
Weak Ordering Oracles for Failure Detection-Free Systems

Fernando Pedoney Andr�e Schiperz P�eter Urb�anz David Cavinz�

yHewlett-Packard Laboratories | Software Technology Laboratory
Palo Alto, CA 94304, USA
fernando pedone@hp.com

zEcole Polytechnique F�ed�erale de Lausanne (EPFL) | Facult�e I&C
CH-1015 Lausanne, Switzerland

fandre.schiper, peter.urban, david.caving@ep.ch

1 Motivation
Agreement abstractions, such as consensus, atomic
broadcast, and generic broadcast [2], are important
building blocks in distributed systems subject to
processor failures. Atomic broadcast, for example,
has been used to build many fault-tolerant systems,
such as highly-available databases. Atomic broad-
cast guarantees that if a message is broadcast to a
group of processors and one of these processors de-
livers the message, then all processors also deliver
the message | a property known as agreement ; and
if two processors deliver the same two messages,
they do so in the same order | a property known
as total order.

Asynchronous systems. A protocol implemen-
tation is as general as the underlying assumptions
about its system model. In this sense, the asyn-
chronous model of computation is a very general
way to formalize distributed systems. It basically
makes no assumptions about the time it takes to
transmit messages over network links and for pro-
cessors to perform their computations. The asyn-
chronous model is very appealing as any solution
that can be applied in it can also be applied in a
stronger model (e.g., the synchronous model, where
processors can estimate the time it takes for other
processors to execute their programs).
Nevertheless, one fundamental result about dis-

tributed systems subject to processor failures states
that atomic broadcast cannot be solved in a pure
asynchronous model. The basic reason stems from
the fact that in pure asynchronous systems, proces-

�Research supported by the Swiss National Science Foun-
dation NCCR MICS project and the CSEM Swiss Center for
Electronics and Microtechnology, Inc., Neuchâtel.

sors cannot tell a very slow processor (i.e., a pro-
cessor that takes a long time to reply to the others)
from a processor that has failed.
To circumvent this impossibility result, current

proposals have extended the asynchronous model
with further assumptions, such as failure detectors.

Failure detectors. Failure detectors provide
processors with information about processors fail-
ures [1]. Failure detectors can make mistakes, that
is, they can suspect processors that have not failed
and not suspect processors that have failed. Several
classes of failure detectors have been proposed [1].
Failure detectors are usually implemented with

some timeout mechanism and even the weakest fail-
ure detector requires some timeout calibration to
satisfy its properties. Moreover, even though pro-
tocols based on failure detectors can cope with
wrong processor suspicions, their performance is
hurt when suspicions are wrong. But more impor-
tantly, failure detectors have to deal with the fol-
lowing dilemma:

the failure detector dilemma. On the
one hand, timeout values should be large in
order to maximize performance (by avoiding
wrong suspicions). On the other hand, timeout
values should be small in order to ensure a fast
reaction to failures.

2 Weak Ordering Oracles

Instead of failure detectors, we propose to extend
the asynchronous system with weak ordering ora-

cles. Weak ordering oracles capture the behavior
of network multicast in state-of-the-art local-area
networks: if processors send multicast messages in

c2002 IEEE. Appeared in Proc. of the 2002 International Conference on Dependable Systems and Networks (DSN),
supplemental volume, pages B-32 and B-33.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147901148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


a local-area network, there is a good chance that
some of the messages will be received by all pro-
cessors in the same order. To illustrate this fact,
Figure 1 shows the results of measurements per-
formed in a cluster of 12 PCs connected by a 100
Mbit/s Ethernet. Each host broadcasts messages to
all other hosts using IP multicast. When messages
are broadcast with a period greater than �0.14 mil-
liseconds, very few messages are received out of or-
der (only about 5%).

Message interval (ms)

O
u
t
o
f
o
rd
er
m
es
sa
g
es
(%
)

0.160.140.120.10.080.060.040.02

100

90

80

70

60

50

40

30

20

10

0

Figure 1: Spontaneous total order property

Briey (see [3] for more details), our oracle is de-
�ned by the primitives W-ABroadcast(r;m) (query
to broadcast message m) and W-ADeliver(r;m)
(delivery of m). The integer parameter r groups
messages with the same r value. The weak order-
ing property holds for r if there exists a message m
such that each process delivers W-ADeliver(r;m)
�rst (among all W-ADeliver(r;�)).

To illustrate this property, consider three pro-
cesses, p1, p2, and p3, executing the following
queries to the oracle (for brevity, we denote next
W-ABroadcast(r;m) by B(r;m)):

� p1 executes B(0;m1); B(1;m2); B(2;m3),

� p2 executes B(0;m4); B(1;m5); B(2;m6),

� p3 executes B(0;m7); B(1;m8); B(2;m9),

and assume the following sequences of
W-ADeliver(r;m) (for brevity, we denote next
W-ADeliver(r;m) by D(r;m)):

� on p1: D(0;m1); D(1;m2); D(0;m4); D(2;m3);
D(0;m7); etc.

� on p2: D(0;m4); D(0;m1); D(1;m5); D(0;m7);
D(2;m3); etc.

� on p3: D(0;m4); D(0;m7); D(2;m3); D(1;m8);
etc.

The weak ordering property holds for r = 2 (m3 is
the �rst message with r = 2 delivered by p1, p2, and
p3), but does not hold for either r = 0 or r = 1.
We de�ne the Weak Atomic Broadcast (WAB)

oracle as the oracle that ful�lls the weak ordering
property in�nitely often.
Consensus and atomic broadcast can be solved

using the WAB oracle [3]. Actually consensus can
be solved with an oracle weaker than the WAB or-
acle [3]. When using weak ordering oracles, atomic
broadcast algorithms and other agreement-related
algorithms do not su�er from the failure detector
dilemma. Since they do not rely on failure de-
tectors, there is no tuning of timeouts involved in
the execution of an atomic broadcast. As a result,
there is no notion of reaction time to failures with
these protocols. The performance of algorithms us-
ing weak ordering oracles is as good in the presence
of failures as in the absence of failures.

3 Experiments
We have implemented and conducted several ex-
periments using our atomic broadcast algorithm.
In the setup used to obtain Figure 1, and for a
range between 10 and 250 messages broadcast per
second, we have found that our atomic broadcast
implementation using weak ordering oracles out-
performs failure detector-based implementations of
atomic broadcast using a timeout of 4 milliseconds
on approximately 30%. For timeout values of 10
milliseconds failure detector-based implementations
outperform weak ordering oracle based implementa-
tions by less than 30%. We believe that the perfor-
mances of our weak ordering oracle implementation
may further be improved.

Acknowledgments
We thank Matthias Wiesmann for providing us with
Figure 1.

References

[1] T. D. Chandra and S. Toueg. Unreliable failure detec-
tors for reliable distributed systems. Journal of ACM,
43(2):225{267, 1996.

[2] F. Pedone and A. Schiper. Handling message semantics
with generic broadcast protocols. Distributed Comput-
ing, 15(2):97{107, 2002.

[3] F. Pedone, A. Schiper, P. Urb�an, and D. Cavin. Solving
agreement problems with weak ordering oracles. Tech-
nical Report HPL-2002-44, Hewlett Packard Laborato-
ries, 2002. Also appears as EPFL Technical Report
IC/2002/010, March 2002.

B-33


