
Impact of a Failure Detection Mechanism on the Performance of Consensus

Nicole Sergenty;�

nicole.sergent@axs-tech.com
Xavier Défagoz;�

defago@jaist.ac.jp
André Schiper�

andre.schiper@epfl.ch

yAXS Technologies, 1003 Lausanne, Switzerland
zJapan Advanced Institute of Science and Technology (JAIST),

1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
�École Polytechnique Fédérale de Lausanne (EPFL),

1015 Lausanne, Switzerland

Abstract

The paper considers a consensus algorithm for
an asynchronous system augmented with failure de-
tectors, and analyze the impact on its termination
time of various implementations of failure detectors.
This study shows that the design of fault-tolerant dis-
tributed algorithms in the asynchronous system model
augmented with failure detectors is orthogonal to im-
plementing the actual failure detectors. This nicely
decouples logical issues (proof of correctness) from
engineering issues (e.g., performance and timing con-
straints).

1. Introduction

Fault tolerance is a very important concern in dis-
tributed systems. It is usually achieved by introduc-
ing a certain degree of redundancy, either in time or
in space. A common approach consists in replicating
the vulnerable components of a system. Although an
intuitive concept, replication poses difficult problems,
requires sophisticated techniques, and has thus gener-
ated a large amount of literature.

In distributed systems, many problems require the
participating processes to coordinate their decisions.
More specifically, the problem of consensus in the
presence of failures is central in the context of fault

�Sergent and Défago were affiliated with the EPFL when the
present research work was initiated. This research is currently sup-
ported both by EPFL and JAIST.

tolerant distributed systems. However, in purely asyn-
chronous systems, the problem of consensus is not
solvable in the presence of failures [8]. The intuition
for this impossibility is related to the fact that, in an
asynchronous system, it is impossible to distinguish a
crashed process from a very slow one.

In order to solve consensus, Chandra and Toueg [2]
have extended the asynchronous system model with
the notion of failure detectors. In their work, they
identify families of failure detectors that are defined
according to their respective properties. With Hadzila-
cos [1], they have shown that the failure detector �S is
the weakest failure detector that allows us to solve con-
sensus in asynchronous systems. The work of Chandra
and Toueg shows that, given a failure detector with ad-
equate properties, the consensus is solvable in an asyn-
chronous system. Interestingly, their consensus algo-
rithm for �S requires a failure detector for liveness,
but it always ensures safety. In other words, if the al-
gorithm is run in a purely asynchronous system, then,
even though it is not guaranteed to terminate, it will
never violate any of the safety properties of consensus.

The goal of the paper is to show that, although
the failure detector model1 is essentially a time-free
model, solving consensus in this model still allows us
to consider timing issues. In the paper, we consider
the consensus algorithm based on the failure detector
�S [2], and various implementations of this failure de-
tector. Our goal is then to find the failure detector im-
plementation that leads to the fastest solution of con-

1From here on, the “failure detector model” means the “asyn-
chronous system model augmented with failure detectors”.

(c) 2001, IEEE. Appeared in Proc 8th Pacific Rim Symp. on Dependable Systems (PRDC), pages 137-145.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147901167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sensus in the two more frequent cases: (1) failure free
execution, and (2) worst case of a single process crash.

As a result, the paper shows that the failure detector
model does not prevent from analyzing timing issues.
On the one hand, the model allows for a clean separa-
tion of “logical issues” (proof of safety and liveness of
the algorithm) from “engineering issues” (implemen-
tation of failure detectors). On the other hand, when
timing issues have to be considered, the implementa-
tion of the failure detectors is considered in combina-
tion with the algorithm.

The rest of the paper is structured as follows. Sec-
tion 2 gives a short overview of the background of
this work. Section 3 describes the “contention aware”
model that we use to evaluate the performance of dis-
tributed algorithms using simulation. Section 4 de-
scribes different implementations of the failure detec-
tors. Section 5 analyses the influence of the imple-
mentation of failure detectors on the termination time
of a consensus algorithm. Finally, Section 6 discusses
related works, and Section 7 concludes the paper.

2. Background

2.1. Consensus

Consensus is a central problem in the context of dis-
tributed systems, being at the heart of many agreement
problems [2, 10, 9]. The problem is defined on a set �
of processes: every process pi 2 � starts with an ini-
tial value vi, and all correct processes must agree on a
common value v that is the initial value of one of the
processes.

2.2. Failure detector model

The failure detector model considers a module FDp
attached to every process p, whose role is to give infor-
mation about the status “alive/crashed” of every other
process in the system [2]. Typically, a failure detec-
tor maintains a list of processes that it suspects to have
crashed. A failure detector can make mistakes by in-
correctly suspecting a correct process. Nevertheless,
whenever a failure detector discovers that some pro-
cess was incorrectly suspected, it can change its mind.

The failure detectors are grouped into different
classes, according to their properties. It has been

p1 (coord.)

p2

p3

p4

p5

 decide ack estimate propose

 phase 1 phase 3

 phase 2 phase 4

Figure 1. Consensus algorithm when no fail-
ure or suspicion occur (n = 5 processes).

shown that �S is the weakest failure detector class al-
lowing us to solve the consensus problem [1]. This
result implies that �S captures the minimal amount
of synchrony needed to solve consensus in the pres-
ence of failures. This result also applies to problems
that can be solved by a transformation to a consensus
problem, e.g., atomic broadcast [2].

2.3. Solving consensus with �S

In this paper, we consider the consensus algorithm
using the failure detector �S [2]. Understanding the
details of this algorithm is not necessary here. How-
ever, to give a rough idea, the algorithm proceeds in a
sequence of rounds, and in each round another process
plays the role of the coordinator of that round. Figure 1
depicts the communication schema of the algorithm, in
a failure-free run during which no incorrect suspicion
occur. The figure shows the four phases that constitute
one round. Informally, the algorithm works as follows.

� In Phase 1, the processes send their estimate to
the coordinator.

� In Phase 2, the coordinator waits for a proposition
from a majority of the processes and proposes a
value chosen among the estimates received.

� In phase 3, the processes wait for a proposition
from the coordinator. They adopt the value pro-
posed by the coordinator, acknowledge it (ack
message), and then proceed to the next round.
However, if a process suspects the coordinator be-
fore it receives the proposition, it sends a negative
acknowledgement (nack message) and also pro-
ceeds to the next round.

� In Phase 4, the coordinator waits until it has re-
ceived an acknowledgement (ack or nack mes-
sage) from a majority of processes. If the propo-
sition has been acknowledged (ack) by a major-
ity of processes, the proposed value becomes the
decision value. The coordinator then broadcasts
the decision value to the other processes. Oth-
erwise, if the coordinator has received a nega-
tive acknowledgement (nack message) from one
of the processes, it does not send a decision mes-
sage and directly proceeds to the next round.

A detailed description of this algorithm can be
found in [2], together with the proofs. Some practical
optimizations to this algorithm are presented in [5].

3. Simulation model

We use discrete event simulation to evaluate differ-
ent implementations of the failure detectors in the con-
text of a consensus algorithm. There are three main
reasons for using simulation rather than actual perfor-
mance measures. First, in a real system, it is difficult
to obtain accurate performance measures for an algo-
rithm that starts and ends on different sites. Second,
simulation allows for a fair comparison of the perfor-
mance of different test cases; the results are obtained
using identical assumptions and simulation conditions
(this fairness would be impossible to achieve in a real
system, where the measurements are biased by unpre-
dictable network and workstation loads). Last but not
least, simulation makes it possible to get results faster
since it does not need a full-fledged implementation.

3.1. Basic assumptions

Our simulation model is based on the following
general assumptions:

� The workstations connected to the network are
identical and uniformly distributed along the
physical medium.

� The LAN is private, i.e., there are no other mes-
sage passing on the network beside those gener-
ated by the algorithm under study.

� There is only one process running on each work-
station.

A process receives messages, sends messages, and
does some local computation. We consider that the
local computation time is negligible compared to the
time needed to transmit messages, i.e., the local com-
putation time is set to 0. Processes communicate via
an Ethernet-like network, and use a datagram trans-
port service (UDP/IP). We consider only point-to-
point communication.

3.2. Computing message transmission delays

In simulations, message transmission delays are
usually computed using some empirical distribution
(e.g., [4]). However, such an approach does not ac-
count for the network contention caused by the algo-
rithm itself. It is therefore not adequate for our study
since, in a model that ignores network contention,
sending failure detection messages does not slow down
the algorithm. In other words, failure detection does
not cost anything. Obviously, such a model makes it
impossible to evaluate the impact of failure detection
mechanisms!

The model that we adopt for point-to-point trans-
mission of messages takes account of network con-
tention generated by the messages of the algorithm.
This model can be described as follows [13].2 A mes-
sage m sent from process p to process q requires the
allocation of three resources (Fig. 2):

� the CPU resource on the sending host, to execute
the UDP/IP send routine;

� the network;

� the CPU resource on the receiving host, to exe-
cute the UDP/IP receive routine.

When one of these resources is needed by a mes-
sage m and the resource is busy, then m has to wait.
CPU resources (for send and receive) are allocated, us-
ing a FIFO policy. The network resource is slightly
more complex to handle. First, for each host, the mes-
sages are handed over to the network according to a
FIFO policy. Second, the access to the network is allo-
cated randomly between those hosts that have a mes-
sage to send.

2A similar approach has also been used in [11].

t
S

t
R

sent
messages

delivered
messages

sending host receiving host

CPU

CPU

Network

CPU

CPU

t
N

sending host

receiving host

Figure 2. Modeling message transmission

We consider that transmitting a message requires
the above three resources for the following constant
durations (we assume only messages of a few bytes).

� sending a message requires the CPU of the send-
ing workstation for tS = 230�s;

� the network resource is needed for tN = 100�s;

� receiving a message requires the CPU of the re-
ceiving workstation for tR = 250�s.

We have measured these values with Sun
SPARCstations-20 connected through 10 Mbit
Ethernet, using the technique explained in [13, 12].
We have then validated our message transmission
model using the communication schema of a two-
phase commit protocol (2PC). The simulation results
lie within 6% of the experimental results [13],3 which
shows that our model is fairly good.

An important particularity of this model is that it
adequately models message contention, both on the
network and the CPUs. Based on this model, Urbán
et al [15] have defined a set of “contention-aware met-
rics” for distributed algorithms.

4. Failure detection strategies

In this section, we present four different implemen-
tations of failure detection. The first two implemen-
tations are general techniques, while the last two are
algorithm-specific implementations customized for the
consensus algorithm. The goal of the two specialized

3In order to minimize the the bias from extra load on worksta-
tions and network, all measures have been made at unsocial hours.

techniques is to reduce the number of “failure detec-
tion” messages (which contributes to reduce the termi-
nation time of the consensus algorithm).

To simplify the presentation, we do not follow the
model of Chandra and Toueg [2], in which the failure
detector FDp (attached to process p) is distinguished
from p: We simply consider that p itself manages the
list of processes that it suspects.

4.1. “Heartbeat” implementation

Heartbeat is a well known technique for the imple-
mentation of failure detection. Every process q period-
ically broadcasts a message “I am alive” (see Fig. 3).
If a process p times-out on some process q, it adds q
to its list of suspected processes. If p later receives a
message “I am alive” from q, then p removes q from
its list of suspected processes.

q

p

I’m alive!∆
i

t=0 ∆
i

p suspects q

∆
i

∆
to

∆
to ∆

to
∆

init

Figure 3. Failure detection: the heartbeat im-
plementation.

As illustrated in Figure 3, the failure detector is
defined by three parameters: the initial timeout de-
lay �init , the heartbeat period �i and the timeout de-
lay�to. For the sake of simplicity, we have considered
�init and �to to be equal.

4.2. “Interrogation” implementation

Interrogation is another well known technique for
the implementation of failure detection. A process p

monitors a process q by sending regularly “Are you
alive?” messages to q. Upon the reception of such a
message, the monitored process replies with an “I am
alive” message.

q

p ∆
to

p suspects q∆
i

I’m alive!

∆
to

∆
i

∆
to

Are you alive?

Figure 4. Failure detection: the interrogation
implementation.

With this implementation, the failure detector is
also defined by two parameters: the interrogation pe-
riod �i and the timeout delay �to (see Fig. 4). Every
�i, each process p broadcasts an interrogation mes-
sage (“Are you alive?”). Whenever some process q

receives an interrogation message from p, it replies
with an “I am alive” message. If p has not received
the “I am alive” message from q after a timeout de-
lay �to, it adds q to its list of suspected processes. If
p later receives a message “I am alive” from q, then p

removes q from its list of suspected processes.

4.3. Algorithm-specific “silent” implementation

An algorithm-specific implementation of failure de-
tection originates in the observation that failure detec-
tion information is needed by some process p only at
very specific points during its execution of the consen-
sus algorithm.

q

p

∆
to

mp mq

critical message

p suspects q∆
to

mp mq

Figure 5. Failure detection: the algorithm-
specific “silent” implementation.

We can abstract the details of the consensus algo-
rithm by introducing the notion of critical message
and critical response (Fig. 5). The critical message mp

sent by p to q is such that, after having sent mp, pro-
cess p waits for message mq from q. If q crashes, then
p must eventually suspect q and stop waiting for mq.
This can be implemented in an ad hoc manner by
a simple timeout mechanism, without any additional
“failure detection” message. If p does not receive mq

after a delay �to, then p suspects q. A similar ap-
proach is used by Fetzer and Cristian [7].

This algorithm-specific implementation of failure
detection is extremely cheap in terms of messages, as it
does not generate any “failure detection” message. In
the communication pattern illustrated in Figure 1, the
critical message/response pattern occurs when a pro-
cess, say p2, sends its estimate to the coordinator p1
(in Fig. 5; p sends mp to q), and when p1 sends back
its proposition to p2 (in Fig. 5; q sends mq to p).

q

p
∆

to

mq

r ∆
to

p suspects qmp

mr

Figure 6. Incorrect suspicions with the
algorithm-specific “silent” implementation.

The drawback of this failure detection implemen-
tation is the likeliness of incorrect suspicions. Con-
sider Figure 6, where process q waits for message mp

from p and message mr from process r before sending
the critical response mq. If process r is slow, process p
may timeout and incorrectly suspect q.

4.4. Application-specific “heartbeat” implementa-
tion

The algorithm-specific heartbeat implementation
overcomes the drawback of the “silent” implementa-
tion. The probability of incorrect suspicions is re-
duced in the following way. Whenever q receives a
critical message mp from a process p, q starts sending
heartbeat messages to that process. The emission of
heartbeat messages stops after q has sent the critical
response mq (Fig. 7).

q

p

∆
init

mq

r

mp

∆
i

∆
i

∆
i I’m alive!

∆
to ∆

to
∆

to
mr

∆
init

Figure 7. Failure detector: the algorithm-
specific heartbeat implementation.

Similar to its generic counterpart, the failure detec-
tor is characterized by the three parameters �init , �i

and �to. The parameter �i sets the frequency of the
heartbeat messages, while the parameters �init and
�to define the initial and the periodical timeout de-
lays respectively. Again, we have assumed that �init

is equal to �to.
There are certain obvious restrictions on the choice

of �i and �to. Considering Figure 7, �to should be
larger than �i or else the heartbeat cannot be received
on time. Furthermore, Figure 7 also shows that �init

should be greater than the average round-trip time.

5. Failure detection strategy and termination
time of consensus

In this section, we analyze the impact of the dif-
ferent implementations of failure detection on the ter-
mination time of the consensus algorithm presented in
Section 2.3, using the simulation model of Section 3.
We analyze the termination time in two cases: (1) fail-
ure free execution, and (2) worst case (largest termi-
nation time) with one process crash.4 The “failure
free” case, and the “one crash” case represent the two
most frequent scenarios. Moreover, these two cases
are particularly interesting, as they illustrate an intu-
itive tradeoff between accurate and responsive failure
detectors. Firstly, in a failure free execution, a fail-
ure detection mechanism can only slow down the con-
sensus algorithm, by generating contention on the re-
sources. So the best solution in the failure free case
is no failure detection mechanism at all. Secondly, in

4For the consensus algorithm, the worst case of a crash occurs
if the coordinator crashes at the time it tries to send its proposition.
In Figure 1, this occurs in phase 2, when p1 sends its proposition.

the case of one crash, the best solution for the failure
free case becomes the worst solution: without a failure
detection mechanism the algorithm never terminates!
So, there is an obvious trade-off between the two sce-
narios that we analyze. Moreover, there is a trade-off
within the one crash case itself:

� Reducing the termination time in the crash case
requires fast reaction to the crash.

� Too many “failure detection” messages increase
the contention on the resources (network, CPU),
namely, slow down the algorithm. Sadly, fast re-
action to process crash requires frequent “failure
detection” messages.

In other words, tuning the detection implementation
is not an easy task. Among the four implementations
described above, we have simulated only the last three
ones: it can easily be shown that the algorithm-specific
heartbeat implementation of Section 4.4 is better than
the general heartbeat implementation of Section 4.1.
The results presented below have been obtained by
averaging over a large number of simulations (thou-
sands). Confidence intervals for these results have
been computed in [13]. All simulations were made for
n = 5 processes.

5.1. “Interrogation” implementation

The average termination time of the consensus al-
gorithm, using the interrogation implementation, is il-
lustrated in Figure 8. For several values of �i, the
termination time is plotted as a function of the timeout
delay �to. Figure 8(a) shows the results obtained for
failure free executions. Figure 8(b) depicts the termi-
nation time of the algorithm when the coordinator of
the first round crashes.

Failure free case. Figure 8(a) shows that the termi-
nation time decreases as�i increases. For the four val-
ues of �i considered, the optimum timeout value �to

is 6 ms. For smaller values of �to, the probability of
erroneous suspicions increases. This in turn increases
the number of rounds of the algorithm, and thus its ter-
mination time. Figure 8(a) also shows that a value of
15 ms for �i is optimal. In this case, the termination
time is almost equal to 15 ms.

10

15

20

25

30

35

40

45

5 6 7 8 9 10

te
rm

in
at

io
n

tim
e

[m
s]

= 6 ms∆i

= 7 ms∆i

= 10 ms∆i

= 15 ms∆i

∆ to) [ms]time-out (

= 20 ms∆i

(a) no crash.

20

22

24

26

28

30

32

34

4 5 6 7 8 9 10

te
rm

in
at

io
n

tim
e

[m
s]

= 8 ms∆i

= 10 ms∆i

= 20 ms∆i

= 15 ms∆i

∆ to) [ms]time-out (

(b) coordinator crashes.

Figure 8. Failure detectors: interrogation im-
plementation.

Crash of the coordinator. According to Figure 8(b),
it is clear that �i = 8 ms and �i = 10 ms is a bad
choice. At first glance, this may seem surprising since
a small value of �i should account for a quicker de-
tection of the crash. However, the overhead of an in-
creased number of messages outweighs the benefits of
a quicker failure detection. �i = 15 ms is a slightly
better choice than �i = 20 ms.

Summing up. In the failure free case, the termina-
tion time of the consensus is the same for �i = 15 ms
and �i = 20 ms. However, �i = 20 ms leads to a
slower failure detection, and thus to an increased ter-
mination time in the event of a crash. In conclusion,
the optimal choice for the parameters is �i = 15 ms
and �to = 6 ms. This choice leads to a termination
time of 15 ms in the failure free case, and of 21.7 ms
for the worst case of one crash.

5.2. Algorithm-specific “silent” implementation

Figure 9 illustrates the termination time of the con-
sensus, using the algorithm-specific “silent” imple-
mentation of failure detectors. With this implemen-
tation, the failure detectors are characterized by only
one parameter: �to (see Sect. 4).

Failure free case. Figure 9(a) depicts the termina-
tion time in the failure free case. The figure shows
that the termination time of the consensus algorithm is

5

5.5

6

6.5

7

7.5

8

2 2.5 3 3.5 4 4.5 5

te
rm

in
at

io
n

tim
e

[m
s]

∆ to) [ms]time-out (

(a) no crash.

8

10

12

14

16

18

2 2.5 3 3.5 4 4.5 5

te
rm

in
at

io
n

tim
e

[m
s]

∆ to) [ms]time-out (

(b) coordinator crashes.

Figure 9. Failure detectors: algorithm-specific
“silent” implementation.

minimized when �to is larger than 3 ms: when �to is
smaller than 3 ms, the termination time increases due
to erroneous suspicions.

Crash of the coordinator. The termination time
when the coordinator crashes is plotted in Figure 9(b).
The figure shows that the termination time reaches its
minimum for �to=3.5 ms. When �to is less than
3.5 ms, the termination time increases due to the
number of erroneous suspicions. Conversely, a value
of �to larger than 3.5 ms accounts for a slower detec-
tion of the crash, thus increasing the termination time.

Summing up. The termination time of the consen-
sus is optimized for a timeout value �to=3.5 ms. This
value leads to a termination time of 5.7 ms in the fail-
ure free case, and of 8 ms for the worst case of one
crash.

5.3. Algorithm-specific “heartbeat” implementa-
tion

The results plotted in Figure 10 illustrate the termi-
nation time obtained with the algorithm-specific heart-
beat implementation of the failure detectors. This
simulations have been performed with a value of �i
slightly smaller than �to (�i = 98% of �to). Fig-
ure 10(a) shows the termination time in the failure free
case, whereas the termination time when the coordina-
tor crashes is depicted in Figure 10(b).

5

5.5

6

6.5

7

7.5

8

2 2.5 3 3.5 4 4.5 5

te
rm

in
at

io
n

tim
e

[m
s]

∆ to) [ms]time-out (

(a) no crash.

8

10

12

14

16

18

2 2.5 3 3.5 4 4.5 5

te
rm

in
at

io
n

tim
e

[m
s]

∆ to) [ms]time-out (

(b) coordinator crashes.

Figure 10. Failure detectors: algorithm-
specific “heartbeat” implementation.

Summing up. This implementation of the failure de-
tectors has a behavior similar to the “silent” imple-
mentation (compare Fig. 10 with Fig. 9). A value
of �to = 3:5 ms allows us to obtain optimal results
in both cases. This value leads to a termination time
of 6.2 ms in the failure free case, and of 8.6 ms for the
worst case of one crash.

5.4. Comparison of the different implementations

Table 1 summarizes the simulation results obtained
with the different implementations of failure detectors.
The results show that algorithm-specific implementa-
tions lead to better performances. This is not surpris-
ing: whenever a failure detection mechanism can be
designed specifically for an algorithm, the number of
messages can be reduced significantly, thus improving
the performance. Although the qualitative result is not
surprising, a quantification of the differences requires
a careful study such as we did here.

The results also show that the algorithm-specific
“silent” implementation of the failure detectors leads
to slightly better results than the algorithm-specific
heartbeat implementation. This better performance is
due to the fine tuning of the failure detection param-
eters that we did for the special case of n = 5 pro-
cesses. Changing the number of processes would re-
quire new simulations to find the optimal parame-
ters for the “silent” implementation. The algorithm-
specific heartbeat implementation is in this respect

more robust, which is witnessed by a steeper curve in
Figure 9(b) than in Figure 10(b), when �to < 3:5 ms.

6. Related Work

There have been only few attempts so far at evalu-
ating the impact of a failure detection mechanism on
the performance of fault-tolerant algorithms. This is
partly due to the fact that many such algorithms are
designed with a specific failure detection mechanism
in mind, or are based on a group membership service
that hides it.

Chen, Toueg, and Aguilera [3] also analyze the effi-
ciency of failure detection mechanisms. They however
take a totally different approach to ours, in which they
define a set of metrics with which failure detectors can
be characterized. For instance, they consider three ran-
dom variables TD, TMR, and TM to represent a failure
detectors implementation: The detection time TD rep-
resents the time elapsed between the instant when a
process p crashes, and the time when p is permanently
suspected by some other process q; the mistake recur-
rence time TMR is the time between two consecutive
incorrect suspicions; and the mistake duration TM is
the duration of incorrect suspicions.

The only practical evaluation of failure detectors
that we are aware of is due to Estefanel and Jansch-
Pôrto [6]. They propose a highly efficient adaptive
heart-beat failure detector algorithm that they evaluate
using performance measurements.

These other approaches to the problem of evaluat-
ing failure detectors are complementary to our simu-
lations; Chen et al take an analytical approach, while
Estefanel et al opt for performance measurements. In
this context, we strongly believe that, combining re-
sults obtained using these three different approaches,
the evaluation of failure detectors is a required step to
understand actual performance issues in fault-tolerant
algorithms.

7. Conclusion

The paper has studied the impact of different im-
plementations of failure detectors on the termination
time of a consensus algorithm, (1) in failure free exe-
cutions, and (2) in executions with one process crash.
The study has pointed out the trade-off between a short

Table 1. Termination time of consensus (simulation with 5 processes).

failure detection parameters
failure free coordinator crashes
execution (worst case)

interrogation �i=15 ms,�to=6 ms 15 ms 21.7 ms
specific silent �to=3.5 ms 5.7 ms 8 ms

specific heartbeat �i=3.4 ms, �to=3.5 ms 6.2 ms 8.6 ms

termination time in the failure free case, and a quick
reaction to failures. The trade-off explains that finding
the “best” implementation of failure detectors is not
an easy task. Furthermore, the paper has shown that
general implementations of the failure detectors tend
to generate unnecessary messages, which has a nega-
tive impact on the performance of the consensus algo-
rithm. Specialized implementations lead, on the other
hand, to significantly better results since they generate
fewer or even no messages.

Finally, this study has shown that (1) implementing
failure detectors and (2) designing a consensus algo-
rithm based on a given failure detector, are two orthog-
onal issues. In other words, it is possible in the context
of consensus (and other agreement problems) to de-
couple timing issues (e.g., implementation of failure
detection) from logical issues (i.e., proving the safety
and liveness of a specific algorithm based on abstract
properties of failure detectors). Such a decoupling,
similar to all modular approaches, simplifies the con-
struction and the proof of correctness of complex piece
of software. Nevertheless, we have shown that a mod-
ular approach does not prevent from considering tim-
ing issues when optimal performances are required. In
other words, modularity and efficiency are not antago-
nistic issues.

References

[1] T. D. Chandra, V. Hadzilacos, and S. Toueg.
The weakest failure detector for solving consensus.
J. ACM, 43(4):685–722, July 1996.

[2] T. D. Chandra and S. Toueg. Unreliable failure de-
tectors for reliable distributed systems. J. ACM,
43(2):225–267, 1996.

[3] W. Chen, S. Toueg, and M. K. Aguilera. On the qual-
ity of service of failure detectors. In Proc. of the
IEEE Int’l Conf. on Dependable Systems and Net-
works (ICDSN-30), June 2000.

[4] F. Cristian, R. de Beijer, and S. Mishra. A perfor-
mance comparison of asynchronous atomic broad-

cast protocols. Distributed Systems Engineering,
1(4):177–201, June 1994.

[5] X. Défago, P. Felber, and A. Schiper. Optimization
techniques for replicating CORBA objects. In Proc.
of the 4th IEEE Int’l Workshop on Object-oriented
Real-time Dependable Systems (WORDS), Jan. 1999.

[6] L. A. B. Estefanel and I. Jansch-Pôrto. On the evalu-
ation of heartbeat-like detectors. In 2nd IEEE Latin-
American Workshop, Cancun, Mexico, Feb. 2001.

[7] C. Fetzer and F. Cristian. Fail-awareness: an approach
to construct fail-safe applications. In Proc. of the
27th IEEE Int’l Symp. on Fault-Tolerant Computing
(FTCS-27), pp.282–291, June 1997.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Im-
possibility of distributed consensus with one faulty
process. J. ACM, 32(2):374–382, Apr. 1985.

[9] R. Guerraoui, M. Larrea, and A. Schiper. Reduc-
ing the cost for non-blocking in atomic commitment.
In Proc. of the 16th IEEE Int’l Conf. on Distributed
Computing Systems (ICDCS-16), pp.692–697, May
1996.

[10] R. Guerraoui and A. Schiper. Consensus service: a
modular approach for building fault-tolerant agree-
ment protocols in distributed systems. In Proc. of the
26th IEEE Int’l Symp. on Fault-Tolerant Computing
(FTCS-26), pp.168–177, June 1996.

[11] N. Malcolm and W. Zhao. Hard real-time communi-
cation in multiple-access networks. Real-Time Sys-
tems, 8:35–77, 1995.

[12] N. Sergent. Evaluating latency of distributed algo-
rithms using Petri nets. In Proc. of the 5th Euromi-
cro Workshop on Parallel and Distributed Processing,
pp.437–442, Jan. 1997.

[13] N. Sergent. Soft real-time analysis of asynchronous
agreement algorithms using Petri nets. PhD thesis,
EPFL, Switzerland, 1998. Number 1808.

[14] N. Sergent, X. Défago, and A. Schiper. Failure detec-
tors: Implementation issues and impact on consensus
performance. TR SSC/1999/019, EPFL, Switzerland,
May 1999.

[15] P. Urbán, X. Défago, and A. Schiper. Contention-
aware metrics for distributed algorithms: Comparison
of atomic broadcast algorithms. In Proc. of the 9th
IEEE Int’l Conf. on Computer Communications and
Networks (IC3N 2000), Oct. 2000.

