
Graduate School in Computer Science
(2000-2001)

Pre-doctoral Project
Network Aware Failure Detection

by

Sirajuddin Shaik Mohammed
Graduate School in Computer Science 2000/2001

École Polytechnique Fédérale Lausanne

(sirajuddin.shaikmohammed@studi.epfl.ch)

Under the Guidance of
Prof. André SCHIPER

&
Matthias Wiesmann

Laboratoire de Systèmes d’Exploitation

École Polytechnique Fédérale Lausanne
Ecublens

CH-1015 Lausanne

9th July 2001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147901162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements
I would like to thank LSE project supervisors Prof.A.Schiper and M.Wiesmann
for giving me an opportunity to work on this project that enabled me to learn
the key concepts about SNMP. I forward a special thank to M.Wiesmann for
his support, encouragement and advice to structure my report.

.

2

Contents

1 Introduction 7

2 Concepts, Definitions and Scenario 9
2.1 Definitions . 9

2.1.1 Distributed system . 9
2.1.2 Fault . 10
2.1.3 Network . 10
2.1.4 Nodes . 10
2.1.5 Server . 10
2.1.6 Service . 10
2.1.7 Client . 11
2.1.8 Management Station 11
2.1.9 Managed node . 11
2.1.10 Probe . 11
2.1.11 MIB . 11
2.1.12 SNMP agent . 12
2.1.13 SNMP Community . 12
2.1.14 Failure Detectors . 12

2.2 Simple Network Management Protocol (SNMP) 13
2.2.1 Management Station 14
2.2.2 Management agent . 15
2.2.3 Management Information Base (MIB) 16
2.2.4 Management protocol (SNMP) 16
2.2.5 Trap messages . 17

2.3 Network scenario considered 18

3 Application Instance Failure Detection 21
3.1 Introduction . 21
3.2 How do we know application instance failure? 21
3.3 Detecting application instance failure 21
3.4 Prerequisites . 23

3

3.5 Implementation . 23

4 Server Failure Detection 25
4.1 Introduction . 25
4.2 What is server failure? . 25
4.3 Approaches to detect server failure 26

4.3.1 Direct Approach . 26
4.3.2 Indirect approach . 27
4.3.3 Mixed Approach . 30

4.4 Logic to be followed by the probe 32
4.4.1 Logic . 32
4.4.2 Properties satisfied by the probe 33
4.4.3 Short note on traps generated by probe and ports . . . 35

4.5 Implementation . 36
4.5.1 Implementation for Direct approach 36
4.5.2 Implementation for Indirect approach 36
4.5.3 Implementation for Mixed approach 37

4.6 Extensions . 37

5 Configuring the probe 39
5.1 Introduction . 39
5.2 Filtering . 40

5.2.1 Filtering on the basis of MAC address 41
5.2.2 Filtering on the basis of IP address 42
5.2.3 Defining protocols in the MIB 43
5.2.4 Configuring Filter table 44

5.3 Channeling the filtered packets 45
5.3.1 Configuring the channel table 46

5.4 Sampling the number of filtered packets 47
5.4.1 Configuring the Alarm table 47

5.5 Logging the events and generation of a trap message 49
5.5.1 Configuring Event table and Log table 49

5.6 Interaction between tables of MIB 51

6 Probe Failure Detection 53
6.1 Introduction . 53
6.2 Detecting probe failure . 53
6.3 Requirements . 54
6.4 Implementation . 54
6.5 Extensions . 54

4

7 Conclusion 56
7.1 Comparison between traditional approach and SNMP approach 56

7.1.1 Network Bandwidth 56
7.1.2 Performance and Scalability 57
7.1.3 Heterogeneity . 58
7.1.4 Interoperability . 58

7.2 My opinion about the project 59
Bibliography . 59

5

List of Figures

2.1 A SNMP managed network consisting of NMS, managed nodes,
agent. 14

2.2 An SNMP message consists of a header and a PDU. 17

3.1 Diagramatic representation of prerequisites for detecting fail-
ure of Application Instances 23

4.1 Direct approach for server failure detection 27
4.2 Indirect approach for server failure detection 28
4.3 Mixed approach for server failure detection 31
4.4 Flow chart of the logic used by probe. 38

5.1 Interrelationship between tables of MIB maintained at the probe 52

6

Chapter 1

Introduction

Reliability is one of the key design goals of distributed systems which can be
defined as the degree of tolerance against errors and faults. One important
aspect in distributed computing is the possibility that nodes can fail.The
occurence of a failure pose a reliability problem. Detecting such failures is
both useful for network administration and implementation of distributed
algorithms. The failure detection abstraction is a very powerful one and is
used a lot in distributed programming.

Traditionally, the failure detection is done mostly with ping like protocols
in which a machine sends a message to another and waits for the answer to
this message. This approach has two drawbacks. Firstly, it is costly, as a part
of network bandwidth is used by such messages, posing both performance
and scalability problems. Secondly, such systems can be unreliable, as they
depend on time-outs.

The goal of this project is to explore the concept of the hardware fail-
ure(node failure) and software failure (application failure) by extracting in-
formation from the network architecture instead of solely relying on ping
protocol and exploit this information to build a scalable and fast failure de-
tection which could be used be used both for network administration and as
building block for distributed systems. Simple Network Management Pro-
tocol (SNMP) is used to accomplish our goal as it a standard for network
management and widely accepted.

The workable approach to fault detection in this report employs external
detection [5] which implies that responsibilities for detection of node failures
are given to facilities external to the node. For example, a node B is tested
by another node A. If node A is healthy, it is assumed node A is capable

7

of detecting any deviation of node B from expected behaviour. If node A is
faulty, the diagnosis result can be random.

The failure detection abstraction is explained with a network scenario
(Section 2.3) in which we firstly explain the failure detection of application
instances running on the server, when the server is up and then explain the
failure detection of the server, when the server is down.

We make use of a probe (defined in Section 2.1.10), to help in the failure
detection of the server and show that the probe satisfies the properties of
�S failure detector introduced by Chandra and Toueg [19] and hence can be
used to solve the failure detection. The concept of unreliable failure detector
is used to detect the failure of probe and we specifically implement �S failure
detector. This concept of failure detection considering a network scenario
can be extended to detect the failure of all nodes in the network.

Finally we conclude the report by showing that our approach of using
SNMP is better than traditional approach in terms of network bandwidth,
performance and scalability, heterogeneity and interoperability.

The remainder of this report is organized as follows:

Chapter 2 gives the definitions of basic terms that are used in the entire
report, the concept of Simple Network Management Protocol and Failure
detectors and the network scenario considered in this report.

Chapter 3 gives the detection of failure of application instances running
on the server.

Chapter 4 deals with the failure detection of the server. It presents the
different approaches to detect the server failure and explains the logic used
by the probe, a key component in the approaches used for the server failure
detection.

Chapter 5 deals with configuring the probe to make the probe perform
the logic that it uses in the approaches for failure detection of server.

Chapter 6 deals with the failure detection of the probe.

Chapter 7 gives the conclusion.

8

Chapter 2

Concepts, Definitions and
Scenario

This chapter gives the definition of technical terms that are used in this re-
port, explains the concept of Simple Network Management Protocol (SNMP)
and also gives the network scenario that is considered in this report. The
meaning of terms might differ from other definitions found in the literature;
these definitions will serve as a reference for this report.

Section 2.1 gives definitions of technical terms that are used in the entire
report. Section 2.2 explains the concept of Simple Network Management
Protocol (SNMP). Section 2.3 gives the network scenario that is considered
in this report.

2.1 Definitions

2.1.1 Distributed system

A Distributed System is a collection of computers connected by a commu-
nication subnet and logically integrated in varying degrees by a distributed
operating system and/or distributed algorithms. The communications sub-
net may be a widely geographically dispersed collection of communication
processors or a local area network. Typical applications that use distributed
computing include multi-media telecommunications, e-mail, web, teleconfer-
encing and support for general purpose computing in academic and industrial
settings.

9

2.1.2 Fault

A fault [5] is a physical defect, imperfection, or flaw that occurs within some
hardware or software unit. An error is the manifestation of a fault. It is
deviation from accuracy or correctness. If the error results in the system
performing one of its functions incorrectly, a system failure has occurred.
This report uses fault and failure interchangeably. The failures considered in
this report are node (hardware) failures and Application (software) failures.

2.1.3 Network

A network is a collection of nodes in which the nodes are connected together
through a communication medium. The word network in this report will
always refer to TCP/IP Ethernet local area network in which all nodes are
connected by Ethernet interfaces to communicate with other nodes.

2.1.4 Nodes

The computer network is comprised of nodes, which can be thought of as
points of connection together with a transport medium (Ethernet) connect-
ing them, along which data propagates. Nodes are either the end points at
which data originates or is consumed, or redistribution points that store, pos-
sibly duplicate or filter, and then forward data to other nodes. Examples of
redistribution points are routers, gateways, switches and hubs. These nodes
can often be configured to change redistribution behaviour and monitored
to give a view of data passing through them. The extent of monitoring and
configuration that is provided depends on the device. To conclude, the node
is the generic term that is used for any point in the network.

2.1.5 Server

A server is a node in a network that provides a set of services to the clients
from the applications running on it.

2.1.6 Service

A service can be anything that can be used by clients over the network. The
services may be devices as well as software.

10

2.1.7 Client

The user of service provided by the server is a client. The client is itself a
node that acts as user to use the service provided by the server.

2.1.8 Management Station

It is a node in the network that runs a set of management applications to
monitor and control other nodes in the network like server, clients, routers
etc by communicating with them. It uses SNMP to communicate with other
nodes in the network. The nodes that are monitored by management station
are called managed nodes. There can be many management stations in the
network. For further detail about management station, see Section 2.2.1.

2.1.9 Managed node

It is a node that is monitored by a management station in the network.
Any node in the network can be monitored by a management station. For
example, the monitored node can be a server, a client, a router, a probe,
a switch, a hub or a gateway. There can be many managed nodes in the
network. The communication between management station and the managed
node is done using SNMP.

2.1.10 Probe

It is a managed node in the network that is configured by management station
to monitor the traffic on the network segments on which it resides. There
can be many probes in the network one each per network segment.

2.1.11 MIB

MIB stands for Management Information Base. It is the interface that is
maintained at the managed node or probe. A management station configures
the managed nodes or probes through this interface. The MIB consists of
objects, some of which are organized in the form of tables. The management
station sets and gets the value of these objects through SNMP. For further
detail about MIB, see Section 2.2.3.

11

2.1.12 SNMP agent

It is daemon that resides on the managed nodes. It communicates with
management station on behalf of managed nodes and probes on which it
is present. It processes the SNMP requests from management stations and
generates SNMP response on behalf of managed nodes and probes on which
it is present. The agent processes the requests of the management stations
that are in the community of the agent. For further detail about agent, see
Section 2.2.2.

2.1.13 SNMP Community

An SNMP Community is a relationship between an SNMP agent and a set of
management stations that defines authentication, access control. The com-
munity concept is a local one, defined at the managed node or probe. Each
community is given a unique (within this agent) community name, and the
management stations within that community must employ the community
name in all operations.

The SNMP agent may establish a number of communities, with overlap-
ping management station membership.

Since communities are defined locally at the SNMP agent, the same name
may be used by different agents. This identity of names is irrelevant and
does not indicate any similarity between the defined communities. Thus,
a management station must keep track of the community name or names
associated with each of the agents that it wishes to access.

2.1.14 Failure Detectors

A failure detector is viewed as a distributed oracle that provides hints about
the failures in the distributed system [18]. The system components of the
system being monitored by failure detectors could be entire sites, specific
computers, processors within a computer, processes, threads, network in-
terfaces, network connections, or any number of other low-level abstractions.
Each component has its own failure detector. Factors such as the highly vari-
able communication latency and best-effort service provided by today’s wide
area networks, and need to construct a scalable service impact dictate to con-
sider unreliable fault-detection service [17]. The unreliable failure detectors
are based on time-outs. They may erroneously indicate that a component

12

has failed only to correct this error at a later time [17].

The unreliable failure detector [19] used for monitoring processes, in spite
of making mistakes can be used to solve consensus in distributed systems if
it satisfy two properties namely completeness (which means that if a process
is faulty, it should be suspected by the detector) and accuracy (which means
that, if a process is suspected, it should be faulty). There are eight classes of
failure detectors defined in terms of completeness and accuracy properties. �S
is the weakest unreliable failure detector that can be used to solve consensus
in asynchronous distributed computations [19].

�S Failure detector :

The �S failure detector is one of the eight classes of failure detector proposed
by Chandra and Toueg [19]. �S failure detector is the weakest unreliable
failure detector that satisfies the following properties:

• Stong completeness: Eventually every process that crashes is per-
manently suspected by every correct process.

• Eventual weak accuracy: There is a time after which some correct
process is never suspected by any correct process.

and can be used to solve fundamental problems like consensus in dis-
tributed systems [19].

2.2 Simple Network Management Protocol (SNMP)

The Simple Network Management Protocol (SNMP) is the standard for man-
agement of data communication networks using TCP/IP. SNMP was issued
in 1988 and was designed for network management of routers, hosts, worksta-
tions with low overhead and supporting multivendor network management.
It is used to get management information from the managed resources of
network architecture [6].

The model of network management that is used for SNMP includes the
following key elements:

• Management station

• Management agent (it resides on the managed node)

13

• Management Information Base (MIB)

• Network Management Protocol

Figure 2.1 illustrates a SNMP managed network comprising these el-
ements. SNMP defines a client/server relationship. The client program

Figure 2.1: A SNMP managed network consisting of NMS, managed nodes,
agent.

(network manager) makes virtual connections with the server program (the
SNMP agent) and provides some information regarding the device status by
accessing the management information base controlled by the agent [7].

Each of the components of the network management architecture of SNMP
is explained in brief as following: Section 2.2.1 deals with management sta-
tion, Section 2.2.2 deals with management agent, Section 2.2.3 deals with
management information base (MIB), Section 2.2.4 deals with the manage-
ment protocol (SNMP).

2.2.1 Management Station

A management station is typically a standalone device. The management
station [6] will have, at minimum:

14

• A set of management applications for data analysis, fault recovery, and
so on.

• An interface by which the network manager may monitor and control
network.

• A protocol by which the management station and managed entities
exchange control and management information.

• A database of information extracted from the management databases
of all the managed entities in the network.

A management station executes applications that monitor and control
managed devices. Management stations provide the bulk of the processing
and memory resources required for network management.

2.2.2 Management agent

The SNMP-Managed devices (or nodes) all contain the SNMP agent software
and MIB. Managed devices collect and store management information and
make this information available to management station using SNMP. Man-
aged devices, sometimes called network elements, can be routers and access
servers, switches and bridges, hubs, computer hosts, or printers.

An agent has local knowledge of management information and translates
that information into a form compatible with SNMP. The agent is a dae-
mon, which is a background server process, which receives, authenticates
and processes SNMP requests from management applications.

The SNMP agent software is usually quite small (typically less than 64
KB) because the SNMP protocol is simple. The Snmpd (means snmp dae-
mon) agent uses an authentication scheme to determine which management
station can access it’s MIB, SNMP community, access mode and MIB view.
The access policies are user configurable [8][9][10].

SNMP enables proxy management, which means that a node with an
SNMP agent and MIB can communicate with other node that do not have
the full SNMP agent software. This proxy management lets other nodes be
controlled through a connected machine by placing the node’s MIB in the
agent’s memory. It is also useful for managing nodes that do not support any
part of TCP/IP protocol suite like some modems, bridges etc and to offload
some nodes that are under heavy load [6][8].

15

2.2.3 Management Information Base (MIB)

Each managed node in a network maintains a MIB that reflects the status
of the managed resources at that system. Each resource to be managed is
represented as an object and an MIB is a structural collection of such objects.
The MIB is defined using the structure of management information (SMI),
which identifies the data types, naming and specifying the resources in a
MIB.

All managed objects in the SNMP environment are arranged in a tree
structure. The leaf objects are the actual managed objects. Associated with
each type of object in a MIB is an object identifier. The objects have the
access policies either “read-only”, “read-write” or “write-only” [7].

The managed objects are comprised of one or more object instances,
which are essentially variables and there are only two types of managed
objects namely scalar and tabular. Scalar objects have a single instance and
tabular objects have multiple instances. Objects in a MIB are specified in
groups. The object is a “unit of implementation” - if an agent implements one
object in a group, it should implement every object in that group, sometimes
however it may not be possible [4].

The implementors of managed system and the management station should
know the MIB definitions. The MIB is instantiated within the managed
system [4].

MIB-II (management information base for network management of TCP/IP
based internets) is the full standard MIB (STD#17) consisting of most of
the standard MIB objects common to a wide variety of nodes. In addition to
the standard objects defined under MIB-II, the MIB also supports a number
of objects defined by vendors.

Vendors may support more management objects than those defined under
MIB-II, to improve the ability to manage their nodes. These objects get
added under another portion of the MIB tree, called private. The private
subtree has a number of subtrees under it, which typically consist of one
subtree for each enterprise. Enterprises allocate objects under their own
subtrees to represent their device specific MIB objects [11].

2.2.4 Management protocol (SNMP)

The management station and management agent are linked by a network
management protocol namely SNMP [1]. Managed nodes [10] are monitored

16

and controlled using four basic SNMP commands: get, set, trap, and traversal
operations.

• The get command is used by a management station to monitor man-
aged nodes. The management station examines different variables that
are maintained by managed nodes.

• The set command is used by a management station to control managed
nodes. The management station changes the values of variables stored
within managed nodes.

• The trap command is used by managed nodes to asynchronously re-
port events to the management station. When certain types of events
occur, a managed device sends a trap to the management station. More
information on traps is presented in Section 2.2.5.

Traversal operations are used by the management station to determine
which variables a managed device supports and to sequentially gather infor-
mation in variable tables, such as a routing table.

The SNMP has been through several iterations SNMPv1, SNMPv2, and
SNMPv3. SNMP message contains two parts namely message header and
protocol data unit. Figure 2.2 gives the basic format of SNMP message.

Figure 2.2: An SNMP message consists of a header and a PDU.

SNMP message headers contain two fields: Version Number and Com-
munity Name. The PDU in general contains PDU type, request type, error
status, error index and variable bindings [1]. SNMP is advantageous to op-
erate over UDP [4].

2.2.5 Trap messages

One of the basic commands of SNMP is trap command. The trap command
is used by the managed nodes to asynchronously report events to the man-
agement station. When certain types of events occur, a managed node sends
a trap to the management station.

17

The different events [1] that generates traps are:

• coldStart - the sender is reinitializing and it’s configuration may change.

• warmStart - the sender is reinitializing but it’s configuration will not
change.

• linkDown - failure in one of the agent’s links.

• linkUp - one of the agent’s links has come up.

• authenticationFailure - the agent received a protocol message unprop-
erly authenticated.

• egpNeighborLoss - an Exterior Gateway Protocol neighbour is down

• enterpriseSpecific - The trap is identified as not being one of the basic
one.

As SNMP is advantageous to operate over UDP[4], the traps may be lost
and they may never reach the management station.

One possible solution to prevent the loss of traps is to use TCP instead
of UDP as the underlying transport protocol for SNMP. As the TCP is
connection oriented, the SNMP traps are never lost. But the disadvantage
of using TCP is that the network bandwidth is wasted for maintaining TCP
connections. The main objective of SNMP is to provide network management
with low overhead. The use of TCP is not advisable because of the overhead
involved in maintaining the TCP connections.

The notion of the trap messages is extensively used in this report.

2.3 Network scenario considered

This section explains the network scenario that is considered to explain the
failure detection of software and hardware failures in a network.

In abstract, the network scenario considered is that of a network in which
one node acts as a server and one node acts as management station. The
management station is present on another network segment than that of the
server. The server is the important one that we want to observe. First
the failure of application instances (software failure) running on the server
is detected and then the failure of the server (hardware failure). It is the

18

management station that should know about both the software and hardware
failures of the server.

The server has applications running on it and the failure of these applica-
tions is detected when the server is up. The server serves the requests from
clients and so it will generate traffic in the network. If the server fails, then
there will be no traffic from the server on the network. To detect the failure
of server, the knowledge about the behaviour of server, in terms of the traffic
generated by the server is important.

The information about the behaviour of the server presents an idea about
the functioning of the server to the management station. The information
about the IP packets coming from the server and the time elapsed since a
last packet is seen from the server gives an idea of the working of the server.
This knowledge about the last time an IP packet has been seen from the
server is theoritically possible but not in practice.

To know the last time a packet is seen from the server, the packets coming
from the server should be observed regularly at some predefined time interval.
So the behaviour of server that is considered in this report is such that the
server cannot be idle without sending any IP packet for a definite interval of
time.

The management station has certain knowledge about the behaviour of
the server. When the server deviates from it’s behaviour, the management
station suspects the server. The management station may suspect the server
while the server is up or it may suspect the server while the server is down.
Thus the failure detection of server reduces to imperfect failure detection as
the management station may make the mistake of suspecting the server while
it is actually up.

[19] introduced the concept of imperfect failure detection and unreliable
failure detector. They claimed that unreliable failure detectors, which satis-
fies the properties of Completeness and Accuracy can be used to solve the
fundamental problems like consensus, impossibility result associated with the
asynchronous distributed computations.

In Chapter 4, we present three approaches that can be used by manage-
ment station to detect the failure of the server. Two of the three approaches
use a probe. The probe provides the information regarding the behaviour of
the server to the management station. The probe in these approaches func-
tions like a unreliable failure detector of [19] and which may make mistake of
suspecting the server while it is actually up. We prove (in Section 4.4.2) that
the probe satisfies the properties of strong completeness and eventual weak

19

accuracy of � S failure detector and so can be used to solve failure detection.

This concept of failure detection can be extended to detect failure of any
node in the network.

20

Chapter 3

Application Instance Failure
Detection

3.1 Introduction

In distributed systems, the computers perform an integrated computing fa-
cility by interacting with each other. Some computers provide a service to
other computers. These computers that provide the service are termed as
servers. The servers provide the service through the applications running on
them. This chapter deals with detecting application instance failure when
the server is working. The failure detection of server when the server is down
is explained in chapter 4.

3.2 How do we know application instance fail-

ure?

The failure of application instance is known from the status of the application
instance.

3.3 Detecting application instance failure

This section deals with detecting the failure of application instances running
on the server by the management station.

21

As the application instance failure detection is done using SNMP, the
server has an SNMP agent and maintains an interface in the form of Man-
agement Information Base (MIB). The MIB contains the information regard-
ing the applications running or previously run on the server. A table in the
MIB namely sysApplrunTable, contains information regarding the applica-
tions running on the server. An entry, sysApplRunCurrentState, in the table
contains the current status of the application instance running.

The management station sends an SNMP request to the server requesting
the value of sysApplRunCurrentState and the SNMP agent running on the
server sends a SNMP response message that contains the value of the variable
sysApplRunCurrentState. The possible values [12] of this variable are:

• Running

• Runnable but waiting for a resource such as CPU

• Waiting for an event

• Exiting or

• Other

The path in the MIB where this variable is located is /system application
run group /sysApplrunTable/SysApplRunEntry/sysApplRunCurrentState.

So from the value of the variable sysApplRunCurrentState, the manage-
ment station can know only whether

• The application instance is running on the server

• The application instance is waiting for a resource

• The application instance is waiting for an event

• The application instance is exiting.

Any other behaviour of application instance makes the SNMP agent re-
turn the value of sysApplRunCurrentState as Other. Thus this value Other
can be configured by the management station to indicate only the application
instance failure.

The server can also configured to generate trap message to the manage-
ment station when an application instance fails.

22

3.4 Prerequisites

This section gives the prerequisites that should be satisfied to detect appli-
cation instance failure.

The prerequisites for failure detection of application instances running on
the server are:

1. The server is up and working.

2. The SNMP agent is up and working.

3. The applications are registered in the MIB maintained on the server.

4. The management station is registered with the SNMP agent.

Figure 3.1 presents these prerequisites in the form of a diagram.

Figure 3.1: Diagramatic representation of prerequisites for detecting failure
of Application Instances

3.5 Implementation

In order to provide the information about the application instance running
on the server, Definitions of System-Level Managed Objects for Applications
[12] (System Application MIB, RFC 2287, proposed standard) should be

23

implemented on the server. An SNMP agent should also be implemented on
the server in order to communicate the management information regarding
the applications to the management station.

According to [12], the implementation of the MIB on the operating sys-
tem may require some considerable processing power to obtain the status
information from the managed database. The management station polls
the agent to get the status of different application instances running on the
agent’s node. In order to have the most recent information regarding the
status of application instances, the agent should poll the MIB on the agent’s
node at regular intervals. This time interval can be set by manager.

The manager should use the variable sysApplAgentPollInterval present in
the MIB at the server. The default value of 60 seconds is defined to keep the
processing overhead low, while providing usable information for long-lived
processes [12]. A manager is expected to adjust this value if more accurate
information about short-lived applications is needed, or if the amount of
resources consumed by the agent is too high [12].

24

Chapter 4

Server Failure Detection

4.1 Introduction

In Distributed Systems, the computers connected through an interface per-
form an integrated computation. The computers perform the computing by
exchanging services with each other. Some computers provide a service to
other computers. These computers that provide the service are termed as
servers and the computer that utilize the service provided by them are termed
as clients. The failure of servers leads to degradation in the performance and
reliability of the distributed systems. Thus the failure detection of servers in
distributed systems is very important.

4.2 What is server failure?

The server is expected to behave in a particular way and if it deviates from
the expected behaviour then it is said to have failed. For example, the server
is expected to behave in such away that it cannot be idle for more than some
definite time-interval. If it is idle for more than the definite time-interval,
then it is suspected and said to have failed if it remains idle forever. This
chapter uses this example of behaviour about the server to detect the failure
of the server.

25

4.3 Approaches to detect server failure

This section presents the different approaches that can be used by the man-
agement station to detect the failure of the server.

The approaches that can be used by the management station to detect the
failure of server are Direct Approach, Indirect Approach and Mixed approach.
Section 4.3.1 explains the Direct approach, Section 4.3.2 explains the Indirect
approach and Section 4.3.3 explains the Mixed Approach.

4.3.1 Direct Approach

This section explains the Direct approach that can be used by the manage-
ment station to detect the failure of the server.

In this approach, as the name implies, the failure of server is detected
by directly contacting the server. An interface in the form of MIB is main-
tained on the server. The management station sends a SNMP request to the
server asking the value of any object present in the MIB maintained at the
server. One example for the object can be sysuptime if the MIB-II [15] is
implemented on the server. If the server already has the MIB [12], which
contains information about applications running on the server, the manage-
ment station can send SNMP request asking the value of any object present
in the MIB.

If the management station gets the SNMP response to the SNMP request
from the server, then the server is up. If the management station does not
get the response, then the server is down.

Thus this direct approach used for the failure detection of the server can
also be used to detect the failure of application instances if [12] is imple-
mented on the server.

Figure 4.1 illustrates the direct approach that can be used by the man-
agement station.

Drawbacks

The drawbacks of this approach are as follows:

1. As SNMP is advantageous to operate over UDP [4], the SNMP requests
or SNMP response or both can get lost in the network. It may happen

26

Figure 4.1: Direct approach for server failure detection

that the SNMP request from the management station may not reach
the server or the SNMP response from the server may not reach the
management station. Thus the management station may sometimes
make the mistake of declaring the server to be dead while it is actually
up. More over, this approach does not take into account the behaviour
of the server.

2. The management station should poll server using SNMP requests at
regular intervals. Thus increasing the messages in the network.

3. This approach does not give fast failure detection of server when the
server has failed. The reason for this is that the management station
knows about the failure of the server only when it polls the server.
If the management station does not poll the server at the instant it
failed, then it knows about the failure of the server only when it polls
the server the next time.

4.3.2 Indirect approach

This section presents the Indirect approach that can be used by the manage-
ment station to detect the failure of the server.

In this approach, the management station receives the help of a probe to
detect the failure of the server. The probe helps the management station by
notifying it about the deviation in the behaviour of the server. The probe

27

has an interface in the form of MIB. The management station configures the
probe through the interface to make the probe provide the information about
the behaviour of the server.

The management station configures the probe through the MIB such that
the probe monitors the packets coming from the server. The probe checks for
the count of number of packets coming from the server at every pre-defined
time interval. This time interval is set by the management station in the
MIB at the probe. The probe generates events when the difference between
the count at two successive time intervals is either zero or one. These events
are logged in the MIB at the probe and are reported to the management
station in the form of traps.

The probe sends the trap indicating server failure when the difference
between two successive counts is zero and a trap indicating server alive when
the difference is one. After receiving the trap indicating server failure, the
management station declares that the server has failed.

The traps may be lost and they may never reach the management station.
So for this reason the management station configures the probe in such away
that it logs the events indicating server failure and server alive before send-
ing these events as traps to the management station. So the management
station has to periodically check the log table in the MIB at the probe for
the occurrences of these events.

Figure 4.2 illustrates the Indirect approach that can be used by the man-
agement station to detect failure of the server.

Figure 4.2: Indirect approach for server failure detection

28

Drawback

In the Indirect approach, the management station declares the server to be
dead when it receives a trap message indicating server failure from the probe.
This declaring of failure of the server based solely on trap has a drawback
that can be explained with the following example:

Consider that the server is expected to behave in such away that it cannot
be idle without sending any packet for more than 20 seconds. If no packet
is seen from the server during 20 seconds time interval, the probe sends a
trap to the management station indicating that the server has failed. The
management station after receiving the trap declares that the server has
failed. It may happen that due to traffic problem in the network, a packet
from the server may reach the probe at 22nd second. In this case, the server
is declared to be dead by the management station while it is actually up.

Thus if the decision to declare the failure of server is based solely on traps,
then the time-interval over which the probe checks for count of the packets
from the server is very critical for the correct failure detection of server.

Merit

The advantage of this method is that only the probe and management station
should support SNMP. The server need not support SNMP.

Requirements

In order to follow the indirect approach, the following requirements have to
be met:

1. The management station is up

2. The probe is up.

3. The management station is registered with the SNMP agent of the
probe.

4. The probe should have it’s interfaces in promiscuous mode because it
need to monitor the packets being received on it’s interfaces.

5. The probe is configured by management station to monitor the packets
coming from the server.

29

6. The management station and probe should support SNMP.

4.3.3 Mixed Approach

This section explains the Mixed approach that can be used by the manage-
ment station to detect the failure of the server.

This Mixed approach is a combination of Indirect approach (Section 4.3.2)
and Direct approach (Section 4.3.1).

In this approach, the management station first waits for a trap indicating
failure of the server from the probe (Indirect approach). After receiving the
trap, the management station becomes suspicious about the working of the
server. To confirm it’s suspicion that the server has failed, the management
station now uses the Direct approach (Section 4.3.1) i.e. it now sends a
SNMP request to the server asking the value of any object present in the
MIB at the server and waits for SNMP response.

It may happen that initial SNMP request or response can get lost. If the
management station does not get the response to it’s initial request from the
server, the management station should send SNMP requests to the server
repeatedly until it gets the SNMP response for a time-interval equal to the
twice the time-interval over which the probe checks for the count of packets
coming from the server or the time interval expires.

The reason for this is that the management station is trying to confirm the
failure. If the server is alive, the probe will send a trap indicating server alive
during the next time interval when it sees packet from the server. So if there
is no SNMP response to the initial SNMP request, then the management
station should keep sending SNMP requests until it receives the response
before the end of next time-interval or the time-interval expires.

If there is no SNMP response from the server for the SNMP requests sent
by the management station and no trap from the probe indicating server
alive in the next time-interval, then the management station declares the
server is dead.

The traps may be lost and they may never reach the management station.
The management station configures the probe in such away that it logs the
events indicating server failure and server alive before sending these events
as traps to the management station. So the management station has to
periodically check the log table in the MIB at the probe for the occurrences
of these events.

30

The mixed approach can also be used to detect the failure of application
instances if [12] is implemented on the server. Figure 4.3 illustrates the Mixed
approach.

Figure 4.3: Mixed approach for server failure detection

This working of Mixed approach is explained with an example as follows:

Example

Consider that the server is expected to behave in such away that it cannot
be idle with out sending any packet for more than 20 sec. The management
station configures the probe to check the number of packets from server every
20 sec. If the difference between number of packets seen during two successive
time-intervals is either zero or one, the probe sends a trap to management
station. When the difference is zero, the probe sends a trap indicating that
the server has failed.

After receiving the trap indicating failure of the server, the management
station sends SNMP request to the server asking the value of any object
present in the MIB at the server and waits for SNMP response. The manage-
ment station sends SNMP requests to the server until it gets SNMP response
from the server for duration of 40 seconds.

31

If there is no SNMP response during that 40 seconds and even no traps
from the probe to the management station indicating that the server is alive,
then the management station declares that the server is dead.

Requirements

In order to follow the Mixed approach, the following requirements have to
be met:

1. The management station is up

2. The probe is up.

3. The management station is registered with the SNMP agent of the
probe.

4. The probe should have it’s interfaces in promiscuous mode because it
need to monitor the packets being received on it’s interfaces.

5. The probe is configured by management station to monitor the packets
coming from the server.

6. The management station, probe and server should support SNMP.

4.4 Logic to be followed by the probe

This section explains the logic used by the probe to report the traps indicating
failure of the server and liveliness of the server to the management station in
the Indirect (Section 4.3.2) and Mixed approach (Section 4.3.3) to detect the
failure of the server. The management station configures the probe through
the MIB at the probe to make the probe perform the logic mentioned in
Section 4.4.1.

4.4.1 Logic

The probe has it’s interfaces in promiscuous mode in the Indirect and Mixed
approach used by the management station to detect the failure of the server.
Because of this mode, the probe monitors each and every packet travelling
on the network segment on which it is present [1].

32

In order to have information about the server, the probe first filters the
packets coming from the server. For every packet received on it’s interface,
the probe sees for a match of source address in the packet with that of server’s
address. If a match occurs, then it filters the packet. These filtered packets
form a channel [1].

The channel keeps a count of the number of filtered packets passing
through it. This value of the count of the number of filtered packets passing
through the channel is sampled regularly at some pre-defined time interval.

If the difference between two successive samples is zero then the probe
logs the event “server failure” and sends a trap message indicating the fail-
ure of the server to the management station. If the difference between two
successive samples is one, then the probe logs the event “server alive” and
sends a trap message indicating that the server is alive to the management
station. The events that are to be logged when there is either zero or one
packet from the server namely “server failure” and “server alive” are defined
by the management station in the MIB at the probe.

Thus the configuration of the probe by the management station makes
the probe perform the following functions:

1. Filter packets coming from the server.

2. Pass the filtered packets through a channel and keep a count of number
of filtered packets passing through the channel.

3. Sample the count of number of filtered packets passing through the
channel regularly at predefined time interval and generate events.

4. Log the events and generate a trap message indicating failure of the
server or liveliness of the server.

This logic is represented in the form of flow chart as shown in figure 4.4.

4.4.2 Properties satisfied by the probe

The logic used by the probe (Section 4.4.1) accomplishes the properties
namely strong completeness and eventual weak accuracy of �S failure de-
tector. The justification for stating this as follows:

33

Strong completeness:

It states that eventually any failure of a process is suspected permanently by
every correct process[19].

When the probe is up, the probe may initially make the mistake of sending
the trap indicating server failure when it does not see a packet from the server
during a predefined definite time-interval. It later corrects the mistake by
generating the trap indicating server alive when it sees a packet from the
server during a definite time-interval.

For example, the server may be slow but not completely dead and hence
may send less number of IP packets. The probe checks for the number of
packets from the server during every predefined definite time-interval. The
probe initially will generate the trap indicating server failure when it does
not see a packet during the predefined definite time-interval. Because of the
slow working of the server, a packet will be seen by the probe after some
time-intervals. At that point, the probe corrects it’s mistake of declaring
the failure of the server by sending the trap indicating server alive to the
management station.

If the server is dead, it will no longer send any packets and the probe
will initially generate a trap indicating server failure when it does not see
a packet during a predefined time-interval. The probe will never generate
the trap indicating server alive as it will not see a packet from the server in
the future time-intervals. Thus eventually inspite of making mistakes in the
beginning, the failure of server is detected. Thus the strong completeness
property is satisfied.

Eventual weak accuracy:

It states that there is a time after which a correct process is never suspected
by any other correct process [19].

The probe may initially make the mistake of sending the trap indicating
server failure to the management station when it does not see a packet from
the server during a predefined time interval only to correct it later.

If the server is correct and is functioning properly, it will be sending
the IP packets regularly and so the probe will see the packets at definite
time-intervals and so it will not send the trap indicating server failure to the
management station.

Thus there is a time after which the probe will never suspect the server

34

and will not generate traps indicating server failure. Thus satisfying the
eventual weak accuracy property.

[19] claims that �S failure detector can be used to solve fundamental prob-
lems in distributed systems. As the probe satisfies the strong completeness
and eventual weak accuracy properties of �S failure detector, by induction
the probe can be used to solve the failure detection of nodes.

4.4.3 Short note on traps generated by probe and ports

The fourth function of the probe, as mentioned in Section 4.4.1, is to log the
events and generate trap message indicating server failure and server alive.
The probe can also be configured to generate only one trap namely server
failure or server alive. But doing so has its own drawbacks which can be
explained with an example.

Example

Consider that the server is alive and the probe is configured to generate only
trap indicating server failure. The probe checks for the number of packets
coming from the server at definite predefined time interval. Due to network
delay, a packet may reach the probe after the definite time interval.

In that case, when the probe does not see a packet from the server during
the time interval, it sends a trap indicating server failure to the management
station. The management station then sends SNMP request to the server
until it gets SNMP response or finally gives up and declares the server to be
dead. If the network condition is very bad and the messages are lost, then
the management station spends long time in polling the server to confirm
the failure. Thus increasing the number of messages in the network.

In the above case, if the probe is configured to generate both the traps
ie the trap indicating server failure and trap indicating server alive, then it
will generate the trap indicating server alive when it sees the packet from the
server. There is a possibility that the trap indicating server alive may reach
the management station and the management station will stop polling the
server if it has not got the SNMP response till that time. Thus preventing
the management station from sending more messages on the network.

The probe can also be configured to monitor the traffic with respect to
the protocols used in the network. Some of these protocols use a fixed port
number and monitoring the traffic with respect to a protocol implicitly means

35

monitoring the port used by the protocol.

For example, if the probe is configured to monitor the traffic associated
with SNMP, and then it implicitly means that the probe monitors the port
161 as SNMP uses port 161. The management station defines the protocols
that the probe should interpret in the MIB at the probe.

4.5 Implementation

The section presents the implementation for the failure detection of the
server. The implementation depends on the approach that is used by the
management station to detect the server failure.

4.5.1 Implementation for Direct approach

In order to use the Direct approach for server failure detection, the server
should implement any MIB. For example, the server can implement the MIB
[12] used to detect application instance failure or any other MIB. An SNMP
agent should also be implemented on the server to communicate with the
management station.

4.5.2 Implementation for Indirect approach

This section deals with the implementation for the Indirect approach used
by the management station to detect the failure of the server.

The probe is an integral part of indirect approach used by the manage-
ment station to detect the failure of server. The probe should implement
filter group, alarm group, event group of RMON MIB [13] if the probe fil-
ters the packets coming from the server based on MAC address. The filter
group, Alarm Group, Event Group of RMON MIB [13] and Protocol Direc-
tory Group of RMON MIB-2 [14] should be implemented on the probe if the
probe is configured by the management station to filter the packets coming
from the server based on IP address.

[13] tells that the implementation of [13] must also implement system
group of MIB-II [15] and the IF-MIB [16]. The probe should also imple-
ment an RMON agent, which is not different from any SNMP agent [1] to
communicate with the management station using SNMP.

36

4.5.3 Implementation for Mixed approach

The probe is an integral part of mixed approach used by the management
station to detect the failure of the server. The probe should implement the
filter group, Alarm Group, Event Group of RMON MIB [13] if the probe
filters the packets coming from the server based on MAC address. The filter
group, Alarm Group, Event Group of RMON MIB [13] and protocol directory
group of RMON MIB-2 [14] should be implemented on the probe if the probe
is configured to filter the packets coming from the server based on IP address.
[13] tells that the implementation of [13] must also implement system group
of MIB-II [15] and the IF-MIB [16].

The probe should also implement an RMON agent to communicate with
the management station using SNMP and the server should implement SNMP
agent and any MIB. An example of MIB that can be implemented on server
is [12].

4.6 Extensions

This section deals with extending the concept of the server failure detection
to detect the failure of all nodes in the network.

In this chapter, the approaches that can be used by the management
station to detect the failure of the server were discussed. Two of the three
approaches presented for failure detection of server has a probe as an integral
component. The functionality of the probe is that it sits on network segment
and monitor the traffic of the network segment.

The failure detection scenario presented so far can be extended by con-
figuring the probe to monitor the packets coming from all nodes present on
the network segment and notify about the behaviour of each node on the
segment to the management station in the form of logs and traps. The net-
work can be structured in such away that there exists one probe per each
network segment that gathers statistics and information about the behaviour
of nodes on the network segment and notify it to the management station.

The management station can use the approaches presented in this chapter
to detect the failure of each node in the network.

37

Figure 4.4: Flow chart of the logic used by probe.

38

Chapter 5

Configuring the probe

This chapter deals with configuring the probe by the management station to
make the probe perform the logic mentioned in Section 4.4.

In this chapter, Section 5.1 gives an introduction, Section 5.2 deals with
configuring the probe to perform the filtering function, Section 5.3 deals with
configuring the probe to accept the filtered packets into a channel, Section 5.4
deals with configuring the probe to perform the sampling on the number of
packets passing through the channel at pre-defined time interval and Section
5.5 deals with configuring the probe to log the events and generate trap
messages to the management station.

5.1 Introduction

The probe is an integral part of the indirect approach (Section 4.3.2)and
mixed approach (Section 4.3.3) used for the failure detection of the server.
The probe sits on a network segment and monitors the packets on that seg-
ment.

The probe does a lot [2], but the management station should ask the probe
to report the failure of the server. Thus the management station configures
the probe in such away that it reports the failure of server to it. The probe
has an interface in the form of MIB on it. The management station configures
the probe through the MIB. The MIB consists of groups and several of the
groups in the MIB consists of pairs of tables namely control tables and data
tables [2].

The management station configures the probe by setting values to the

39

variables present in the control tables [2]. In the logic (Section 4.4) the
probe follows to report the failure of the server, the probe performs four
functions namely

1. Filter packets coming from the server

2. Pass the filtered packets through a channel and keep a count of number
of filtered packets passing through the channel.

3. Sample the count of number of filtered packets passing through the
channel regularly at predefined time interval and generate events.

4. Log the events and generate a trap message indicating server failure or
server alive.

Thus the management station should configure the probe to make the
probe perform these four functions.

5.2 Filtering

This section deals with configuring the probe by the management station
to make the probe perform the filtering function (Section 4.4) in the logic
followed by the probe.

The probe has it’s interfaces in promiscuous mode and so it monitors all
the packets which arrive or pass through it’s interface. Hence the probe will
receive packets from even other nodes in the network. Thus in order to have
information of packets only from the server, the probe should filter packets
sent by server only. The management station configures the probe through
the Filter table present in the MIB at the probe. This configuring of filter
table makes the probe perform the filtering function [1].

In order to filter the packets coming from the server, the probe checks the
source address field in the packets received on it’s interfaces. If the source
address is server’s address then the probe filters the packet. The probe can
check for a match of server’s MAC address or IP address in the packets
received.

The values that are to be entered by the management station in the
objects of the Filter table are given in Section 5.2.4. Filtering the packets
coming from the server based on it’s MAC address and IP address has its
own positive and negative points which are discussed later in Sections 5.2.1
and 5.2.2 respectively.

40

In order to make the probe filter the packets based on IP address, the
IP should be defined in the MIB at probe. This defining of protocols in the
MIB is mentioned in Section 5.2.3.

5.2.1 Filtering on the basis of MAC address

This section focusses on the filtering of packets coming from the server on
the basis of MAC address by the probe.

Principle

The management station configures the probe to filter the packets coming
from the server based on MAC address of the server. The management
station configures the probe through the filter table present in the MIB at
the probe. The probe checks for a match of the source MAC address in the
packets received with that of the server’s MAC address. If a match occurs
then it filters the packets. If a match does not occur, it does not filter the
packet.

Placement of the probe

Any node in the network can be configured as a probe. The filtering of the
packets from the server based on MAC address is useful only when the probe
is on the same network segment as that of the server. The reason for this is
explained in the drawbacks. If a redistribution node like router is configured
as a probe, then it should have one of the interfaces connected to the network
segment on which the server is present.

Advantages

Only the Filter group, Alarm group, Event group of RMON MIB [13] be
implemented on the probe. There is no need to implement Protocol Directory
Group of RMON MIB-2 [14].

Drawbacks

1. The probe should reside on the same network segment as that of the
server in order to filter the packets coming from the server based on

41

server’s MAC address. Thus restricting the existence of probe on the
same network segment as that of the server. If the probe is on different
network segment than that of server, the filtering of packets coming
from the server on the basis of MAC address will not work.

For example, consider that the server is on network segment 1 and the
probe is on network segment 3. These two segments are connected
by redistribution node (eg:router). The packet from the server passes
through the redistribution node to reach the probe. When the redis-
tribution node gets the packets from the server, it removes the MAC
layer addresses in the packet and attaches new MAC layer address.
Thus when the packet reaches the probe it will have the source MAC
address of the redistribution node but not the MAC address of the
server.

2. If the network card of the server is changed, then the server MAC
address will change. So the probe should be reconfigured every time
the network card of the server is changed.

Requirements

If a redistribution node is to be configured by the management station as a
probe, then the management station should have the necessary permission
to configure it.

5.2.2 Filtering on the basis of IP address

This section focusses on the filtering of packets coming from the server on
the basis of IP address by the probe.

Principle

The management station configures the probe to filter the packets coming
from the server based on IP address of the server. The management station
configures the probe through the filter table and the Protocol directory group
present in the MIB at the probe. The probe checks for a match of source IP
address in the packet with that of the server’s IP address. If a match occurs,
the probe filters the packet. Otherwise it will not filter the packet.

42

Placement of the probe

The probe can reside on the same network segment as that of the server, or
the probe can reside on any segment if it is able to receive packets from the
server. For example, if the server uses IP Multicast to send packets and the
probe is on the network segment that receives the multicast packets sent by
the server , then it will be able to monitor the packets from the server.

Merits

There is no need to reconfigure the probe when the server’s network card
is changed because filtering of packets is done based on IP address and IP
address of the server will not change when the network card is changed.

Requirements

1. If the probe is on another segment then that of server

(a) The server should be programmed with IP multicast.

(b) The probe should register as a member of multicast group to re-
ceive packets from the server.

2. If a redistribution node is to be configured by the management station
as a probe, then the management station should have the necessary
permission to configure it.

5.2.3 Defining protocols in the MIB

This section deals with configuring the probe by the management station to
make the probe interpret IP.

If the management station wants the probe to filter the packets based
on IP address, then it should define IP in the protocol directory group that
is present in the MIB at the probe. The filter that is defined in the filter
table to filter the packets coming from the server based on IP address should
have a pointer to IP defined in the protocol directory group. Thus to make
the probe interpret the IP, the management station should configure this
protocol directory group.

43

The protocol directory group has a protocolDirTable and the manage-
ment station configures the objects in this table. The objects in the proto-
colDirTable that are configured and the values that are set to these objects
as follows:

• protocolDirID - In this object, the management station should specify
an unique octet string for a specific protocol. For example, for IP
running over Ethernet the protocolDirID is 8.0.0.0.1.0.0.8.0. [1].

• protocolDirParameters - The value of this object should be set to 0.0.0.1.0
.0.8.0.4.0.1.0.0 [1] to make the probe count the fragments correctly for
IP and above.

• ProtocolDirType - The manangement station should set this object to
addressRecognitionCapable(1), to make the probe not only count pack-
ets for the IP but also to recognize source and destination address fields
[1].

Other variables in the protocol directory group should be set to notsup-
ported(1).

5.2.4 Configuring Filter table

This section deals with configuring the filter table present in the MIB at the
probe, to make the probe perform the filtering function.

Each entry in the filter table is called a filter and the management should
define a filter in this table in such away that the probe should only filter the
packets coming from the server. The management station defines filter by
setting values to the objects present in the filter table. The objects and the
values the management station should set are as follows:

• FilterChannelIndex - The management station should set this variable
to an index pointing to a channel in the channel table that accepts the
filtered packets from this filter.

• FilterPktOffset - In this object, the management station should specify
the offset in the packet where the filter begins to find a match. If the
filtering is done based on MAC address, the value of this object should
be equal to the bit position in the packet at which the source MAC
address starts. If the filtering is done based on IP address, the value

44

of this object should be equal to the bit position in the IP packet at
which the sources IP address starts.

• FilterPktData - The management station should set this object to
server’s MAC address or IP address depending on the choice to filter
the packets based on MAC address or IP address.

• FilterOwner - In this object, the management should write it’s name
in the form of owner string. This object is used to recognize which
management station created the entry.

There are other objects in the filter table that are concerned with the
status of packets. To detect the failure of the server, it does not matter
whether a packet received is short or long because what matters is only
whether a packet from the server is seen or not. So these objects concerned
with the status of the packet are assigned empty values.

[1] gives further information about the filtering concept.

5.3 Channeling the filtered packets

This section deals with configuring the probe by the management station to
make the probe perform it’s second function. The second function of probe
is to pass the filtered packets from the server through a channel and keep a
count on the number of packets passing through the channel.

After the filtering function (Section 4.4), the packets that are filtered form
a stream of information called as channel [3]. The channel can perform many
functions [2] like:

• It accepts the packets when the packets pass the filter or fail the filter.

• It can generate events or capture the packet when a packet enters the
channel.

• It can be turned on or off by events occurring else where in the MIB.

• Keeps a count of number of channel matches i.e. keeps count of number
of packets passing through the channel.

But the management station should configure the channel only to accept
filtered packets of server and keep a count of number of filtered packets

45

passing through the channel. The management station configures the channel
through the channel table present in the MIB at the probe. The values that
the management station should enter in the objects present in the channel
table are given in Section 5.3.1.

After configuring the channel, the object channelMatches contains the
count of number of filtered packets passing through the channel.

5.3.1 Configuring the channel table

This section deals with configuring the channel table by the management
station to make the channel accept only the filtered packets coming from
the filter and keep a count of number of filtered packets passing through the
channel.

The management station configures the channel table by setting values
to the objects present in the channel table. The objects and the values that
the management station should enter are as follows:

• channelIfIndex - The management station should set this object to
index that identifies the interface of the probe to which the filter is
applied to allow the data into the channel. This value should be one of
the values of interfaces defined in the IF-MIB [16].

• ChannelAcceptType - The management station should set this object to
acceptMatched(1) in order to make the channel accept only the filtered
packets.

• ChannelDataControl - The management station should set this object
to off(2) (default value) as it does not want the channel to generate an
event .

• channelOwner - In this object, the management should write it’s name
in the form of owner string. This object is used to recognize which
management station created the entry [1].

• ChannelStatus - The management station should set this object to valid
(1). It ensures security for the entry made in the table by allowing only
the management station that created it change the entry [1].

The remaining objects in the table should be assigned empty values in order
to make the channel accept only the filtered packets and keep count on the
number of filtered packets passing through the channel.

46

[1] gives further information about the concept of channel.

5.4 Sampling the number of filtered packets

This section deals with configuring the probe by the management station to
make the probe perform it’s third function.

The third function of the probe is to sample the count of the number
of filtered packets passing through the channel regularly at predefined time
interval and generate events corresponding to failure of the server and live-
liness of the server. The management station configures the probe through
the Alarm table present in the MIB maintained on the probe to make the
probe perform this function.

An entry in the Alarm table identifies a variable, a time interval and the
kind of count that should be tested. It chooses whether the management
station want to check the value of the variable or the change in the value of
the variable. An entry also includes the thresholds: a Rising Threshold with
corresponding event, a Falling Threshold with corresponding event [2].

The management station should specify channelMatches as the variable, a
time-interval and the count to be the difference between two successive values
of channelMatches that should be tested. The management station specifies
the Rising Threshold as 1 with corresponding event because an event should
be generated when there is one packet from the server. The management
station specifies the Falling Threshold as 0 with corresponding event because
an event should be generated when there is zero packet from the server.

The objects in the Alarm table and the values the management station
should set for these objects are given in Section 5.4.1.

5.4.1 Configuring the Alarm table

This section deals with configuring the Alarm table by the management sta-
tion to make the probe perform it’s third function. The management station
configures the Alarm table by setting values to the objects present in the
Alarm table. The objects and the values that the management station should
enter for the objects are as follows:

• alarmInterval - In this object, the management station should specify
the interval (in seconds) over which the sampling should be done in

47

this object.

• alarmVariable - The management station should set this variable to
object identifier of channelMatches object of channel table.

• alarmSampleType - The management station should set this object to
deltaValue (2) as the difference between two consecutive samples is
compared to zero or one.

• alarmStartupAlarm - The management station should set this object to
risingOrFallingAlarm (3) in order to make the probe generate an event
when there are zero or one packets from server during the predefined
time interval.

• alarmRisingThreshold - The management station should set this object
to 1 as the upper bound for the difference between two consecutive
samples to generate an event is 1.

• alarmFallingThreshold - The management station should set this object
to 0 as the lower bound for the difference between two consecutive
samples to generate an event is 0.

• alarmRisingEventIndex - The management station should set this ob-
ject to the index of the event which is generated when there is one
packet from server during the predefined time interval. In other words,
this object should have the value of the index that identifies the event
“server alive”. The event is defined in the Event table.

• alarmFallingEventIndex - The management station should set this ob-
ject to the index of the event which is generated when there is zero
packet from server during the predefined time interval. In other words,
this object should have the value of the index that identifies the event
“server failure”. The event is defined in the Event table.

• alarmOwner - In this object, the management should write it’s name
in the form of owner string. This object is used to recognize which
management station created the entry [1].

• alarmStatus - The management status should set this object to valid
(1) in order to make the entry to be valid one [1].

After configuring the above values, the object AlarmValue contains the
value of the statistic i.e. the count of the packets during the last sampling

48

period. It is this value that is compared to the rising and falling thresholds
[1].

[1] gives further information about the alarm table.

5.5 Logging the events and generation of a

trap message

This section deals with configuring the probe by the management station
to make the probe perform it’s fourth function. The fourth function of the
probe is to log the events corresponding to failure of server and liveliness of
server and generation of trap messages indicating server failure and server
alive to the management station.

The management station configures the probe through the Event table
and log table present in the MIB at the probe to make the probe perform
it’s fourth function.

Each entry in the Event table identifies an event and an action, such as
logging or sending a trap or both and an event community to which the trap
should be sent [2]. The management station defines the events that are to
be generated when there is zero or one packet from the server during the
predefined time interval in the event table.

The objects alarmRisingEventIndex and alarmFallingEventIndex present
in the Alarm table (Section 5.4.1) have pointers to the events defined in the
Event table. The log table records the events that are to be logged. The
values that the management station sets to the objects in the Event table
and Log table are given in Section 5.5.1.

5.5.1 Configuring Event table and Log table

This section deals with configuring the Event table and Log table by the
management station to make the probe perform it’s fourth function. The
fourth function of the probe is to log the events corresponding to failure
of server and liveliness of server and generation of trap messages indicating
server failure and server alive to the management station.

The management station configures the Event table and Log table by
setting values to the objects present in the Event table and Log table. The
objects and the values that the management station should enter for the

49

objects are as follows:

Event table

The Event table should have two entries. One entry for an event that will
be generated when there is zero packet from the server and the other when
there is one packet from the server during the predefined time interval.

• eventDescription - The management station should specify the descrip-
tion of event in this object. The management station for one entry
should specify this object as “server failure” and for other entry as
“server alive”.

• eventType - The management station should set this object to log-and-
trap (4) as the management station wants the event to be logged and
sent as trap to it [1].

• eventCommunity - The management station in this object should spec-
ify the community to which the trap should be sent. The management
should have to be in the community to receive the trap [1].

• eventOwner - The management should specify it’s identity in the form
of owner string. This object is used to recognize which management
station created the entry [1].

• eventStatus - The management status should set this object to valid
(1) in order to make the entry to be valid one [1].

Log table

The events that are generated from the event table are logged in the log table.
There is no object in the Log table that can be set by the management station.
The setting of the object eventType of Event table to 4 automatically creates
log entries in the log table.

Each entry in the log table has an logEventIndex which identifies the event
that is logged. There is an object called logIndex that identifies a particular
log entry among all entries associated with the same event type. The object
logtime gives the value of sysUpTime corresponding to each log entry.

50

5.6 Interaction between tables of MIB

As explained in Sections 5.2 to 5.5, protocol directory group, filter table,
channel table, event table and log table present in the MIB implemented at
the probe are configured to make the probe accomplish its functions. The
interrelationship between the tables is as shown in figure 5.1. The figure
5.1 is shown with tables containing objects that are used to interrelate with
other tables when the probe filters the packets based on IP address. The
figure contains some sample values to explain the interrelationship between
tables.

In the protocolDirTable of the protocol directory group, protocolDir-
LocalIndex uniquely identifies each entry. The filter table identifies the proto-
col that it should filter from filterProtocolDirLocalIndex and filterProtocolDir-
DataLocalIndex. Both of these objects in filter table has the same index value
as that of ProtocolDirLocalIndex. In the figure 5.1, these objects all have a
value 1.

The filter table identifies to which channel the packets are sent through
filterChannelIndex. The filterChannelIndex identifies a channel in the channel
table. In the figure 5.1, the filterChannelIndex identifies a channel with
channelIndex 1.

In the alarm table, the object that is to be sampled is mentioned in
alarmVariable. The alarmVariable identifies the object channelMatches in
the channel table. The alarmFallingEventIndex and alarmRisingEventIndex
uniquely identifies an event in the event table. In the figure 5.1, alarm-
FallingEventIndex identifies an event “server failure” because the value of
alarmFallingEventIndex in alarm table and eventindex for the event “server
failure” in Event table is 2. Like wise, alarmRisingEventIndex identifies an
event “server alive”.

In the log table, the object logEventIndex identifies the event that is
logged. The object logEventIndex and eventIndex have the same value for a
particular event. In the figure 5.1, the event “server alive” has the eventIndex
as 2. The log of the event “server alive” also has the logEventIndex as 2.

51

Figure 5.1: Interrelationship between tables of MIB maintained at the probe

52

Chapter 6

Probe Failure Detection

6.1 Introduction

In the Indirect approach (Section 4.3.2) and Mixed approach (Section 4.3.3)
used by the management station to detect the failure of the server, the probe
is considered to be reliable and it never fails. As the probe is also a node
in itself, it may also fail. So the management station should also detect the
failure of the probe.

6.2 Detecting probe failure

This section deals with detecting the failure of the probe by the management
station.

The probe has a local monitor maintained on it. The local monitor gen-
erate heart beat message periodically to inform the management station that
the probe is still alive. The management station has a �S unreliable failure
detector (Section 2.14) that receives the heartbeats from the local monitor
of the probe.

If the failure detector on the management station does not receive the
heartbeat message from the probe in a specific time bound, the management
station sends an SNMP request to the probe requesting the value of any
object present in the MIB maintained on the probe and waits for SNMP re-
sponse from the probe for a definite time interval. During the time-interval it
waits for SNMP response, if there is no SNMP response and even no heart-
beat from the probe to the failure detector, then the management station

53

declares the probe to be dead.

6.3 Requirements

The �S unreliable failure detector should be registered with the local monitor
of the probe to receive heartbeats from local monitor.

6.4 Implementation

In order to detect the failure of the probe, the probe should implement a
local monitor on it. The probe should also implement the filter group, alarm
group, event group of RMON MIB [13] or the filter group, alarm group, event
group of RMON MIB [13] and protocol directory group of RMON MIB-2 [14]
depending on the choice of filtering the packets on the basis of MAC address
or IP address.

The probe should also implement a RMON agent. The RMON agent
is same as that of SNMP agent [1]. The management station apart from
management applications should also implement a failure detector.

6.5 Extensions

This chapter till now dealt with the failure detection of a probe by the man-
agement station and this was done using the concept of failure detectors.
This failure detection concept can be extended to detect the failures of all
probes in the network with each probe in the network sending heartbeat mes-
sages to the management station. The time-interval over which the probe
sends heartbeat messages can be relaxed as the management station polls the
probe at regular time-intervals to check the log table present in the MIB at
the probe for occurrence of events related to failure of nodes on the network
segment.

If the network has multiple management stations, then a hierarchial ap-
proach can be followed to detect the failure of probes. The hierarchial ap-
proach can be explained with an example as follows:

Example:
Consider that there are two management stations in the network and these

54

management stations should know about the failure of all the probes in the
network. The probes in the network can be divided into two groups such that
one group of probes sends heartbeats to one management station and the
other group of probes sends heartbeats to other management station. These
two management stations then exchange information about the suspected
probes between them. In this way, the management stations will know about
the failure of all the probes in the network.

55

Chapter 7

Conclusion

This chapter compares the traditional approach and SNMP approach.

7.1 Comparison between traditional approach

and SNMP approach

This section presents the comparision between the traditional failure detction
approach and failure detection using SNMP in terms of network bandwidth,
performance and scalability, heterogeneity and interoperability. This section
presents the comparision by comparing the two methods from the point of
view of management station.

7.1.1 Network Bandwidth

Network Bandwidth is related to number of messages travelling in the net-
work. The network consists of network segments on which the nodes reside.
Using the traditional approach, the management station should periodically
ping each and every node in the network to check it’s availability. So for a
particular time period and network consisting of n network segments with N
nodes per each network segment where n is very small compared to N, the
minimum number of messages involved in the network will be n×N × 2.

Using the SNMP approach, the management station should have to poll
periodically only the probe, which is one per each network segment. The
failure of other nodes in the network is reported by probes to the management
station. The management station polls the probes to check the entries in the

56

log table of the MIB maintained in the probe. So for a particular time
period and network consisting of n network segments with N nodes per each
network segment where n is very small compared to N, the minimum number
of messages involved in the network will be n× 2. If the heartbeats from the
probe are taken into account, then the minimum number of messages will be
(n× 2)+n.

Example
Consider a network consisting of 5 network segments with 10 nodes per each
network segment. The total number of nodes in the network is equal to
5 × 10 = 50. If the traditional approach is used, then the management
station should poll 50 nodes periodically. The minimum number of messages
for one time-period of polling is 50× 2=100. If the SNMP approach is used,
then there will be 5 probes in the network (one per each network segment).
The management station should periodically check for occurrence of events
in the log table of MIB maintained at the probe. The management station
polls periodically only the probes in the network and so the minimum number
of messages for a particular time-period is 5× 2=10. If the heartbeats from
the probe are taken into account, then the minimum number of messages
are (5 × 2)+5=15. Thus for a particular time-period the minimum number
of messages in the network using traditional approach are 100 and that of
SNMP approach are 15.

If all the nodes want to monitor all the other nodes then the number
of messages involved in the network with the traditional approach are n
×N × [(n×N)− 1]× 2 and that of SNMP approach are ((n×N)−n)×n×
2) + [n× ((n− 1)× 2].

Example
Consider the network with 5 network segments and 10 nodes per segment.(
i.e. n=5 and N=10. then the number of messages involved in the network by
the traditional approach are 5 ×10 × [(5× 10)− 1]× 2 = 4900.The number
of messages involved in the network by the SNMP approach is ((5 × 10) −
5)× 5× 2) + [5× ((5− 1)× 2] = 490.

Thus the numbers of messages involved in the SNMP approach are less
than traditional approach.

7.1.2 Performance and Scalability

Performance is related to how fast the failure detection is done. In the
traditional approach, as the number of nodes in the network increases, the

57

time-period over which the management station should poll all the nodes in
the network decreases. Thus the management station will always be busy
polling nodes almost all the time and it may happen that it will not be able
to poll all nodes in the network during a particular time-period. If a node
that is not polled by the management station fails, it’s failure is detected by
the management station only when it next polls that node.

In the SNMP approach, as the management station polls periodically only
the probes, it will be able to poll all probes in the same network in which
it was not possible to poll all nodes using the traditional approach. More
over, when a node fails, the probe logs the event and will send a trap at the
instant the node fails. So the management station in this approach knows
about the failure very fast compared to traditional approach. The probe
helps in remote monitoring of networks by performing proactive monitoring,
offline operation.

In the worst case, when the trap and SNMP requests and responses are
lost in the network, the time taken to detect the failure is equal to the time
taken until a trap or SNMP response reaches the management station.

As the SNMP approach offers better performance and consumes less net-
work bandwidth than the traditional approach, it is scalable.

7.1.3 Heterogeneity

The traditional approach does not offer heterogeneity.

The SNMP approach offers heterogeneity because of the following:

1. Each probe can be configured by multiple management stations. This
makes the repository of data that is available at the probe to be shared
by multiple management stations.

2. The SNMP supports multivendor equipments and so new nodes can be
added to the network with out changing the specification of SNMP.

7.1.4 Interoperability

SNMP has been through many versions namely SNMPv1, SNMPv2 and SN-
MPv3. The SNMP offers interoperability because of proxy agents and bilin-
gual network-management systems. Bilingual network management systems

58

support both SNMPv1 and SNMPv2. The management station communi-
cates with the agent through the version of SNMP supported by the agent.

7.2 My opinion about the project

I was new to the concept of SNMP, failure detection and networking concepts.
This project has given me depth in the knowledge about the working and
utilization of SNMP and also made me understand the concept of failure
detection, one of the key goals of distributed systems and failure detectors.

I feel that SNMP approach can effectively detect failures in a network
in which it was not possible to detect the failure using ping effectively. The
SNMP failure detection approach can be scalable to certain extent. But man-
aging very large networks again possesses the problems related to network
bandwidth because SNMP uses polling.

I hope that this report will be helpful to the Operating Systems Labora-
tory and will serve as a reference to future projects related to failure detection
and SNMP.

59

Bibliography

[1] Stallings, W. SNMP, SNMPv2, and RMON : Practical Network Man-
agement, 2nd ed., Reading, MA: Addison-Wesley, 1996.

[2] Feit; Sidnie. SNMP : A Guide To Network Management, McGraw-Hill,
1995.

[3] Leinwand, A. and Conroy, K.,F.Network Management: A Practical Per-
spective, 2nd ed., Addision-Wesley, 1996.

[4] Rose, M.T. and MeCloghrie, K. How to manage your network using
SNMP. New Jersey: Prentice-Hall, 1995.

[5] Wu; Jie. Distributed System Design, CRC press, 1998.

[6] Stallings,W. SNMP and SNMPv2: the infrastructure for network man-
agement, IEEE Communications Magazine, volume: 36 3, March 1998,
Page(s):37-43.

[7] An Overview of SNMP, DDRI, Diversified Data Resources, 1999. avail-
able at http://www.ddri.com/Doc/SNMP Overview.html.

[8] Parker, T., Managing and trouble shooting TCP/IP. SunSITE India
Virtual Library, Publication Date: 1996. available at http:// sun-
site.iisc.ernet.in /collection/virlib/ tcpip/parker/ tyt13fi.htm#E66E13.

[9] Network Management. AIX Version 4.3 Documentation. Communica-
tion programming concepts, first edition, october1997. available at
http://nim.cit.cornell.edu/ doc link/en US/ a doc lib/ aixprggd/ prog-
comc/ ch7 netmgmt.htm

[10] Network Management. AIX Version 4.3 System Management Guide:
Communications and Networks, second edition, October 1998. Avail-
able at http://nim.cit.cornell.edu /doc link/en US /a doc lib/ aixb-
man/commadmn/ ch9 snmp.htm

60

[11] CyberManage, “A White Paper on Network Management”. available at
http://cybermanage.Wipro.com/wpaper-nm.htm

[12] Krupczak , C. and J.Saperia , “Definition of system-Level Managed Ob-
jects for Applications”, RFC 2287, Empire Technologies, BGS Systems,
February 1998.

[13] Waldbusser, S. “Remote Network Monitoring Management Information
Base”, RFC 2819, STD 59, Lucent Technologies, May 2000.

[14] Waldbusser, S. “Remote Network Monitoring Management Information
Base version 2 using SMIv2”, RFC 2021, INS, January 1997.

[15] Rose M., and K. McClogherie, Management Information Base for Net-
work Management of TCP/IP-based internets: MIB-II, RFC 1213, Per-
formance Systems International, Hughes LAN Systems, March 1991.

[16] McCloghrie, K. and F. Kastenholz, “The Interfaces Group MIB using
SMIv2”, RFC 2233, November 1997.

[17] Stelling, P.; Foster, I.; Kesselman, C.; Lee, C.; Von Laszewski, G. A
Fault detection service for wide area distributed computations. High Per-
formance Distributed Computing, 1998. Proceedings. The Seventh In-
ternational Symposium on, 1998, Page(s): 268 -278.

[18] Felber, P.; Defago, X.; Guerraoui, R.; Oser, P. Failure detectors as first
class objects. Distributed Objects and Applications, 1999. Proceedings
of the International Symposium on, 1999, Page(s): 132 -141.

[19] Chandra T.D. and Toueg S., Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM, 43(2), pp: 225–26, (March 1996).

61

