EIDGENOSSISCHE TECHNISCHE HOCHSCHULE LAUSANNE |) i
POLITECNICO FEDERALE DI LOSANNA S

SWISS FEDERAL INSTITUTE OF TECHNOLOGY LAUSANNE ECOLE .POLYTECHNIQUE
FEDERALE DE LAUSANNE

View Synchronous Communication
in the Internet

Ch. Malloth, A. Schiper

Technical Report No 94/84
octobre 1994

DEPARTEMENT D'INFORMATIQUE

Laboratoire de Systemes d'Exploitation 00 41 (0)21/693.42.48
IN-Ecublens, 1015 TLausannc - Switzerland schiper@lse.epfl.ch

Pour obtenir une copie de ce rapport interne, s'adresser 4 Mme K. Verhamme,
tel. 021/693.52.71

View Synchronous Communication in the Internet”

Christoph Malloth André Schiper
Département d'Informatique
Ecole Polytechnique Fédérale de Lausanne
CH - 1015 Lausannrne (Switzerland)
{malloth,schiper}@lse.epil.ch

Abstract

View synchronous communication (VSC) is a paradigm initially proposed by the Isis system,
that is well snited to implement fault-tolerant services hased on replication. VSC can be
seen as an adequate low level semantics on which ordered multicasts and uniform multi-
casts can easily be implemented. This paper presents the specific problems related to the
implementation of VSC in a wide area network (e.g. Internet). The paper also shows how
these problems arc solved within Phoenix. a group oriented platform under devciopment.
Specifically the Phoenix implementation of VSC allows progress in cases where traditional
solutions would not.

1 Imntroduction

Distributed systems are commonplace in the domain of local area networks. On the other
hand with emerging world-wide interconnection of computers. e.g. using the Internet, Jarge
scale distributed systems become more and more important. Some examples are: a cooperative
editing systems that allow different sites throughout the world to work on the same document,
an air traffic control systems supervising a large territory, etc. An important requirement for
a lot of distributed applications is fault tolerance, i.e. insurance of availability and consistency
despite failures. Availability is obtained by replicating a service on different sites within the
distributed system and consistency is obtained by using adequate communication protocols
between processes. One well known paradigm for guaranteeing consistent communication in the
presence of failures is the virtually synchronous communication paradigm, or VSC paradigm,
initially proposed hy the Isis system [3]. In the following we prefer to use the acronym VSC
for view synchronous communication, as this term fits better the paradigm described. VSC is
based on wviews defined for every group g of processes. Members of a view agree on: (1) the
sequence of views (i.e. views are totally ordered [12]), and (2) multicasts issued to the group are
totally ordered with respect to view changes [4]. This can be perceived as a low level semantics,
but it is adequate to implement higher level communication primitives, such as totally ordered
multicasts [4] (the Isis ABCAST), or uniform multicasts [14]. VSC defines thus the basic layer
of an Isis-like environmeni.

We are currently developing Phoenir. an Isis-like environment, that will run on large scale
networks, like the Internet. Phocnix has several advantages, in large scale as well as in local

*Rescarch supported by the “Fonds national suisse” and OFES under contract number 21-32210.21, as part of
the ESPRIT Basic Research Project BROADCAST (number 6360)

area networks, over systems like Isis. Phoenix defines some unique features, such as an uniform
multicast primitive [14], two compatible totally ordered multicast primitives, a weak totally
ordered multicast, and a strong totally ordered multicast [16], and a refinement of the notion
of group, by distinguishing, for every group, between core members, client members, and sink
members {2].

The real challenge in building Phoenix is the implementation of VSC on a network such as the
Internet. This poses two very specific problems: (1) network partitions are not unlikely to occur,
and (2) transitivity of communication is not ensured all the time, due to possible inadequate
routing information (e.g. in the Internet at some time t site s; can be able to communicate with
site sy, 53 with s3, but s; might be unable to communicate with s3). The partition problem
is discussed in Sections 2 and 4. The system model and some basic notations are introduced
in Section 3. The non-transitivity problem is discussed in Section 5. Section 6 concludes with
some final remarks.

2 Partition failures and the blocking problem

Partitions present a challenging problem when implementing VSC, in that partitions can lead to
blocking of the system. One approach for handling partitions within VSC is through the so-called
primary partition model [11]. For each group, the primary partition is composed of the privileged
subset of processes, within which progress is possible despite partitions. Unfortunately, link
failures may occur such that no primary partition exists for a certain group. and all activity
for this group will block. When such a scenario occurs. we require that the system be able
to resume activity once a sufficient number of link failures have been repaired. This does not
occur in a svstem like Isis: once blocking has occurred in Isis, blocking holds forever [12].
Systerns like Transis {1] and Horus f15] have tried to avoid the blocking problem by allowing
progress in minority views, based on a site group membership level. Progress of the application
is however related to the existence of a primary partition having a majority at the process group
level, which represents not necessarily a majority on site level. As the view change protocol
in Phoenix is based on the Chandra/Toueg consensus protocol [5], Phoenix ensures progress
whenever theoretically possible. This is not ensured neither by Transis nor by Horus as none of
these systems are based on the Chandra/Toueg consensus protocol.

The blocking problem is related to the failure suspicion model. Therc are basically two models
that might be considered:

e Stable suspicion model. In this model, once a suspicion holds, it holds forever. Thus,
once process p; suspects process p; to have crashed, it cannot later change its mind. An
incorrectly suspected process can not come back anvmore and has to simulate a crash
failure in order to receive a new identity;

e Unstable suspicion model. In this model a process can always change its mind: p; might
suspect p; to have crashed, and later change its mind to consider p; alive,

The stable suspicion model (adopted by Isis as well as Transis and Horus), is adequate in a
setting where incorrect failure suspicions are not too frequent. This condition is, however, not
met in the Internet where link failures are likely to occur: a transient link failure between
processes p; and p; will almost inevitably lead to incorrect suspicions {p; will incorrectly suspect
pi. p; will incorrectly suspect p;}. The stable suspicion model has the further disadvantage

that, once every process suspects a majority of processes, no new primary partition can ever be
defined. To overcome the blocking problem, Phoenix adopts a mixed model in which a suspicion
is stabilized if and only if the VSC layer is able to define a new primary partition excluding the
suspected processes. This is discussed further in Section 4.

3 System model and basic definitions

The distributed system is composed of a finite set S = {p;,...,p,} of processes, connected
through a set of communication links L= {/;;}. Communication is realized by message passing,
is asynchronous (there is no bound on the transmission delays), and reliable!. Processes fail by
crashing (we do not consider Byzantine failures) and crashed processes never recover. A local
module, called failure suspecior FS;, is attached to every process p;. The failure suspector FS;
maintains a set of processes Susp; that it currently suspects to be unreachable (either p; has
crashed, or the link 4; is currently down). This failure suspicion information is forwarded to the
process p;. We introduce the following notation:

Suspi{c)={p; I p; €S A p,is suspected by FS5; on cut ¢}

A failure suspector can make mistakes by incorrectly suspecting a process. Suspicions are not
stable, thus if at a given instant F'S; suspects p,. it can later learn that the suspicion was
incorrect and F.9; remove p; from Susp;. We are not presently concerned how suspicions are
generated, but come back to this issue in Section 5.

We define the CommSet;(c) of a process p, as the set of processes, p; thinks it can communicate
with on the cut . This is the set of processes that FS; does not currently suspect:

CommSet;{c} = S — Susp,{c)
Based on the CommSet (¢}, we can define on every cut ¢ the following CoMm relation:
Comm(c,pi.p;) & p; € CommSet;(c)
We would ideally like CoMM to be transitive on every cut ¢, i.e.
ComM (e, py,p;) A CoMmmc,p;.pr) = Comm(c, py, pi)-

However, because of possible inadequate routing in the Internet, transitivity is not ensured all
the time. This might lead to problems, as will be shown in Section 3.

1A reliable link ensures that a message sent by p, to p; is eventually received by p; if p, and p, are correct
(i.e. do not crash). This does not exclude Link failures, if we require that any link failure is eventually repaired.
A reliable link can be implemented by retransmitting lost or corrupted messages.

4 View Synchronous Communication (VSC)

4.1 Definition of VSC

As introduced in Section 1, the definition of view synchronous communication is based on views
defined for every group of processes. Givern a group g, a view 1s a sel of correct processes as
perceived by e.g. 2 membership service. We note View (g} = {p1....,pi} as the kP view of
group g. The view of group g evolves as processes in g crash?, processes join g, of processes
leave g. Given a group ¢, VS(is defined informally by the following two properties:

1. processes in g agree on the sequence of views Viewo(g), Viewi(g), - -+ Viewi(g), ... (ic.
the views of ¢ are totally ordered);

2, processes in g agree on the set of messages delivered® between each pair of view changes,
i.e. they agree on the set of messages delivered between ihe delivery of Viewx(g) and the
delivery of Viewi41(g)-

In order to simplify, we consider only one group, and use without ambiguity Viewy instead of
Viewy(g). VSC can be defined considering one single view change. ¢.g. the view change from
Viewy to Viewy- We introduce the following notations:

s View; ; is the kP view of group ¢ delivered by pi:

e the formula DELIVg,. defined on p;, is true if and only if the process p; has delivered

Viewk.i.

Between the delivery of Viewy and the delivery of Viewgi, i, Process pi delivers a sequence of
Messages: deliver(NViewy i) ; deliver{m) : deliver(m') ; ... deliver(Viewgi1.i).

The set of messages {m,m’,.. .} delivered by p; between the delivery of View;; and the delivery
of View, 41, is noted MsgSety;. This set of messages is said to be delivered by p; in view k.

Consider two processes p; and p; that have agreed on Viewy, i.e. View; ; = Viewg ;. V3C can be
formally defined by two agreement conditions; (1) agreement on the next view k + 1, and (2)
agrecment on the set of messages delivered in view k.

(A1) Agreement on the next view. Let p; and p; agree on View, (L.e. Viewg; = Viewg ;)
If p; and p; both deliver ihe mext view, then they agree on this view:

/\ (DELI\’;:.H,; N DELIV k41,5 = Viewk+1?; = Viewk“__j)
pi!?}

(A2) Agreement on the set of messages. Let p; and p; agree On View, (i.e. Viewy; =
Viewy ;). If p; and p; both deliver the next view, then they agree on the set of messages

delivered in Viewg:

/\ DELIV k14 A DBELIVEt1,5 = MsgSet, ; = MsgSetk‘j)
phpj

2)\ore precisely, when processes are suspected to have crashed, which does not exclude incorrect suspicions.
3 A5 usnal. we distinguish between the reception of a message at the system level. and the deliveryof a message

at the application level.

In order to avoid the trivial solution where the new view is either always the set § of all processes,
or always the empty set, we need to add the following non-triviality condition:

(NT) Non-triviality. Crashed processes are eventually removed from a view, and new pro-
cesses that want to join are eventually included in a view.

The two agreement conditions, together with the assumption that initially the processes in Viewg
agree on Viewg (i.e. for every p;, p; € Viewo, Viewg; = Viewo ; = Viewg), lead the processes to
an agreement on a sequence of views and on the set of messages delivered in each view. The
non-triviality condition (NT) leads the sequence of views to approximate the set of correct
processes.

Note also that the agreement condition (A2) naturally leads the delivery of messages to be or-
dered with respect to view changes: if p; delivers a message m before the delivery of Viewiy1,
then process p; also delivers m before the delivery of View,,q ; {otherwisc the agreement condi-
tion (A2) is violated).

4.2 Consensus and failure suspector

Because of the agrecment conditions {Al) and (A2) given in the previous section, VSC is a
consensus-like problem, where consensus has to be reached on a set of messages and the next
view. The consensus problem is defined as follows. Consider a set of processes S, where each
process p; € S initially proposes a value v;. The consensus problem consists in deciding on some
value ¢ such that the following three properties hold [5:

Termination: each correct process eventually takes a decision.
Agreement: if two processes take a decision, they will take the same decision.
Validity: if a process decides on v, then v was proposed by some process.

The consensus algorithm described in [5] is particularly interesting, as it solves consensus in
an asynchronous environment extended with the failure suspector OGW. The failure suspector
added to the asynchronous environment allows to overcome the FLP impossibility result [10].
Moreover, [6] shows that &M is the weakest failure suspector that allows to solve consensus in
an asynchronous system with f < n/2, where f is the bound on the number of processes that
may crash. The OW failure suspecior satisfies the following properties [3]:

Weak completeness Eventually every crashed process is permanently suspected by some cor-
rect process.

Fventual weak accuracy There is a time after which some correct process is not suspected
by any correct process,

The remarkable thing about VSC is that it can be reduced 1o consensus, i.e. whenever consensus
can be solved, VSC is also solvable?. To our knowledge, Phoenix is the first VSC system built on
top of a consensus protocol, and the first VSC system to ensure progress whenever the properties
of the failure suspector OW are met,

*This is not in contradiction with [13] where the result has led us to consider a different definition for VEC.

[]

4.3 Reduction of VSC to consensus

We show how VSC can be implemented, basing it on a solution to the consensus problemi.
Recall that CommSet;(c) has been defined as the set of processes that p; does not suspect on
cut ¢. Consider the current view View,. The VSC protocol is launched whenever the current
view has to be changed, i.e. whenever there exists a cut ¢ and a process p; € View, such that
CommbSet;(c) # View,. More specifically, we consider the case CommbSet;(c) C Viewy, i.e. one or
more processes in Viewy are suspected (process joins are considered in Section 4.4}. The VSC
protocol can be divided into two steps, where a consensus problem is solved in Step 2. During
Step 1 every process p; defines the initial value for the consensus problem solved in Step 2. Notice
that Steps 1 and 2 have been separated for reasons of clarity. In our current implementation
both steps are integrated (i.e. Step 1 is integrated within the consensus protecol). An example
can he found in Section 4.5.

4.3.1 Step 1: initial value for the consensus

Let ¢ be the cut on which the VSC protocol is launched, and let MsgSet, ;(¢) be the set of
messages delivered by py in view &, on the cut e. Every process p; € Viewy starts by multicasting
MsgSet, ;(c) to all processes in View;. and waits to get the same information from the processes
in View,. Process p; waits until there exists a cut ¢’ that satisfies both of the following conditions:

1. on ¢/, CommSet;(¢’) is a majority of Viewy: |CommSet;(c')] > |Viewy|/2;

2. if on ¢’ process p; has not received MsgSety ; from p; € Viewy, then p; € Susp;(¢').

Assuming that p; does not crash. less than half of the other processes in View, may crash, and a
crashed process is eventually suspected by every correct process®, then a cut ¢’ satisfying both
conditions eventually exists. Let Revi{c’) C View, be the set of processes p; from which p; has
received MsgSety ;(¢) on the cut ¢/ (including p; itself). On ¢/, process p; defines the initial valne
for the consensus problem of Step 2 as a pair {my, vw;), where m; is an estimate for the set of
messages delivered in view &, and »w; is an estimate for the next view /& + 1:

FEsiimale for the messages: The estimate for the set of messages is the union of the MsgSet
received on the cut ¢”: .
;= U MsgSet, ()
‘ p,eRevife’)
FEstimate for the next view: The estimate for the next view is the CommSet:
vy def CommSet;(c')

Notice that the initial value for the consensus satisfies the following inclusion property:
p; € vw; = MsgSet, {c) C my (1)

In other words, p;’s estimate is such that if p; is proposed to be member of the next view,
then every message delivered by p; in view k is in the proposition for the set of messages to be
delivered in view k.

*The reader might notice that this assumption is strenger than the weak compieteness property of CW. Our
failure suspeclor guarantees however strong completencss {(which can be implemented using a failure suspector
guaranteeing teeak completeness): a crashed process is eventually suspected by every correct process {3).

4.3.2 Step 2: consensus

Omnce p; € View, has defined its initial values {my,, vuy), it switches to the consensus problem.
Step 2 solves the following consensus problem:

¢ the consensus is defined on the set of processes Viewy;

e process p; € View; proposes the initial value (m;, vw;} defined in Step 1;

The outcome of the consensus problem is the pair (MsgSet,, Viewxy1), where MsgSet;, is the set
of messages delivered in View,. Because Step 1 ensures the inclusion property {formula (1} on
page 6), every initial estimate {mn;, vw;) satisfies also the inclusion property. Hence, the decision
pair {MsgSet,, View, 1) also satisfies the inclusion property, Thus, every process p; receiving
the decision value, first delivers the messages from MsgSet, that it might not yet have delivered,
and then delivers the new view Viewgy,?. This trivially ensures the agreement conditions (Al)
and (A2).

4.4 Handling of joins

Joins have not been considered up to now. In Section 4.3 we have considered the view change
from View; to Viewyy, such that Viewg 1 C View, (possibly View, 1 C Viewg). Joins can easily
be handled within this context.

Consider a process p; ¢ View,. In order to join. p; needs to send join-req(p;) to at least one
member of View;. Assume p; delivers join-reg(p;) in view k. The reception of a join request,
similarly to a failure suspicion, will trigger the view change protocol. Moreover, join-reqg{p;) is
included in p;'s estimate of the messages delivered in view k. Let (MsgSetk,ViewiTlp) be the
decision of the VSC protocol”, and let JoinSet; be defined as the set of join requests included in
MsgSety:

JoinSety, & {p; | join—req(p;) € MsgSet; }

The next view is then defined to include the joined processes to the decision value:

, def . , .
Viewjp) = Vlewﬁ?UJmnSetk

This scheme simultaneously handles both joins and leaves (i.e. failures) in a single view change.

4.5 Cost analysis of the VSC protocol

The VSC protocol of Section 4.3 has two steps, the second being the Chandra/Toueg consensus
algorithm [5]). The advantages of this protocol are obvious: it solves the consensus with the OW
failure suspector if less than half of the processes crash, and OW is the weakest failure suspector
that allows to solve consensus when less than half of the processes crash [6]. In other words, there
is no consensus protocol that solves the consensus problem in a weaker environment. Sc the

®If p. ¢ Viewyy1, pi might as well kill itself; as p, is not in the next view, it will not receive the messages
multicast to Viewgy: anyway!
"The decision for the next view is noted here \-"iewfﬂp. as 1t) not yet the next view,

.)

question is: what are the drawbacks of the Chandra/Toueg consensus algorithm? Ts it expensive
in number of phases? The algorithm is based on the rotating coordinator paradigm: in each
round of the protocol, a different process plays the coordinator role. The OW failure suspector
ensures that eventually there is a round r and a coordinator coord, that decides the consensus
value. The possible multiple rounds might suggest that it is a very costly algorithm. This
is, however, not necessarily the case: the number of Tounds needed to complete the protocol is
dependent on the number of incorrect failure suspicions. If the failure suspector is very aggressive
(i.e. uses a small time-out, for exaruple 500 msec), then the number of incorrect failure suspicions
may be high, and the likewise number of rounds needed to complete the algorithm important.
If the failure suspector is more conservative {time-outs around 5-10 sec), then incorrect failure
suspicions will be uncommon?, and the number of rounds needed to complete the consensus will
be low: tvpically one round will be sufficient in most cases. To be more concrete, consider the
following scenario:

e on a cut ¢p, the current view is View, = {p1,p2. D3, P4y Po)5

o consider on a later cut ¢ where pp is correctly suspected by all other processes, which
launches the VSC protocol.

If no other suspicions are generated after the cut ¢g, clever engineering of the VSC protocol will
allow it to complete in two phases, with pp as the coordinator for the consensus” (Fig. 1):

C
Py —ig¢
1= c
Py / ! Proposition Decision
Y AN/ AR
y -'III Jl ..I". : .l'llfl ..:"l '
p5 ,-f i b 3y
/ / MsgSet Ack

Figure 1: VSC protocol

Phase 1. As part of Step 1 of the VSC protocol (Sect. 4.3), MsgSety ;(c} is multicast to the
coordinator p;. Omnce pp has received these messages, it defines its initial value (mg, vun)
for the consensus as described in Section 4.3 (e.g. vie = {p2.p3,Pa, Ps}), and switches to
the consensus protocol.

Phase 1 completes by having process p; multicast its proposition (mq, vwy) for the con-
sensus to Viewy:

Phase 2. Phase 2 starts after ps, ps, ps have received the proposition {mg, vur;) from p;. Once
this proposition is received, ps, ps. ps send an acknowledgment to p;. As soon as p;
has received these acknowledgments, {mo, vwy) is the decision value, and the decision is
multicast to View,..

8 4 lLink failure might indeed generate an incorrect suspicion.
9The message initiating the VSC protocol has to be added to these two phases,

Thus, if the number of incorrect suspicions is low, the VSC protocol needs only one round of
the Chandra/Toueg algorithm to complete the view change!

4.6 When is progress ensured

In Section 1, we have discussed the challenging blocking problem. In a stable suspicion model,
a partition might lead to block the svstem forever. We start by considering only link failures,
and show the superiority of our mixed stable/unstable suspicion model over the classical stable
suspicion model. For completeness, we will discuss then progress considering process crash
failures.

4.6.1 Link failures

In a stable suspicion model (e.g. the model adopted by Isis), a partition might lead to blocking
of the system forever. Consider the following scenario:

1. Viewx = {p1.p2.P3. P4, 3}

2. on a cut ¢y, simultaneous link failures lead to creating three partitions:

Iy = {p1}. Hz = {p2.p3}. Iz = {ps. ps}

3. on a later cut ¢;, one link failure is repaired, e.g. two partitions remain:
Iy 2 = {pr.p2.pa} and I3 = {pq.ps}

4. finally on a cut c3, consider all link failures to be repaired. i.e. {pi.p2.ps.ps,ps} again
fully connected.

TUnless the link failure duration is shorter than the time-out of the failure suspector, the suspi-
cions will be as follows on a cut ¢ somewhere between the cuts ¢ and eyt

o SUSPI(C) = {P2=P31P45P5}
o Suspy(c) = Suspaic) = {p1, ps.ps}

* Suspy(c) = Susps(c) = {p.p2.p3}

We discuss this scenario in the two suspicion models: stable suspicion model and mixed sta-
ble/unstable suspicion model.

Stable suspicion model. If suspicions are stable, none of the processes of View, will ever be
able to define View,,; (a majority condition is required to define a new view [12]). Because of
the stable suspicion model, repairing the links does not heip! In other words the system remains
blocked, even after the link failures have disappeared.

Mixed model: stable/unstable suspicions. Our VSC protocol will not block forever in the
above scenario. As long as the partitions Iy, II;, I3 exist, every p; € Viewy is blocked in Step 1
of the VSC protorol (Sect. 4.3). As soon as the system evolves to the partitions Il o, I3, the
processes in the partition IT; o will be able to complete Step 1 of the VSC protocol, and then

solve the consensus problem in Step 2. In our mixed model, suspicions are unstable as long as
a process has not started Step 2 of the VSC protocol: for process p, the switch from Step 1 to
Step 2 of the VSC protocol stabilizes its suspicions. Thus. as long as link failures result in the
absence of a majority partition, failure suspicions remain unstable. We can state a more general
property of our mixed model. Assume for the moment that processes do not crash: if every link
failure is eventually repaired, then failures never lead to infinite blocking (assuming of course
the property of the weakest failure suspector GW).

4.6.2 Process crashes

We consider process crashes only, and discuss blocking in our mixed suspicion model. The dis-
cussion of the stable suspicion model would be similar. Termination of the consensus algorithm
used in Step 2 of the VSC protocol requires that less than half of the processes crash, and the
OW failure suspector. Violation of the first condition obviously leads to infinite blocking. Con-
sider for example Viewy, = {p1,p2.p3.P4,Ps}- If p1, py and ps crash simultaneously, no further
progress is possible any more. To ensure progress, the first requirement (less than half of the
processes crash) has 1o be ensured in every view View,. Consider the following scenario:

Scenario 1 ¢ Viewy = {p1, P2, P3. P4, P5}
e a link failure leads to two partitions Iy = {p1, p2.pa} and Iz = {pe. ps}-
View; = {p1,p2,ps} is defined
e p, and ps crash. blocking the system forever.

The reader has probably noticed that in this scenario less than half of the initial view has
crashed! Infinite blocking could have been avoided il the view change from Viewy to View;
had not occurred. In other words, blocking would have been avoided if the failure suspicions
would not have triggered a view change. However, we can imagine a different scenario in which
changing view avoids blocking:

Scenario 2 e Viewo = {p1.p2,p3.P4. 75}
o py and p; crash, and View; = {p1, p2.p3} is defined
e p, crashes, and Viewy = {py.p;} is defined.

In scenario 2. three processes out of the five initial processes have crashed, and progress is still
possible (more than the half).

The reader might have noticed at that point the strong similarity between the definition of new
views, and the dynamic voting technique for handling replicated data described in (8.

5 Transitivity of communications in the Internet

5.1 The problem of the non-transitivity of the CoMM relation

The failure suspector F'§; attached to process p; is responsible for suspecting processes and
maintaining Susp;, the set of processes suspected by p;. Thus § — Susp,., noted CommbSet;, is the
set of non-suspected processes, i.e. the set of processes with whom p; is able to communicate,

10

Ideally, for every process p; in a view Viewy, the set of processes, with whom p; can communicate,
should be equal to Viewy:

/\ CommSet; = View, (2)
picView,

As soon as for some p;, View; # CommSet;, the view change protocol of Section 4 is launched
in order to eventually define Viewj4; such that the new view matches CommSet;.

The relation ComM has been defined (Sect. 3) such that on every cut ¢
CoMmM(c,p;, pi) & p; € CommSet,(c).

To understand the problem that occurs when CoMM is not transitive, consider the following
example:

e initially on a cut co. Viewx = {p1.p2. pa};

e on a cut ¢p. the link between p; and p3 breaks, leading to the situation depicted on Figure 2:
only the links between p;. pz, and between p,, p3 are operationak;

e if communication between p; and p; are not re-routed through p,, process p; will suspect
pa and py will suspect pi19, i.e. we get CommSet; = {p1,p2}. CommSet; = {p1.p2.p3}s
CommSets = {p;. pa}: both p; and ps will initiate a view change. Because p; is accessible
by p1 and p3. the view change protocol will terminate {the property of the failure suspec-
tor OW is met). The outcome of the view change can be one out of three possibilities
(dependent on the specific implementation of the view change protocol):

1. Viewgr1 = {p1.p2.pa} (i.e. View, is identical to View;)
2. Viewgsy = {p1.p2}
3. Viewryy = {pz. ps}

/

@\ ®

Figure 2: Transitivity problem

In none of the three cascs, a stable state is reached, i.e. for none of these cases the above
formula (2) (see page 11) is satisfied for all processes in Viewisy. In case 1, formula (2) is not
satisfied for py, ps; in case 2, formula (2) is not satisfied for ps: in case 3, not for p;. As a
result, as soon as Viewyy, is delivered. the view change protocol will again be launched, to end
up again with one of the three cases above, etc. The problem is the non-transitivity of the

104 failure suspicion is the resnlt of a time-out to a reguest-reply message.

11

ComM relation. In the above example, once the link py-ps has failed, we have Comm(¢, p1,p2)
and Comm{c, pz,ps), but not Comm{e,p1,ps). It can easily be shown that, given Viewy, a view
change is not initiated if and only if the following property holds:

/\ (COMM(C,p,',pj_} n Comm(e,pj,pt) = COMM(C,pg,p;))
pi.p‘,‘p‘eViewk

In other words, to prevent instability, the implementation has to do its best to ensure the
transitivity of the Comm relation. As the transitivity property is ensured by routing, it is
usually obtained for free in a local area network. This is, however, not the case in a wide area
network, e.g. the Internet. Routing on the Internet is a very complex task. As routing tables
are of bounded size, every possible route from a site s, to a site s; can not be stored in these
tables. The situation depicted in the above example is thus not uncommon in the Internet!

5.2 Ensuring the transitivity of the CoyMM relation

Il

The implementation of Phoenix uses UDP [7] as the basic layer for communication. We ensure
the transitivity of the Comm relation by implementing routing on top of UDP. This is done
using the self-stabilizing algorithm described in [9]. Each site s; manages a routing table!?,
This table is based on local accessibility criteria, and on information in routing tables from other
accessible sites. A link crash or a process crash will lead to modifications in some routing tables,
and these modifications will initiate changes within other routling tables. The propagation is not
immediate, but eventually the routing tables will become stable. On top of the routing protocol.
transitivity of the Cony relation is ensured, which may of course increase the transmission time
of messages. In Phoenix the time-outs of the failure suspector are automatically adapted based
on the round-trip time of messages.

6 Conclision

This paper has presented the problems of implementing view synchronous communication (VSC)
in a large scale system prone to partition failures. This paper has also presented how these prob-
lems are solved in the Phoenix platform, a group infrastructure for developing fault-tolerant dis-
tributed applications. VSC defines the basic layer of the Phoenix architecture. on top of which
various total order multicasts and uniform multicast can easily be implemented [4, 16, 14]. The
Phoenix implementation of VSC solves the two large-scale specific problems: (1) infinite block-
ing, that can result from partition failures in the stable suspicion model (e.g. the Isis model),
and (2) instability of view changes that can result from non-transitivity of communications.
Problem (1) has been solved by adopting a mixed unstable/stable suspicion model, and a view
change protocol based on the Chandra/Toueg consensus protacol [5]. which is guaranteed to
terminate in an asynchronous environment with the failure suspector OW. Problem (2) has
been solved by implementing a site level routing protocol within Phoenix. This limits suspicicns
due to link failures, which in turn avoids unnecessary executions of the view change protocol.
Solving the problems (1) and (2) ensures progress in Pheenix within a group g whenever the
properties of the failure suspector GW holds within g. As OW is the weakest failure suspector
to solve consensus in an asynchronous system [6], no VSC implementation can allow progress at
the application laver in a case where Phoenix would not.

HPhoenix does the routing on the site level.

12

References

[t}

[2)
[3]
[4]

[10]

[11]

[12]

[13}

Y. Amit, D. Dolev, 8. Kramer, and D. Malki. Membership Algorithms for Multicast Communication
Groups. In 6th Intl. Werkshep on Distributed Algorithms proceedings (WDAG-6), (LCNS, 647),
pages 292-312, November 1892

0. Babaoglu and A. Schiper. On Group Communication in Large-Scale Distributed Systems. In
Proceedings of the Tth ACM SIGOPS Workshop, September 1994,

K. Birman and T. Joseph. Reliable Communication in the Presence of Failures. ACM Trans,
Comput. Syst., 5{1):47-76, February 1987.

K. Birman, A. Schiper, and P. Stephenson. Lightweight Causal and Atomic Group Multicast. ACM
Trans. Comput. Sysi., 9(3%:272-5314, August 1991.

C.T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Technical
Report 93-1374, Department of Computer Science, Cornell University, August 1993, A preliminary
version appeared in the Proceedings of the Tenth ACM Symposium on Principles of Distributed
Compuling, pages 325-340. ACM Press, August 1991,

T. D. Chandra, V. Hadzilacos, and S. Toueg. The Weakest Failure Detector for Solving Consensus.
In proc. 11th annual ACM Symposium on Principles of Disiribuied Computing. pages 147-158, 1992,

D. E. Comer. [nternetworking With TCP/IP:Principles, Protocels, Architecture. Prentice Hall, Steve-
nage, 1988,

D. Davcec and A. Burkhard, Consistency and Recovery Control for Replicated Files. In Proceedings
of the 10th Symposium on Operating Systems Principles, pages 87-96, 1985,

S. Dolev, A. Israeli, and 8. Moran. Seif-Stabilization of Dynamic Systems Assuming Only
Read/Write. Journal of Distributed Compufing. 7(1). 1993,

M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus with One Faulty
Process. J. ACM, 32:374-382, April 1935,

A. Ricciardi. A. Schiper, and K. Birman. Understanding Partitions and the *No Partition” Assump-
tion. In IEEE {th Workshop on Future Trends of Distributed Systems (FTD(CS5-93), September
1993,

A. M. Ricciardi and K. P. Birman. Using Process Groups to Implement Failure Detection in Asyn-
chronous Envirenments. In Proc. of the 10th ACM Sympostum on Principles of Distribuied Com-
puting, pages 341-352, August 1991

A. Schiper and A. Sandoz. Primary Partition “Virtually-Synchronous Communication” Harder than
Consensus. TR 94/49, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerlandj, April
1994.

* A. Schiper and A. Sandoz. Uniform Reliable Multicast in a Virtually Synchronous Environment. In

IEEE 13th Inil. Conf Distributed Computing Systems, pages 561-568. May 93.

R. van Renesse. K. Birman, R. Cooper, B. Glade, and P. Stephenson. The Horus System. In
K. Birman and R. van Renesse, editors, Reliable Distributed Computing with the Ists Toolkil, pages
133-147. IEEE Computer Society Press, 1993.

tJ. Wilhelm and A. Schiper. A Hierarchy of Totally Ordered Multicast Protocols. Technical Report
(in preparation), Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland}, 1594

13

