Doha Qatar,
2002.

Springer



Inf Syst Front (2006) 8:115–131 131

Ould MA. Business Processes: Modeling and Analysis for Re-
Engineering and Improvement. John Wiley & Sons, Chichester,
1995.

Ossher H, Tarr P. Multi-dimensional separation of concerns and the
hyperspace approach. Symposium on Software Architectures and
Component Technology: The State of the Art in Software Develop-
ment. Kluwer, 2001.

Reenskaug T, Wold P, Lehne OA. Working With Objects: The OOram
Software Engineering Method. Manning Publication Co, 1996.

Rein GL. Collaboration technology for organization design Hawaii
International Conference on System Sciences’93. Hawaii, 1993;
137–148.

Rescher N, Oppenheim P. Logical analysis of Gestalt concepts. Brithish
Journal for the Philosophy of Science, 1955;6(22),89–106.

Riehle D, Gross T. Role model based framework design and integration.
OOPSLA’98, ACM Press, 1998;117–133.

Riehle D. Composite design pattern. OOPSLA’97, 1997;218–228.
Riehle D. Describing and composing patterns using role diagrams.

WOON’96, Russia, St. Petersburg, Electrotechnical University,
1996; 169–178.

Singh B, Rein GL. Role interaction nets (RINs): A process descrip-
tion formalism, technical report CT-083-92. Microelectronics and
Computer Technology Corp, 1992.

Sowa JF. Knowledge Representation: Logical, Philosophical, and Com-
putational Foundations, Pacific Grove, Brooks Cole Publishing
Co., 1999.

Steimann F. On the representation of roles in object-oriented and con-
ceptual modeling. Data and Knowledge Engineering 2000;35:83–
106.

Steimann F, Gößner J, Mück T. On the key role of composition in
object-oriented modelling. UML 2003, San Francisco, USA, 2003;
106–120

Turner CR, et al. Feature engineering. IEEE 9th International Workshop
on Software Specification and Design, Ise-Shima (Isobe), Japan,
1998; 162–164.

VanHilst M, Notkin D. Using role components to implement
collaboration-based designs. OOPSLA’96, San Jose, USA, ACM
Press, 1996; 359–369.

Wegmann A. On the systemic enterprise architecture methodology
(SEAM). ICEIS 2003, Angers, France, 2003; 483–490.

Wisse P. Metapattern: Context and Time in Information Models,
Addison-Wesley Pub Co; 1st edition, December 15, 2000.

Zachman JA. A framework for information systems architecture. IBM
System Journal 1987;26(3):276–292.

Pavel Balabko has a Doctorate in the field
of enterprise system analysis and design from
the EPFL University, Switzerland and a mas-
ter degree in computer science from Saint-
Petersburg Technical University, Russia. He
is currently a lead business/system analyst in
Luxoft, the global IT outsourcing company
with the largest software development and de-
livery capabilities in Russia. He works in the
field of risk management in banking sector.

Alain Wegmann worked for 14 years with
Logitech (Switzerland, Taiwan, US) in engi-
neering, manufacturing and marketing func-
tions. He left Logitech in 1997, as VP of Engi-
neering and OEM Marketing, to join the EPFL
University, as professor. His research group
(http://lamswww.epfl.ch/) develops SEAM: a
set of methods and tools for strategic thinking
and business/IT alignment. SEAM is based on
system thinking and RM-ODP.

Springer


