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Abstract

Protocols which solve agreement problems are essential
building blocks for fault tolerant distributed applications.
While many protocols have been published, little has been
done to analyze their performance. This paper represents
a starting point for such studies, by focusing on the con-
sensus problem, a problem related to most other agreement
problems. The paper analyzes the latency of a consensus
algorithm designed for the asynchronous model with fail-
ure detectors, by combining experiments on a cluster of
PCs and simulation using Stochastic Activity Networks. We
evaluated the latency in runs (1) with no failures nor fail-
ure suspicions, (2) with failures but no wrong suspicions
and (3) with no failures but with (wrong) failure suspicions.
We validated the adequacy and the usability of the Stochas-
tic Activity Network model by comparing experimental re-
sults with those obtained from the model. This has led us to
identify limitations of the model and the measurements, and
suggests new directions for evaluating the performance of
agreement protocols.

Keywords: quantitative analysis, distributed consensus, fail-
ure detectors, Stochastic Activity Networks, measurements

1 Introduction

Agreement problems — such as atomic commitment,
group membership, or total order broadcast — are essential
building blocks for fault tolerant distributed applications,
including transactional and time critical applications. These
agreement problems have been extensively studied in vari-
ous system models, and many protocols solving these prob-
lems have been published [1, 2]. However, these protocols
have almost only been analyzed from the point of view of
their safety and liveness properties, and very little has been
done to analyze their performance. One of the reasons is
probably that agreement protocols are complex, typically
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too complex for analytical approaches to performance eval-
uation. Nevertheless, a few papers have tried to analyze the
performance of agreement protocols: [3] and [4] analyze
quantitatively four different total order broadcast algorithms
using discrete event simulation; [5] uses a contention-aware
metric to compare analytically the performance of four total
order broadcast algorithms; [6, 7] analyze atomic broadcast
protocols for wireless networks, deriving assumption cov-
erage and other performance related metrics; [8] presents
an approach for probabilistically verifying a synchronous
round-based consensus protocol; [9] evaluates the performa-
bility of a group-oriented multicast protocol; [10] compares
the latency of a consensus algorithm by simulation, under
different implementations of failure detectors. 1 In all these
papers, except for [10, 8, 9], the protocols are only analyzed
in failure free runs. This only gives a partial and incom-
plete understanding of their quantitative behavior. More-
over, in [3, 4] the authors model communication delays in
a way that completely ignores contention on the network
and the hosts: the communication delays are modeled us-
ing a distribution that was obtained independently from the
agreement protocols analyzed. This approach does not ac-
count for the fact that the transmission delay of messages is
greatly influenced by the message traffic that the algorithm
generates itself. In fact, the transmission delay of messages
cannot realistically be assumed to be independent of the al-
gorithm that generates them.

A detailed quantitative performance analysis of agree-
ment protocols represents a huge work. Where should such
a work start? As most agreement problems are related to
the abstract consensus problem [11, 12, 13] it seems natural
to start by a performance analysis of a consensus algorithm,
and to extend the work of [10]. This is the goal of this paper,
which analyzes a consensus algorithm.

The consensus problem is defined over a set of processes.
Informally, each process in this set proposes a value ini-
tially, and the processes must decide on the same value, cho-
sen among the proposed values [11]. It has been shown that
consensus cannot be solved deterministically in an asyn-
chronous model [14]. A stronger system model is thus re-

1The algorithm is the same as in this paper, but the failure detection
techniques and the definition of latency differ.
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quired to solve consensus. We have chosen the asynchronous
model with unreliable failure detectors [11], and we have
decided to analyze the Chandra-Toueg consensus algorithm
based on the3S failure detector.

The paper evaluates the performance of the Chandra-
Toueg 3S consensus algorithm by combining the follow-
ing two approaches: (1) experiments on a cluster of PCs
and (2) simulation. The simulation was conducted using
Stochastic Activity Networks (SANs), a class of timed Petri
nets. Only the control aspect of the consensus algorithm had
to be modeled for the simulation: the data aspect (e.g., the
content of messages) could be ignored. The failure detec-
tors were modeled in an abstract way, using the quality of
service (QoS) metrics proposed by Chen et al. [15]. Com-
munications were modeled in a way that takes contention
on the network and on the hosts into account. The goal
of our quantitative analysis was to determine the latency of
the consensus protocol, i.e., the time elapsed from the the
beginning of the algorithm until the first process decides.
Moreover, we evaluated the latency in different classes of
runs: (1) runs with no failures nor failure suspicions, (2)
runs with failures but no wrong suspicions, and (3) runs
with no failures but with (wrong) failure suspicions. We
combined the results of the simulations and the measure-
ments: some measurement results have been used to deter-
mine input parameters for the simulation model. Further-
more, a validation of the adequacy and the usability of the
model has been made by comparing experimental results
with those obtained from the model. This validation activ-
ity led us to determine some limitations of the model and
new ideas for the experimental measurements, and suggests
us new directions for evaluating the performance of agree-
ment protocols.

The paper is structured as follows. Section 2 presents
the context of our performance analysis: the algorithms, the
performance measures, and the environment for running the
algorithm. Section 3 describes the SAN model of the con-
sensus algorithm and its environment. Section 4 mentions
interesting points of the implementation and the measure-
ments. We present and discuss our results in Section 5, and
conclude the paper in Section 6.

2 Context of our performance analysis

As stated in the previous section, the goal of the paper
is the performance analysis of a consensus algorithm. In
Section 2.1, we start by describing the consensus algorithm
that we want to analyze. As this algorithm uses failure de-
tectors, we give in Section 2.2 the algorithm used to imple-
ment failure detectors. Then, in Section 2.3 we explain what
performance measures we want to obtain from our analysis.
Obviously, these measures vary from one run to another,
depending on the failure behavior of the processes, and the
output of the failure detectors. In Section 2.4, we intro-
duce the different classes of runs for which we obtain per-
formance measures. Finally, in Section 2.5 we describe the

hardware and software environment in which our consensus
algorithm is supposed to run.

2.1 The 3S consensus algorithm

The consensus problem is defined over a set of n pro-
cesses p1; : : : ; pn. Each process pi starts with an initial
value vi and the processes have to decide on a common
value v that is the initial value of one of the processes. We
consider in our study the consensus algorithm based on the
failure detector 3S proposed by Chandra and Toueg [11].
The algorithm requires a majority of correct processes. We
describe below the algorithm, up to the level of detail suffi-
cient to understand the experiments that we have conducted.
The algorithm assumes an asynchronous system model aug-
mented with (unreliable) failure detectors. In that model,
each process has a local failure detector module, which main-
tains a list of processes that are suspected to have crashed.
A process pi can query its local failure detector module to
learn whether some other process pj is currently suspected
or not. Roughly speaking, the 3S failure detector ensures
that (1) every crashed process is eventually suspected for
ever by every correct process (completeness property), and
(2) eventually there exists a correct process that is no more
suspected by any correct process (accuracy property).

The3S consensus algorithm is based on the rotating co-
ordinator paradigm: each process proceeds in a sequence of
asynchronous rounds (i.e., not all processes necessarily ex-
ecute the same round at a given time t), and in each round
one process assumes the role of the coordinator (p i is the
coordinator for the rounds kn + i). All the processes have
an a priori knowledge of the identity of the coordinator of
a given round. Processes that are not coordinator in a given
round are called participants. In each round, every message
is sent either by the participants to the coordinator or by the
coordinator to the participants. The role of the coordinator
is to impose a decision value. If it succeeds, the consensus
algorithm terminates. It it fails, a new round with a new co-
ordinator starts, in which the new coordinator will in turn
try to impose a decision value, etc. Knowing the details of
the execution of one round is not necessary for understand-
ing this paper. We refer the interested reader to [11].

2.2 Failure detection algorithm

As explained above, each process has a failure detector
module, which manages a list of processes that are sus-
pected to have crashed. The failure detector modules are
unreliable, in the sense that they can make mistakes by in-
correctly suspecting a correct process and also by not sus-
pecting a crashed process.

A variety of techniques exist for implementing a failure
detector: they are usually qualified as push and pull tech-
niques. In push techniques, a given process periodically
sends a message (called heartbeat message) to inform the
failure detector module of other processes that it is alive.
In pull techniques, the failure detector module periodically
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sends a ping message to other processes, and waits for a
reply.

We chose a push-style failure detector implemented us-
ing heartbeat messages (Figure 1): each process periodi-
cally sends a heartbeat message to all other processes. Fail-
ure detection is parameterized with a timeout value T and
a heartbeat period Th. Process p starts suspecting process q
if it has not received any message from q (heartbeat or ap-
plication message) for a period longer than T . Process p

stops suspecting process q upon reception of any message
from q (heartbeat or application message). The reception of
any message from q resets the timer for the timeout T .

q

p

heartbeat 
message

Tht=0

p suspects qT T T T

Th Th

t

t

Figure 1. Heartbeat failure detection.

There exist heartbeat failure detectors with possibly bet-
ter characteristics [15]. Our choice has the advantage that
it is very simple to implement and control. In particular, it
does not rely on synchronized clocks.

2.3 Latency as our performance measure

Latency and throughput are meaningful measures of the
performance of algorithms. Roughly speaking, latency mea-
sures the time elapsed between the beginning and the end of
the execution of an algorithm, while throughput measures
the maximum number of times that a given algorithm can
be executed per second.

Our study focuses on the latency of the consensus pro-
tocol, defined exactly as follows. We assume that all par-
ticipants propose values at the same time t0, and let t1 be
the time at which the first process decides. We define the
latency as t1 � t0. This is a reasonable measure for the
following reason. Consider a service replicated for fault
tolerance using active replication [16]. Clients of this ser-
vice send their requests to the server replicas using Atomic
Broadcast [17] (which guarantees that all replicas see all re-
quests in the same order). Atomic Broadcast can be solved
by using a consensus algorithm [11]: a client request can
be delivered at a server si as soon as si decides in the con-
sensus algorithm. Once a request is delivered, the server
replica processes the client request, and sends back a reply.
The client waits for the first reply, and discards the other
ones (identical to the first one). If we assume that the time
to service a request is the same on all replicas, and the time
to send the response from a server to the client is the same
for all servers, then first response received by the client is
the response sent by the server that has first decided in the
consensus algorithm.

Studying the throughput of the 3S consensus algorithm
will be one of the subjects of our future work. Through-
put should be considered in a scenario where a sequence
of consensus is executed, i.e., on each process, consensus
#(k+1) starts immediately after consensus #k has decided.
Note that, unlike in the definition of latency, not all pro-
cesses necessarily start consensus at the same time.

2.4 Classes of runs considered

The latency of a consensus algorithm varies for differ-
ent number of processes. However, given n, the latency can
also vary from one run to another, depending on (1) the dif-
ferent delays experienced by messages, (2) the failure pat-
tern of processes and (3) the failure detector history (i.e.,
the output of the failure detectors). We have considered the
following classes of runs:

1. All processes are correct, and the failure detectors are
accurate, i.e., they do not suspect any process.
This is the scenario that one expects to happen most
of the time. It assumes a failure detection mechanism
that does not incorrectly suspects correct processes.
There is a price to pay for the accuracy of the failure
detector, though: the failure detection timeout T must
be high to avoid wrong suspicions, thus detecting fail-
ures relatively slowly, or the heartbeat period Th must
be shortened thus increasing the network load.

2. One process is initially crashed, and the failure detec-
tors are complete and accurate: the crashed process
is suspected forever from the beginning, and correct
processes are not suspected. We have further distin-
guished the following cases: (i) the first coordinator
is initially crashed, and (ii) another process is initially
crashed.

3. All processes are correct and the failure detectors are
not accurate, i.e., they wrongly suspect some pro-
cesses. We obtained the histories of the failure detec-
tors by implementing the failure detector algorithm
described in Section 2.2 and conducting measurements
for different values of the parameters Th and T . The
failure detector histories obtained this way allowed
us to estimate the failure detector quality of service
(QoS) metrics defined in [15] (see Section 3.4). This
metrics was then used in the simulation of the 3S
consensus algorithm.

We performed experiments for each of these classes of
runs.

2.5 Hardware and software environment

All experiments were run on a cluster of 12 PCs run-
ning Red Hat Linux 7.0 (kernel 2.2.19). The hosts have In-
tel Pentium III 766 MHz processors and 128 MB of RAM.
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They are interconnected by a simplex 100 Base-TX Ether-
net hub. The algorithms were implemented in Java (Sun’s
JDK 1.4.0 beta 2) on top of the Neko development frame-
work [18]. All messages were transmitted using TCP/IP;
connections between each pair of machines were established
at the beginning of the test. The size of a typical message is
around 100 bytes.

3 The SAN model for our performance anal-
ysis

3.1 Background: Stochastic activity networks

Stochastic activity networks (SANs) [19, 20] were devel-
oped for the purpose of performability evaluation: evalua-
tions of performance and dependability. They belong to the
broad family of Timed Petri Nets and have a very rich and
powerful syntax thanks to primitives like activities, places,
input gates, and output gates, thus allowing the specification
of complex stochastic processes.

We used the UltraSAN tool [21] for solving SAN mod-
els. This tool provides a very general framework for build-
ing performability and/or dependability models. It supports
a wide variety of analytical and simulative evaluation tech-
niques with steady state and transient analysis. Timed Ac-
tivities can have different kinds of distributions: exponen-
tial, deterministic, uniform, Weibull, etc., though the use
of non-exponential distributions restricts the choice of the
solvers to simulative ones (as it happened in our approach).
Moreover, UltraSAN supports modular modeling: through
the operators REP and JOIN different submodels may be
replicated and joined together with common places. This
allows an easier and faster modeling and reuse of previously
built submodels.

3.2 Overview of the SAN model

As described in Section 2.1, the3S consensus algorithm
cyclically evolves through rounds in which every process
plays, in turn, the role of coordinator. The fact that all the
messages in one round are exchanged with one process, dif-
ferent for each round, forced us to renounce to model the
system using a parametric replication of the model of one
single process. We needed to build a different submodel for
every process involved in the algorithm execution. These
submodels were composed together using the ’Join’ facility
offered by UltraSAN. The models for processes differ only
in a few details, however. For this reason, we describe the
model of just one process. Due to space constraints and the
size of the model, we can only give an overview here. A
detailed description of the model can be found in [22].

The model for a process (P1) represents the state ma-
chine that underlies one round of the the consensus algo-
rithm: each state of the state machine is represented by one
place and each state transition by an activity. Only the place
that corresponds to the current state is marked. The model

is subdivided into 5 submodels (see Fig. 2). Submodel P1C
describes the actions of the process when it acts as a coordi-
nator: it first waits for a majority of estimates, and then elab-
orates a proposal which is sent to the participants. Then it
waits for a majority of acknowledgments and if they are all
positive acknowledgments, it broadcasts the decision mes-
sage. Otherwise (if it receives at least one negative ack)
it passes to the next round. Submodels P1A1, P1A2a and
P1A2b describe the actions of the process when it acts as
a participant. In particular, during action P1A1 the process
sends an estimate to the coordinator, then it waits for the
coordinator’s proposal. If it receives the proposal (action
P1A2a), it replies with a positive acknowledgment, other-
wise (if, while the process is waiting, the failure detector
signals that it suspects the coordinator to have crashed; ac-
tion P1A2b) it sends a negative acknowledgment.

P1C

P1A1 P1A2a P1A2b

P1A3

P1 model for process 1

new round

participant’s actions coordinator’s
actions

Figure 2. Overview of the SAN model of one
process.

The submodel P1A3 is responsible for starting a new
round and deserves a more detailed description. It contains
a place which holds the current round number of the pro-
cess modulo n, where n is the number of processes. The
marking of this place controls if the process becomes coor-
dinator or is a simple participant in the next round. The fact
that the round number only holds the round number mod-
ulo n is a simplification of the algorithm. The effect of this
simplification is that the algorithm only takes the messages
of the last n � 1 rounds into account. While it is possible
in the consensus algorithm that two processes are n or more
rounds apart, this is rather improbable if a single instance
of consensus is executed. For this reason, this simplifica-
tion does not make our model less realistic.

The remaining places and activities (not implementing
the state machine) are related to communication using mes-
sages and failure detectors. They are described in detail in
the subsequent two sections.

3.3 The network model

We now describe how we modeled the transmission of
messages. Our model is inspired from simple models of
Ethernet networks [23, 24, 5]. The key point in the model
is that it accounts for resource contention. This point is im-
portant as resource contention is often a limiting factor for
the performance of distributed algorithms. In a distributed
system, the key resources are (1) the CPUs and (2) the net-
work medium, any of which is a potential bottleneck. For
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example, the CPUs may limit performance when a process
has to receive information from a lot of other processes, and
the network may limit performance when a lot of processes
try to send messages at the same time.

The transmission of a message from a sending process p i
to a destination process pj involves two kinds of resources.
There is one network resource (shared among all processes)
which represents the transmission medium. Only one pro-
cess can use this resource for message transmission at any
given point in time. Additionally, there is one CPU resource
attached to each process. These CPU resources represent
the processing performed by the network controllers and
the communication layers, during the emission and the re-
ception of a message (the cost of running the distributed
algorithm is neglected, hence this does not require any CPU
resource). The transmission of a message m occurs in the
following steps (see Fig. 3):

1. m enters the sending queue of the sending host, wait-
ing for CPUi to be available.

2. m takes and uses the resource CPUi for some time
tsend .

3. m enters the network queue of the sending host and
waits until the network is available for transmission.

4. m takes and uses the network resource for some time
tnet .

5. m enters the receiving queue of the destination host
and waits until CPUj is available.

6. m takes and uses the resource CPUj of the destina-
tion host for some time treceive.

7. Message m is received by pj in the algorithm.

send
m

sending
host

3

2

1

process
p

i

CPU
(tsend)

i

Network
(tnetwork)

4

m
receive

receiving
host

7

6

5

process
p

j

CPU
(treceive)

j

Figure 3. Decomposition of the end-to-end de-
lay.

Parameters. The model defined needs to be fed with the
three parameters tsend , tnet and treceive. Due to the dif-
ficulties to measure their values on the prototype (see Sec-
tion 5.1) we assumed (following [5]) tsend and treceive to be
constants, with tsend = treceive. The parameters tnet , tsend

and treceive have been derived from the results of measure-
ments (Section 5.1 and 5.2). We observed that a bi-modal
distribution (described in Section 5.1) was a good fit of the
results for tnet .

3.4 Failure detection model

One approach to modeling a failure detector is to build
a model of the failure detection algorithm. However, this
approach would complicate the model to a great extent (we
would have to model the messages used for failure detec-
tion). Such a level of detail is not justified as we model
other, more important components of the system (e.g., the
network) in much less detail. For this reason, we chose a
very simple model for failure detectors. Each process mon-
itors every other process, thus each process has n�1 failure
detectors (n is the number of processes). Consider any pair
of processes p and q and the failure detector at q that moni-
tors p. Each of these failure detectors is modelled as a pro-
cess with two states, which alternates between states mean-
ing “q trusts p” and “q suspects p”. Note that the underlying
assumption is that the behavior of each failure detector is
independent of the others. This constitutes a major simpli-
fication. Indeed, as the heartbeat messages are affected by
contention (either because of other heartbeats or other mes-
sages of the consensus algorithm) the outputs of the failure
detectors at a given time are expected to be correlated.

The question remains how to set the transition rates in
this simple model. We adopted the following solution. We
measured some quality of service (QoS) metrics of failure
detectors in experiments on our cluster, and then adjusted
the transition rates in the model such that the model of the
failure detector has the same average value for the QoS met-
rics as the real failure detector. QoS metrics for failure de-
tectors were introduced in [15]. The authors consider the
failure detector at a process q that monitors another process
p, and identify the following three primary QoS metrics (see
Fig. 3.4):

trust

suspect suspect

trust

FD at q

TM

TMR

t
mistake duration

mistake recurrence time

up
p t

Figure 4. Quality of service metrics for failure
detectors. Process q monitors process p.

Detection time TD: The time that elapses from p’s crash
to the time when q starts suspecting p permanently.

Mistake recurrence time TMR: The time between two con-
secutive mistakes (q wrongly suspecting p), given that
p did not crash.
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Mistake duration TM : The time it takes a failure detector
component to correct a mistake, i.e., to trust p again
(given that p did not crash).

These QoS metrics are random variables. In our experi-
ments on the cluster, we estimate the mean values for TMR

and TM and use these values to configure the failure detec-
tor model (in future work, we plan to improve the model by
estimating the distributions of these metrics and incorporat-
ing these distributions into the model). We considered two
different time distributions for the transition from one state
to the other: a deterministic and an exponential distribution,
so to have, for the same mean value, a distribution with the
minimum variance (0) and a distribution with a high vari-
ance.

SuspTrust

FD

fd
crash

ts st

Figure 5. SAN model of the local failure de-
tector module.

Figure 5 shows the way the local failure detector mod-
ule has been modelled. As it can be seen, the two states
are represented by the places Trust and Susp, while the (de-
terministic or exponential) transitions from one state to the
other is managed by the activities ts and st. The activities
present three possible outputs. The first two (in descending
order) manage the alternance between the two states. The
third one makes the activity of the failure detector stop when
a decision is taken or when no more processes are alive; this
is needed to stop the execution of the model once all inter-
esting events took place. At the beginning of the simula-
tion, an instantaneous activity fd determines the initial state
of the failure detector module according to the probabilities
associated to its outputs.

In this work, we did not model the contention on the net-
work due to failure detectors. This is a choice we did on the
basis of several measurements where the extra load gener-
ated did not affect the latency (the network bandwidth man-
aged heartbeat and other messages without any problem).
We reserve to take into account this phenomenon in a future
and more refined model.

4 Implementation issues

In this section, we discuss some issues related to the 3S
consensus experiments on the cluster.

Measuring latency. Since the latency values to be mea-
sured are rather small (sometimes < 1 ms) we had to mea-
sure time extremely precisely. The resolution of Java’s clock

(1 ms) was not sufficient, i.e., we had to implement a clock
with a higher resolution (1 �s) in native C code. Also, the
clocks of the hosts had to be synchronized precisely, in or-
der to start the consensus algorithm of all the processes at
the same time t0 (see Section 2.3). We were able to achieve
clock synchronization with a precision of � 50�s, using
the NTP daemon [25] which provides advanced clock syn-
chronization algorithms at minimal cost. This is far less
than the transmission time of a message (� 180�s). This
allowed us to have all processes start the consensus algo-
rithm within a time window of 50�s.

Isolation of multiple consensus executions. The latency
of the 3S consensus algorithm was computed by averag-
ing over a large number of (sequential) executions of the
algorithm. However, with multiple executions of consen-
sus it might happen that messages of consensus #k interfere
with messages of consensus #(k + 1). In order to isolate
completely the execution of two consensus algorithms, we
have separated the beginning of two consecutive consensus
executions by 10 ms, a value that was sufficient to avoid
interferences.2

Measuring the QoS parameters of the failure detector.
The failure detector outputs are only used in the runs of
class 3 (Section 2.4), i.e., in runs were all processes are cor-
rect and the failure detectors are not accurate. We estimate
the QoS parameters of a failure detector from its history dur-
ing the experiment, i.e., from the state transitions trust-to-
suspect and suspect-to-trust, and the time when these tran-
sitions occur. Note that these transitions were recorded dur-
ing the full duration of an experiment, which encompasses
multiple executions of the consensus algorithm: one new
execution every 10 ms. While the different executions of
the consensus are isolated one from another, the failure de-
tectors are not reset to some initial state at the beginning
of each consensus — this would not make any sense, con-
sidering the short latency of the consensus algorithm. The
consequence is that we had to measure the QoS parameters
of the failure detector for the full duration of the experiment
(multiple consensus), rather than the duration of one single
consensus.

Let Texp be the duration of the experiment (multiple con-
sensus), and let us consider the pair of processes (p; q). Let
T
pq
S the time the failure detector of process p spent suspect-

ing process q, npqTS the number of trust-to-suspect transi-
tions of p w.r.t. q, and n

pq
ST the number of suspect-to-trust

transitions. The QoS metrics described in Section 3.4, i.e.,
the average mistake duration TM and the average mistake
recurrence time TMR, are computed for the pair of pro-
cesses (p; q) from the two equations:

T
pq
M

T
pq
MR

=
T
pq
S

Texp
and Texp =

n
pq
TS + n

pq
ST

2
� T

pq
MR

2In the few experiments with extremely bad failure detection we ob-
served latencies above 10 ms (see Section 5.4) and thus we had to increase
the separation.
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We obtain the QoS metrics TM and TMR for the failure
detector by averaging over the values T pq

M and T
pq
MR for all

pairs (p; q).

5 Results

We now present the results of the measurements and the
simulations (we chose simulation solvers instead of analyt-
ical ones because we had to account for non-exponential
distributions which capture much better the actual behavior
of the system). We executed the same kind of experiments
on both the SAN simulation model and the cluster whenever
that was possible. We present results using both approaches
for 3 and 5 processes, and results obtained on the cluster for
7, 9 and 11 processes.3

5.1 Setting the parameters of the SAN model

As we described in Section 3.3, we model the transmis-
sion of messages by reproducing the contention for the pro-
cessors and for the network. The network model has three
parameters tsend , treceive and tnetwork that determine the
end-to-end delay of a message. Messages sent to all n pro-
cesses are treated specially, in order to reduce the size of
the SAN model. Whereas in the implementation they are
n�1 unicast messages, in the model they appear as a single
broadcast message, with a higher parameter tnetwork than
unicast messages.

We tuned the parameters on the basis of measurements
that give end-to-end delay of unicast and broadcast mes-
sages (for n = 3 and n = 5). Figure 6 shows the cumula-
tive distribution in each of these three cases. These distribu-
tions were approximated by using uniform distributions in
a bi-modal fashion, thus giving, in the case of unicast mes-
sage: U[0.1, 0.13] (with a probability of 0.8) and U[0.145,
0.35] (with a probability of 0.2), where U[x,y] stands for
a uniform distribution between x and y. The values are
to be considered as milliseconds. From the measurements
in Figure 6 we determined the parameters as follows: (1)
tsend and treceive are assumed constant and equal (as sug-
gested in previous works [24, 5]), (2) experiments reported
in Section 5.2 allowed us to obtain tsend = treceive, and (3)
tnetwork is computed as the end-to-end delay minus 2�tsend .
In the model, this implies the use of an instantaneous activ-
ity for tnetwork with two outputs — whose case probabili-
ties are the probabilities of the bi-modal like distribution —
followed by two uniform timed activities.

5.2 No failures, no suspicions

Our first results show the latency when no failures occur
and no failure detector ever suspects another process. Fig-
ure 7(a) shows the cumulative distribution of all observed

3Running the algorithm with an even number of hosts is not worth-
while: the consensus algorithms tolerates k crashes both with 2k + 1 and
2k + 2 processes.
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Figure 6. The cumulative distribution of the
end-to-end delay of unicast and broadcast
messages, averaged over the destinations.

latency values, for a variety of values for n (the number
of processes) obtained from measurements. The measure-
ments come from 5000 consensus executions on the clus-
ter for each value of n. Figure 7(b) reports the cumulative
distribution of latency values for 5 processes obtained by
simulation. Simulations were performed with the same end-
to-end delay for message transmission but varying t send =
treceive, and thus tnetwork . The figure shows that the sim-
ulation and measurement results match rather well when
tsend = 0:025ms, which suggests for that value a proper di-
vision between the different contributions of t send , treceive
and tnetwork to the end-to-end delay. On the basis of these
results we choose tsend = treceive = 0:025 ms, and this
value was used throughout all the simulations.

The mean values for the latency are the following: for
n = 3, 1:06 ms (measurements) and 1:030 ms (simulation);
for n = 5, 1:43 ms (measurements) and 1:442 ms (simula-
tion); for n = 7, 2 ms (measurements); for n = 9, 2:62 ms
(measurements); and for n = 11: 3:27 ms (measurements).
The 90% confidence intervals for the measured means have
a half-width smaller than 0:02 ms.

5.3 Failures, no incorrect suspicions

The next results were obtained for the case of one pro-
cess crash. We assume that the crash occurs before the start
of the consensus algorithm; the crashed process is suspected
forever from the beginning, while the other (correct) pro-
cesses are never suspected. We distinguish two cases: (1)
the first coordinator (process 1) has crashed and thus the al-
gorithm finishes in two rounds, and (2) a participant of the
first round (process 2) crashed and thus the algorithm fin-
ishes in one round.

Our results are summarized in Table 1. We can see that
the crash of the coordinator always increases the latency
w.r.t. the crash-free case. The reason is that the consen-
sus algorithm executes two rounds rather than one in that
case. On the other hand, the crash of a participant has a
more interesting influence: it decreases the latency for the
consensus executions, except for the executions with 3 pro-
cesses. The reason is that the crashed process does not gen-
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erate messages, and thus there is less contention on the net-
work and on the coordinator. The case n = 3 is special: the
measurements show an increased latency. In this case, the
number of messages exchanged is so small that the decreas-
ing contention plays a secondary role. We can explain the
latency increase as follows. The algorithm starts with the
coordinator sending a message m to both participants: m is
sent first to one participant p, and then to the other partici-
pant q. The reply of one participant is enough to come to a
decision. Now, if p is crashed, q will reply, but the message
m sent to p delays the sending of m to q.

In the simulation, the sending of message m is modeled
as one single broadcast message. This explains that the spe-
cial case n = 3 is not observed.

5.4 No failures, wrong suspicions

The next scenario we considered had no process crashes,
but failure detectors sometimes wrongly suspected processes.
We measured the quality of service metrics of the failure de-
tectors (see Sect. 3.4) for a variety of values of the param-
eters Th (heartbeat period) and T (timeout) (see Sect. 2.2).
The QoS values served as input parameters for the SAN
model. For both the quality of service metrics and the la-
tency measurements, we executed 20 runs for each setting
of the parameters T and Th, where each run consisted of
1000 consensus executions. We computed the mean values

and their 90% confidence intervals from the mean values
measured in each of the runs.

We present the quality of service metrics first, and the
latency second, along with the SAN simulation results for
latency.

Quality of service parameters. We found that modifying
the heartbeat period Th hardly influenced any of the quan-
tities measured. For this reason, we treated only T as an
independent parameter and we fixed Th at 0:7 � T for all ex-
periments. The quality of service metrics TMR and TM are
plotted in Fig. 8 as a function of T .

The mistake recurrence time curve (Fig. 8(a)) has an in-
creasing tendency: suspicions occur more and more rarely.
The curve only shows values up to T = 30 ms. At T > 30
ms, TMR starts rising very fast: TMR > 190 ms at T =
40 ms, and TMR > 5 000 ms at T = 100 ms, for each
value of n (90% confidence).4 The mistake duration curve
(Fig. 8(b)) is less regular. It remains bounded (<12 ms) for
all values of T .
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Figure 8. Quality of service metrics of the fail-
ure detector vs. the failure detection timeout
T . No failures occur.

4Note that we do not need to determine TMR (and TM ) precisely if
TMR is large, as the corresponding consensus latency values are nearly
constant at those values.
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latency [ms] n = 3 n = 5 n = 7 n = 9 n = 11
meas. sim. meas. sim. meas. meas. meas.

no crash 1.06 1.030 1.43 1.442 2.00 2.62 3.27
coordinator crash 1.568 1.336 2.245 2.295 2.739 3.101 3.469
participant crash 1.115 0.786 1.340 1.336 1.811 2.400 3.049

Table 1. Latency values (ms) for various crash scenarios from measurements and simulations.
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Figure 9. Latency vs. the failure detection
timeout T . No failures occur.

Latency. Figure 9 shows the latency results obtained from
both the measurements on the cluster and the simulations.
Each latency curve starts at very high values, and decreases
fast to the latency in the absence of suspicions. It is a de-
creasing curve, except for a small peak around T = 10ms
at n = 5 and 7 in the measurement results. A possible ex-
planation for this peak is interference with the Linux sched-
uler, in which the basic scheduling time unit is 10 ms (note
also the behavior of the curves of the QoS metrics in Fig. 8
for T = 10 ms). The suspicions generated are likely to dif-
fer if the thread of the failure detector sleeps slightly more
than 10 ms or slightly less than 10 ms.

By comparing the simulation and the measurement re-
sults, it is possible to notice some quite relevant differences.
Actually, the SAN model is not able to perfectly catch the

influence of the failure detectors when wrong suspicions
are frequent (bad QoS). When the failure detectors’ QoS
is good — at high values for T — the results from the SAN
model and measurements match. As we said in Section 3.4,
each failure detector is assumed to be independent from the
others. In reality, in case of contention on the system re-
sources, there is likely to be correlation on false failure sus-
picions. The assumption of independence is thus not cor-
rect. The probability that two (or more) failure detectors
see the expiring/respect of the timeout is not just the prod-
uct of the individual probabilities of all failure detectors.
Hence there should be a correlation between the states of
all the failure detectors. Since correlation among failure de-
tectors is relevant for the behavior of the protocol, further
work will focus on accounting for that correlation, either by
characterizing the QoS of the failure detectors in more de-
tail and incorporating them into the model, or by modeling
in detail the message flow of the failure detection algorithm.

6 Conclusion

In this paper we have applied a combined approach —
modeling based simulations and experimental measurements
— for the evaluation of the Chandra-Toueg 3S consensus
algorithm (an algorithm that assumes an asynchronous sys-
tem augmented with failure detectors). We identified the
latency as a performance metric of interest, which reflects
how much time the algorithm needs to reach a decision. For
the failure detection we considered a simple heartbeat al-
gorithm, and we tried to abstract its behavior in terms of
appropriate quality of service (QoS) metrics. We investi-
gated the latency of the consensus algorithm in three classes
of runs, which differed in the behavior of the failure detec-
tors and with respect to the presence or absence of crashes.
These scenarios capture the most frequent operative situa-
tions of the algorithm.

We made measurements to determine input parameters
for the simulation model. Furthermore, a validation of the
adequacy and the usability of the simulation model has been
made by comparing experimental results with those obtained
from the model. This validation activity led us to determine
some limitations of the model (e.g., the assumption about
the independence of the failure detectors), and new direc-
tions for the measurements (e.g., extracting distributions for
the QoS metrics of failure detectors).

Our efforts opened many interesting questions and di-
rections, confirming how wide the problem is of providing
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quantitative analyses of distributed agreement algorithms.
The work presented can be extended by introducing new
performance metrics (e.g., throughput) and by investigating
more deeply the behavior of the algorithm under particular
conditions (e.g., transient behavior after crashes). Never-
theless, this work allowed us to gain insight on the behavior
of the model and the implementation of the 3S consen-
sus algorithm, which will be useful for further refinements.
In order to give a complete evaluation of the Chandra and
Toueg algorithm, i.e., to decide if it is a good one for a sys-
tem like ours from a quantitative perspective, it is necessary
to compare its performance with alternative solutions. This
is our future plan: we will analyze alternative protocols and
then we will be able to make statements about how good
the protocols are by comparing the results. Such a work
will also consolidate our framework for protocol analysis.
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