
Robust TCP Connections for Fault Tolerant Computing∗

Richard Ekwall
nilsrichard.ekwall@epfl.ch

Péter Urb́an
peter.urban@epfl.ch

André Schiper
andre.schiper@epfl.ch

École Polytechnique F́ed́erale de Lausanne (EPFL)
Distributed Systems Laboratory
CH-1015 Lausanne, Switzerland

Abstract

When processes on two different machines communicate,
they most often do so using the TCP protocol. While TCP is
appropriate for a wide range of applications, it has short-
comings in other application areas. One of these areas is
fault tolerant distributed computing. For some of those ap-
plications, TCP does not address link failures adequately:
TCP breaks the connection if connectivity is lost for some
duration (typically minutes). This is sometimes undesirable.

The paper proposesrobust TCP connections, a solu-
tion to the problem of broken TCP connections. The paper
presents a session layer protocol on top of TCP that en-
sures reconnection, and provides exactly-once delivery for
all transmitted data. A prototype has been implemented as
a Java library. The prototype has less than 10% overhead
on TCP sockets with respect to the most important perfor-
mance figures.

1. Introduction

When processes on two different machines communi-
cate, they most often do so using the TCP protocol [1]. The
reasons for the popularity of TCP are threefold. Firstly,
it offers a convenient interface to communication: a bi-
directional byte stream. Secondly, it hides most problems of
the communication channel from the programmer: message
losses, duplicates and short losses of connectivity. Thirdly,
it is extremely flexible and well engineered: it suits needs as
different as short lived HTTP sessions, long lived file trans-
fers, and continuous low traffic sessions like a remote login.
Moreover, TCP can work on low-latency reliable local net-
works and on the high-latency not-so-reliable Internet with
acceptable performance.

∗Research supported by a grant from the CSEM Swiss Center for Elec-
tronics and Microtechnology, Inc., Neuchâtel and by OFES under contract
number 01.0537-1 as part of the IST REMUNE project (number 65002).

While TCP is appropriate for a wide range of applica-
tions, it has shortcomings in other application areas. One of
these areas is fault-tolerant distributed computing. Many al-
gorithms in fault-tolerant distributed computing assume so
calledquasi-reliable channels: if a processp sends a mes-
sagem to processq, m will eventually be received byq
if neither p nor q fails [2]. An obvious way to implement
quasi-reliable channels is to use a TCP connection between
p andq. Unfortunately, TCP does not address link failures
adequately: TCP breaks the connection if connectivity is
lost for some duration (typically minutes, but the connec-
tion is only broken if TCP actually wants to send data or
if keepalives are sent). This might sometimes be undesir-
able, and hence we need a way to recover from broken TCP
connections. Potential applications that would benefit from
such a feature are all applications that are willing to wait
for connectivity longer than the default TCP parameters al-
low. Examples include long-lived remote login sessions on
a computer not permanently connected to the Internet (mo-
bile devices or a PC with a modem). There are more elabo-
rate examples from fault tolerant distributed computing (the
reader not interested might skip the next paragraph). The
explanation requires some additional context.

In fault-tolerant distributed computing, process failures
and link failures are often abstracted usinggroup member-
ship. A group membership service offers each process a
viewof the system, the set of processes the process can cur-
rently communicate with. The view changes over time as
(1) processes crashes / recover, or (2) link failures occur /
are repaired [3]. There are two kinds of group member-
ship: (1) primary partition group membership, in which
processes agree on the sequence of views, and (2)partition-
ablegroup membership in which multiple concurrent views
can simultaneously exist. In each case, broken TCP con-
nections can be used to trigger changes in views [3]. We
shall argue here that this is not a good idea when using pri-
mary partition group membership; consequently, link fail-
ures should be transparent, and we can achieve this by ro-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147901143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


bust TCP connections. Consider a replicated server with
three replicass1, s2, s3. Assume a partition failure which
partitionss3 away froms1 ands2. If link/partition failures
are transparent, nothing needs to be done when the partition
failure is repaired. In contrast, if failures are not transpar-
ent, all server updates that took place during the partition
failure need to be explicitly forwarded tos3 (by s1 or s2).
A detailed discussion of this issue can be found in [4].

RobustTCP connections present a solution to the prob-
lem of broken TCP connections. Robust TCP connections
have the same interface and properties as standard TCP con-
nections, except that these connections never break due to
network problems (and thus implement the quasi-reliable
channel abstraction). We define a session layer protocol on
top of TCP that ensures reconnection, and provides exactly-
once delivery for all transmitted data. A prototype has been
implemented as a Java library (however, nothing prevents a
C implementation). The prototype has less than 10% over-
head on TCP sockets with respect to the most important
performance characteristics: response time and through-
put. Robust TCP sockets integrate seamlessly into Java.
Source code integration is done by replacing occurrences
of new Socket andnew ServerSocket by creating instances
of our replacement classes. Binary integration requires a
few changes in the Java core libraries: these changes would
make it possible to replace sockets with robust sockets in a
Java application without re-compilation and without chang-
ing the application.

The rest of the paper is structured as follows. Section 2
discusses design issues for robust TCP connections. Sec-
tion 3 presents the protocol. Section 4 discusses the imple-
mentation of robust TCP connections in Java. Performance
figures are given in Section 5. Related work is discussed in
Section 6, and Section 7 concludes the paper.

2. Design of the protocol

2.1. Requirements

In this section, we present our requirements for robust
TCP connections, along with their implications for the de-
sign of the protocol.

Using robust TCP should be as transparent for the user
as possible. Therefore robust TCP should have the same
interface as standard TCP connections and offer the same
service: a bidirectional stream of bytes. For our prototype,
this implies that robust TCP should offer the Java sockets
interface (integration into Java is discussed in detail in Sec-
tion 4.2). Our functional and non-functional requirements
are the following:

Duration of connection. In standard TCP connections, the
connection is closed whenever data is sent on the con-

nection, but no acknowledgment is received for sev-
eral minutes. Robust TCP connections should only
be closed if the application explicitly requests this.
This means that robust TCP does not have any time-
out mechanism that might lead to break the connection.
Specifically, robust TCP connections must survive link
failures and network partitions.

Flow/congestion control. Robust TCP should have the
same flow control / congestion control mechanisms
and behavior as TCP. It should use buffers of limited
size.

Performance. Robust TCP should incur an overhead of
less than 10% on normal operation, with respect to all
relevant performance figures: response time, through-
put. The overhead on the time to open/close connec-
tions is less important, as robust TCP connections are
long-lived. Also, the overhead on the network should
be a small fraction of the overall traffic.

Easy deployment.The implementation should be
lightweight and deployment should be easy. Ro-
bust TCP will require extensions at both endpoints of
the connection, as losses of connectivity affect both
sides: modifying just one endpoint is not sufficient.
However, we do not want to rely on daemons sup-
porting our protocol. Moreover, we want a user space
implementation, with no need to modify the kernel or
to have administrator privileges.

The easy deployment requirement implies that we can
modify neither TCP nor any of the lower layers, nor can we
configure the parameters of these layers.

Modifications to the TCP kernel code would be very
small and would essentially mean changing a timeout value
from some number of minutes totimeout = ∞. This
would guarantee that TCP never close connections due to
a timeout.

However, modifying TCP has several disadvantages:
first of all, it would require modifications to kernel code.
This would of course reduce the portability of the code since
many different TCP stack implementations exist and would
all need to be modified. For non-open-source platforms, the
integration of robust TCP would be complicated, if possible
at all.

Secondly, the user of the protocol would have to re-
compile the kernel in order to be able to use robust TCP. The
average user is not necessarily comfortable with this and
most users will not blindly trust new kernel code (an unin-
tentional or malicious misbehavior can never be excluded).

For these reasons, we decided to implement a protocol
on top of TCP, in the session layer of the OSI reference
model (Fig. 1). The purpose of the protocol is to deal with
broken TCP connections. Most performance requirements

2



Figure 1. The robust TCP protocol in the OSI
reference model.

are easily fulfilled if the overhead of the session protocol is
always just a small fraction of the traffic generated by TCP.
We discuss performance issues in more detail in Section 5.

In addition to the standard TCP interface, the applica-
tion might want to be informed about the state of session
connections (robust TCP connections do not need to be the
same black box to the application as standard TCP connec-
tions). We plan to extend the interface to provide the follow-
ing information: the number of bytes sent but not acknowl-
edged, the time elapsed since the last send operation whose
data was not acknowledged, and the duration for which a
receive (or send) operation has been blocked.

2.2. Issues at the session layer

TCP will close a connection if two hosts cannot contact
each other for several minutes and data is being exchanged.
When this happens, the session protocol (1) must reconnect
the two parties, (2) must be able to uniquely identify a con-
nection, and (3) must ensure that all data sent is received
exactly once.

The issues related to reconnection are the following.
First of all, the client (the party that did an active open)
must initiate the reconnection to the server (the party that
did a passive open), and not vice-versa. The reason is sim-
ply that only the server has a static address to connect to
(furthermore, server to client connections are problematic if
the communication parties are separated by firewalls). This
implies that the server cannot close the socket on which it
listens for TCP connections when it is no longer willing to
accept new connections. This socket needs to remain open
as long as there are active session layer connections. The
second issue is that the reconnection attempt might fail. In
this case, the client should repeatedly try reconnecting.

A session layer connection is potentially associated with
multiple transport layer connections (Fig. 2). This means
that we need to identify the session layer connection upon
reopening a TCP connection. A session layer connection is
uniquely identified by the combination of (1) the IP address
and the port number of the TCP socket on the server side,
along with (2) a unique connection identifier (CID) gener-
ated by the robust TCP server (session layer) upon the first
connection attempt. This also allows us to distinguish a re-

t

t

session

transport

open close

breakingopen open open closebreaking

IP, port, CID

IP, port IP, port IP, port

Figure 2. Lifetime of session and transport
layer connections.

connection attempt from the first connection attempt of a
new session layer connection.

When a TCP connection is broken, we do not know how
much data has been successfully transmitted (we cannot ac-
cess the information in TCP acknowledgments). Therefore
all transmitted data must be buffered and retransmitted upon
reconnection if necessary. As the protocol should only use a
buffer of limited size, it has to exchangecontrol messagesto
acknowledge received data. Upon reception of such a mes-
sage, a part of the buffer can be discarded. We must make
sure that the acknowledgments constitute only a small por-
tion of the overall traffic generated by the connection. Also,
flow control issues arise if the buffer fills up.

2.3. The problem of control messages

The control messages can be passed between the client
and the server in two ways: either the messages are passed
in-band, multiplexed with application data, or out-of-band,
on a different channel. We have chosen an out-of-band so-
lution, primarily because the in-band solution poses severe
performance problems, and secondarily because it is more
complex. To understand why, let us first explain how an out-
of-band solution could be implemented. The idea is simple:
the session layersendoperation buffers outgoing data, and
the session layerreceiveoperation sends acknowledgments.
Also, a lightweight flow control mechanism is needed that
blocks thesendoperation as long as the outgoing data buffer
is full.

Let us contrast this implementation to the in-band solu-
tion. The problems are the following:

• Multiplexing and demultiplexing two streams may be
costly by itself, especially if data is transmitted in
small chunks. This is the easiest problem: a solution
similar to Nagle’s algorithm [5] could offer acceptable
performance.

• The data stream and the stream of control messages are
independent: even if no data is sent to one of the com-
munication parties, that party may still receive control
messages. For this reason, each party has to constantly
read the TCP stream to check for control messages.
This requires a dedicatedcontrol thread to read the

3



socket. So, when data arrives, it has to pass through the
control thread before reaching the application thread
that reads the socket. This leads to context switch-
ing and one extra copy of the data to an intermediate
buffer, and yields poor performance.

• The solution requires a rather complex flow control
mechanism. If the control thread receives a lot of data
and the application is not ready to receive data, the in-
termediate buffer fills up. The control thread must con-
tinue reading, in order not to miss control messages.
This implies that the protocol has to discard any further
data, and has to ask the other side for retransmission.
In contrast, an out-of-band solution only needs retrans-
mission of data when the TCP connection breaks.

The question remains how to pass out-of-band control
messages. The two choices are (1) UDP datagrams and (2)
a separate TCP connection. We chose the UDP solution for
reasons of performance and resource utilization. Indeed,
the TCP solution needs twice as many TCP connections and
TCP ports on each side (2 per session layer connection). In
contrast, a server can share the UDP control port among
all the connections it manages. Also, the TCP solution ex-
changes more IP packets during the whole lifecycle of the
connection (open, data transfer and close).

The UDP solution might seem more complex at first: (1)
we need to identify the connection in each control message,
and (2) we need to ensure reliable delivery and FIFO order
of control messages (we can afford losing some acknowl-
edgments, though). However, the TCP solution would result
in an equally complex implementation, as it would have to
ensure reliable delivery and FIFO order as well (in case the
TCP connection for control messages breaks).

Finally, note that the TCP solution should be preferred
if the connection passes through a firewall, as firewalls are
usually configured to reject UDP packets. However, this
was not a problem for us, and if the need arises, the protocol
can be easily modified to use TCP.

3. The session layer protocol

A robust TCP session has three phases: (1) connection
establishment (opening), (2) data exchange, and (3) connec-
tion termination (closing). Whenever TCP errors occur, the
protocol enters the reconnection phase. We now describe
each of these phases in detail, and then discuss how TCP
errors are handled.

3.1. Opening a connection and reconnection

The client starts by establishing a TCP connection with
the server, sends (on the TCP connection) thenew connec-

tim
e

reason

UDP port

conn. identifier

new conn. (0)

refusal (0)

UDP portaccept

refuse

usual 3−way handshake

0 4 5

5430

0 3 4 5

3

serverclient

TCP
open

TCP
accept

server

client

Figure 3. Opening phase

tion control message together with the number of the UDP
port used for exchanging control messages (Fig. 3), and
then waits for a unique connection identifier (CID) from the
server. The server assigns CIDs in the orderk, k+ 1, k+ 2,
etc. k is chosen randomly when the server starts up, in or-
der to avoid that clients of a server that used to listen on the
same port (and that quit or crashed) confuse the server (one
faces a similar issue when choosing initial TCP sequence
numbers).

The CID is always chosen to be different from 0, in or-
der to give a special meaning to 0: it is used to distinguish a
new session from an existing session that re-opens its TCP
connection. If the server accepts the connection, a new
unique session identifier is sent to the client, together with
the server UDP control port. The details of the protocol are
shown in Fig. 3.

New robust TCP sessions can be refused. This happens
when the server has closed the session layer socket, or when
it temporarily runs out of resources (too many open connec-
tions). In that case, the server sends arefusal (0)control
message (instead of a non-null connection identifier) and a
reason code. The client will try to reconnect if the reason
code indicates a temporary reason for refusal.

If the TCP connection breaks during data exchange, re-
establishing the TCP connection uses a similar protocol,
shown in Fig. 4. The client opens a new TCP connection
to the server, then sends the session layer connection iden-
tifier and the number of bytes received on this session (we
use a 32 bit counter that wraps around to 0 when it reaches
232). The server answers by re-sending the connection iden-
tifier to confirm that the re-connection has been accepted

4



tim
e

usual 3−way handshake

lost data

TCP
open

TCP
accept

serverclient

3

3 4

4

next requested byte

reasonrefuse

accept

conn. identifier

conn. identifier

refusal (0)

next requested byte
7

70

0

0 3 4 5

server

client

Figure 4. Reconnection phase

and the number of bytes received. As soon as any of the par-
ties knows how many bytes have been received by the other
party, it starts retransmitting data that was lost. Finally, the
session is ready again for exchange of data. To the user, the
session appears to be open during the whole reconnection
process, i.e., send and receive calls return normally.

3.2. Data exchange

Anytime the user writes some data on the robust TCP
connection, the data is stored in a buffer and then sent on the
TCP connection. The protocol also maintains a counter for
the total number of bytes sent on the robust TCP connection.
Whenever an acknowledgment is received, acknowledged
data is removed from the buffer. The acknowledgment, sim-
ilarly to TCP’s acknowledgments, points to the next byte
that the reader process is expecting to receive. The exact
format of acknowledgments and other control messages is
discussed later.

The buffer for outgoing data is of limited size, hence
some flow control is needed. When the buffer fills up, the
protocol blocks send operations. Also, it sends a control
message that forces the other party to acknowledge data.
We set the default parameters such that send operations
hardly ever block: acks are sent after every 8 kbyte received
and the outgoing buffer is of size 16 kbyte (these parame-
ters can be configured by the user). Also note that the de-
fault setting yields few acknowledgment packets compared

to the number of data packets.

3.3. Closing the connection

We only discuss how the session is closed; handling of
half-close is analogous. Closing the session is done by clos-
ing the TCP connection; control is returned immediately to
the application. However, the two sides have to notify each
other that the connection is closed, in order to free up re-
sources associated to the connection. This notification is
done asynchronously, using control messages. So the UDP
control ports are active until these notifications have been
exchanged.

If the server closes the session and the client still wants to
use it, TCP generates an error. It is possible that the server
could not notify the client about the closing of the session at
this point. In this case, the client will try to reconnect, and
the server implicitly notifies the client about the closing of
the session by rejecting the reconnection attempt.

3.4. Handling TCP errors

Whenever a TCP socket operation returns an error, the
protocol first tries to gracefully close the TCP socket. Then,
if the error occurred during the opening phase, the opening
phase is restarted. Otherwise, the protocol enters the recon-
nection phase — or re-enters the reconnection phase if the
error occurred in the reconnection phase.

The protocol allows to increase the delay between two
consecutive reconnection attempts, using an exponential
backoff strategy. Furthermore, some TCP errors indicate the
failure of the other party rather than the loss of connectiv-
ity [6]. We could use this information to avoid unnecessary
reconnection attempts.

3.5. UDP control messages

The structure of the UDP control messages is presented
in Figure 5. The message starts with eight header bytes.
The first four bytes of this header store the identifier of
the connection. The next byte defines the type of the
message: ACK to acknowledge data, REQACK to force
the other side to send an acknowledgment, and CLOSE,
HALF CLOSE and RESET to manage closing connections.
Since UDP does not guarantee delivery, control messages
that need to be acknowledged (such as a CLOSE message
initiating a three-way handshake) are flagged using the flag
byte. The header ends with a two bytes identifier for the
control message identifier. These two bytes have a mean-
ing only if the control message needs to be acknowledged,
as specified by the flag byte. An acknowledgment control
message (type CONF) will carry this identifier to indicate
that the message has been received. Finally, the message

5



0 3

type flag

(max 24 bytes)
data

connection identifier

msg ID

Figure 5. Structure of control messages.

ends with a data section. For acknowledging data (ACK
and REQACK) four bytes represent the number of bytes
received. The other control messages have no data section.

Note that we could have compressed the data in control
messages. However, this is not worthwhile as the overhead
is negligible compared to the overhead of UDP, IP and the
lower layers. In particular, control messages easily fit into
the smallest Ethernet frame.

4. Java implementation

4.1. Classes

The implementation of robust TCP provides the same
interface as the sockets injava.net. For a smooth integra-
tion into existing programs, the classes implementing robust
TCP sockets, i.e.,RSocket (client side) andRServerSocket
(server side), extend the classesSocket and ServerSocket
of the standard Java TCP interface. The slight differences
between the client and server side of a connection (in the
reconnection procedure) are handled by a class that extends
RSocket and implements the server side specificities (e.g.,
the reconnection procedure and the notifications that com-
plete a close). This class is package-private and is instanti-
ated only by theRServerSocket whenever a new connection
is created.

Both endpoints also each need a dedicated thread that
constantly reads control messages from the UDP socket.
All connections in the same JVM (both client and server
side) share this UDP socket. This means that a single con-
trol thread is used to read the control messages and dispatch
them to the right connection. Using few threads is essential
for achieving good performance on the server side.

4.2. Integration into Java

Since the robust TCP sockets extend the Java sockets,
the user can simply replace any call to the constructor of
Socket or ServerSocket by a similar call toRSocket and
RServerSocket. This is a rather easy way to integrate robust

TCP connections into new applications or code available in
source code form.

Let us now discuss how to integrate robust TCP connec-
tions into existing applications without changing the source
code. Java provides a way to use modified sockets instead
of the standard ones without modifying or recompiling the
application. The user of the Java libraries can call the
methodServerSocket.setSocketFactory (for the server side)
andSocket.setSocketImplFactory (for the client side) with
as parameter an object that will serve as a factory for socket
implementations. Socket implementations extend theSock-
etImpl class. Similarly to C sockets, this class provides a
client interface to connect to a remote host (bind andcon-
nect), and a server interface to accept connections (bind,
listen andaccept).

Unfortunately, Java socket factories are not flexible
enough to allow the integration of robust TCP sockets (that
is, without modifying the Java core libraries). The meth-
odssetSocketFactory andsetSocketImplFactory can only be
called once in an application and no plain Java sockets can
be created after the call. This is a problem for us, as we ac-
cess TCP by plain Java sockets. However, several requests
are present in the Java bug tracking database [7] that aim at
making the socket factory features more flexible. Once an
improved socket factory framework is released by Sun, we
will be able to achieve fully transparent integration of robust
TCP sockets into existing code. The integration wll not re-
quire any modifications to the Java core libraries (java.net).

5. Performance

The benchmarks used to measure the performance of the
robust TCP sockets are taken from IBM’s SockPerf socket
micro-benchmark suite, version 1.2 [8]. These experiments
do not benchmark all aspects of communication with sock-
ets. Nevertheless, they should give an indication of the over-
head of the robust TCP sockets with respect to the plain
TCP sockets. The benchmarks are the following:

TCP RR: A message (request) is sent using TCP to another
machine, which echoes it back (response). The TCP
connection is set up in advance. The results are re-
ported as a throughput rate of transactions per second,
which is the inverse of the request / response round-trip
time. The benchmark is repeated several times with
different message lengths. The default length in Sock-
Perf is one byte.

TCP STREAM: A continuous stream of messages is sent to
another machine, which continuously receives them.
The results are bulk throughputs in kilobytes per sec-
ond. The benchmark is run with several different mes-
sage lengths. The default message length in SockPerf
is 8 kbytes.

6



Table 1. Java vs. Robust TCP in the three
benchmarks.

Benchmark Robust TCP Java TCP Overhead
TCP RR 8572 tr./s 9061 tr./s 5.7%
TCP Stream 10785 kB/s 10889 kB/s 0.95%
TCP CRR 3.34 ms 1.30 ms 157%

9000

9500

10000

10500

11000

11500

128 512 2048 8192 16384

th
ro

ug
hp

ut

�

[k
by

te
s/

s]

message length [bytes]

Robust TCP
Java TCP

Figure 6. Results of the TCP Stream bench-
mark.

TCP CRR: First, a connection is established between the
two machines (connect). Then, a message (request, by
default 64 bytes) is sent using TCP, and is replied to
(by default 8 kbytes). This reflects the message size
of a typical HTTP query. The costs included in the
benchmarks are those of the connection establishment,
the data exchange and the closing of the connection.

The benchmarks were run with two PCs running Red
Hat Linux 7.2 (kernel 2.4.9). The PCs have Pentium III
766 MHz processors and 128 MB of RAM, and are inter-
connected by a 100 Base-TX Ethernet. The Java Virtual
Machine was Sun’s JDK 1.4.0.

The results, as well as the relative performance of the
robust TCP sockets versus Java sockets, are summarized in
Table 1 and Fig. 6. They show that the overhead of the ro-
bust TCP sockets over Java sockets is low (5.7% and 1%)
for the TCPRR and TCPStream tests, except for small
message lengths in the TCPStream test (we are working
on optimizing this case). The overhead for these tests is
probably due to (1) the one extra copy of transmitted data
into the retransmission buffer at the session layer, and (2)
the control message processing.

The TCPCRR test shows a bigger overhead. The over-
head is due to the message exchange upon opening the con-
nection (see Fig. 3). However, this benchmark measures the

performance of short-lived TCP connections, whereas ro-
bust TCP connections only make sense for long-lived con-
nections – short-lived connections are not likely to break.
For this reason, we did not put any effort into optimizing
for the TCPCRR benchmark. A possible optimization is
to wait for the first data packet such that the session layer
messages can be piggybacked.

6. Related work

We start with papers about fault-tolerant TCP connec-
tions. Zhang and Dao describepersistent connections[9],
which can recover from broken transport layer connections,
just like our robust connections. As ours, their prototype
is also implemented in a library on top of sockets. How-
ever, Zhang and Dao both (1) have a more ambitious goal,
and (2) do not meet our requirements. Zhang and Dao pro-
vide connections where the transport layer endpoints might
change their location and/or identity. For example, one end-
point might be a mobile device that migrates, or a process
that crashes and then recovers. As the goal is more am-
bitious, the solution is more complex: it involves an ad-
dressing scheme distinct from TCP addressing and a name
service used to store information about endpoints. On the
other hand, data loss is possible if a connection breaks in an
unanticipated manner, while our protocol avoids this. The
authors did not avoid data loss because they focused on con-
nections that break due to process crashes, rather than net-
work problems. In such a setting, a session layer mecha-
nism is not enough to provide exactly-once delivery: some
help is needed from the application.

The FT-TCP protocol [10], and STCP [11] to some ex-
tent, also aim at making TCP connections fault-tolerant to
the crash of one endpoint (while our protocol makes the
connection fault-tolerant to link failures). After the crash,
either another node has to take over the connection, or the
failed node has to recover. Even though the problem is dif-
ferent from ours, the solutions involves a lot of common
tasks: buffering data and synchronizing the new node to
the state of the stream with the help of the buffered data.
A difference is that FT-TCP and STCP require changes in
the kernel, as they augment or modify the transport layer.
An interesting point in FT-TCP is that the other (non-fault
tolerant) endpoint of the connection runs TCP without any
changes: we cannot provide this property, though, as a bro-
ken connection affects both endpoints.

The protocols in [12, 13] adapt TCP to wireless environ-
ments. Connectivity can be lost in such environments for a
long time. The solutions usually passivate the TCP connec-
tion when connectivity is lost, to avoid that TCP reacts to
this condition by reducing the size of its congestion window
or by breaking the connection. These protocols necessitate
changes in the kernel.

7



Finally, let us mention that the session layer in the
ISO/OSI reference model [14] offers some functionality to
re-establish broken transport layer connections. The com-
municating parties can putsynchronization pointsinto the
session layer stream, and it is possible to recover the state of
the stream at these synchronization points later. It is the ap-
plication’s responsibility to set synchronization points and
to buffer data that might need to be retransmitted. Our solu-
tion accomplishes exactly these tasks, making synchroniza-
tion and buffering transparent to the application.

7. Discussion

We presented robust TCP connections for fault toler-
ant distributed computing. Robust TCP connections, un-
like TCP connections, address link and partition failures in
a manner adequate for a range of applications. Robust TCP
connections never break if connectivity is lost.

We implemented robust TCP connections as a session
layer protocol on top of TCP that ensures reconnection, and
provides exactly-once delivery for all transmitted data. Our
Java prototype has less than 10% overhead on TCP sockets
with respect to the most important performance features. It
can be easily integrated into existing applications.

As future work, we plan to extend the standard TCP in-
terface, in order to provide information about the state of
session connections to the application. Useful information
includes the number of bytes sent but not acknowledged,
the time elapsed since the last send operation whose data
was not acknowledged, and the duration for which a receive
(or send) operation has been blocked. Yet another idea is to
add an operation that allows the application to passivate the
connection when there is no need to send data over a long
period. A passivated connection uses fewer resources: in
particular, the associated TCP connection would be closed.

References

[1] R. Stevens.TCP/IP Illustrated, Volume 1: The Protocols.
Addison-Wesley, Jan. 1994.

[2] A. Basu, B. Charron-Bost, and S. Toueg. Simulating re-
liable links with unreliable links in the presence of pro-
cess crashes. InInt. Workshop on Distributed Algorithms
(WDAG’96), LNCS 1151, pages 105–122, Bologna, October
1996.

[3] B. Charron-Bost, X. D́efago, and A. Schiper. Broadcasting
Messages in Fault-Tolerant Distributed Systems: the benefit
of handling input-triggered and output-triggered suspicions
differently. TR IC/2002/020, EPFL, May 2002.

[4] G. Chockler, I. Keidar, and R. Vitenberg. Group Communi-
cation Specifications: A Comprehensive Study.Computing
Surveys, 4(33):1–43, December 2001.

[5] J. Nagle. RFC 896: Congestion control in IP/TCP internet-
works, Jan. 1984. Status: UNKNOWN.

[6] N. Neves and W. Fuchs. Fault detection using hints from the
socket layer. InProc. 16th Symp. on Reliable Distributed
Systems (SRDS ’97), pages 64–71, Washington - Brussels -
Tokyo, Oct. 1997. IEEE.

[7] Shortcomings of SocketImplFactory. Bug report
on Sun’s Java Developer Connection site, 1999.
http://developer.java.sun.com/developer/bugParade/
bugs/4245730.html.

[8] IBM Corporation. SockPerf: A Peer-to-Peer Socket Bench-
mark Used for Comparing and Measuring Java Socket Per-
formance, 2000. http://www.alphaWorks.ibm.com/aw.
nsf/techmain/sockperf.

[9] Y. Zhang and S. Dao. A persistent connection model for
mobile and distributed systems. InProc. 4th Int’l Conf.
on Computer Communications and Networks (ICCCN), Las
Vegas, NV, USA, Sept. 1995.

[10] L. Alvisi, T. Bressoud, A. El-Khashab, K. Marzullo, and
D. Zagorodnov. Wrapping server-side TCP to mask con-
nection failures. InProc. 20th Annual Joint Conf. of the
IEEE Computer and Communications Societies (Infocom),
Anchorage, AK, USA, Apr. 2001.

[11] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
and V. Paxson. Stream control transmission protocol.IETF,
Apr. 2000.

[12] K. Brown and S. Singh. M-TCP: TCP for mobile cellular
networks. ACM Computer Communication Review, 27(5),
Oct. 1997.

[13] K. Ratnam and I. Matta. WTCP: An efficient transmission
control protocol for networks with wireless links.Proc.
Third IEEE Symposium on Computers and Communications
(ISCC ’98), Athens, Greece, June 1998.

[14] ISO. Information technology – Open Systems Interconnec-
tion – Connection-oriented Session protocol: Protocol spec-
ification. ISO/IEC 8327-1. International Organization for
Standards, 1996.

8


