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1.1 Introduction

Group communication is nowadays a well established topic in distributed computing. It
emerged over the years as a topic with a strong synergy between theory and practice:
group communication is highly relevant for building distributed systems, and is also of
theoretical importance, because of the difficult problems it addresses. The paper presents
an – inevitably subjective – retrospective of the main milestones that led to our current
understanding of group communication, with the focus on theoretical contributions of
practical relevance. Some open issues are discussed at the end of the paper.

What is theory? In the context of group communication, theoretical contributions
can be defined as contributions to abstractions and paradigms, contributions to system
models and problem specifications, and of course contributions to algorithms.

What is of practical importance in the context of group communication? We can
mention efficiency, clean structure (or architecture) of the system, flexibility of the sys-
tem, correctness, and clear understanding of the properties of the system. Efficiency
is clearly important: no one would like to have an inefficient group communication
system. Algorithms and paradigms may contribute to efficiency: a new algorithm, or
the application of a new paradigm, may increase efficiency. Abstractions and algorithms
contribute to a clean and flexible architecture of the system. Consider for example atomic
broadcast. The algorithm in [1.11] solves atomic broadcast by reduction to consensus.
This identifies consensus as a key abstraction, and directly influences the architecture
of a group communication system by introducing a consensus component. A system
with an architecture that reflects key algorithmic abstractions has more chance to be
flexible, i.e., adaptable to a changing environment. Correctness, which obviously is of
practical importance, is related to specifications (what is the system supposed to do), to
system models (what are the assumptions about the system) and to algorithms (which
are proven to meet a given specification in a given system model). Clear understanding
of the properties of the system can be seen as a subset of correctness. When a system
is deployed, it is important to know the conditions under which the system can deliver
the services it is supposed to provide. This requires understanding of the specifications
of the system, of the system models and algorithms, and also of theoretical results (e.g.,
the FLP impossibility result [1.26], or the result about the weakest failure detector for
solving consensus [1.10]).

To summarize, the retrospective addresses the practical impact of group communi-
cation theory by focusing on key contributions to abstractions, algorithms, paradigms,

A. Schiper et al. (Eds.): Future Directions in DC 2002, LNCS 2584, pp. 1–10, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147901132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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specifications, system models and theoretical results. Contributions are grouped into
three periods1:

– Prehistory (1972 - 1985)
– Early years (1985 - 1991)
– Maturity and confusion (1992 - 2002)

We start our retrospective in 1972, the year of the publication of the first paper that
attempts to propose a completely software-based approach to fault-tolerance [1.44]. We
end the “prehistorical” period in 1985 with the publication of the FLP impossibility
result in the Journal of the ACM [1.26]. The year 1985 marks also the beginning of the
“early years” period, with the publication of the first Isis paper [1.9]. We end this period
in 1991, with the publication of the failure detectors paper [1.11], an important step in
the history of group communication. The “maturity and confusion” period starts with
the publication of the first partitionable group membership paper [1.3].

1.2 Prehistory (1972–1985)

We give only a brief overview of the main contributions the first period 1972-1985. In
the context of abstractions and specifications, it is interesting to note that fundamen-
tal abstractions are identified: interactive consistency [1.36], consensus [1.25], atomic
broadcast [1.13, 1.19]. The focus at that time was on Byzantine failures [1.45, 1.33],
which shows that the complexity of solving problems with crash failures only was un-
derestimated. The early focus on Byzantine failures had a major impact on problem
specification, i.e., it led to consider non-uniform specifications, and the interactive con-
sistency problem.

The state machine paradigm is also identified in the prehistorical period, and its im-
plementation discussed in various system models: with no crashes [1.30], in the context
of crash failures [1.42] and in the context of Byzantine failures [1.31]. The rotating co-
ordinator paradigm is also already mentioned [1.40], even though it became well known
only later (see Section 1.3.2).

Strong system models are considered in that period, e.g., the synchronous round
model [1.36] and the fail-stop model [1.43], which corresponds to the asynchronous
model with perfect failure detection. Models with randomization, for solving consensus,
are also proposed [1.6, 1.39]. Finally, the FLP impossibility result [1.26], stating that
there is no deterministic algorithm for solving consensus in an asynchronous system if
one single process may crash, ends this initial period. The result will move the focus
from Byzantine failures to crash failures.

1.3 Early Years (1985–1991)

1.3.1 Abstractions and Specifications

Process groups, virtual synchrony and group membership appear in the period 1985-
1991. The notion of process group was proposed initially in an operation systems paper,
1 The chronology of the published papers (conference or journal version) sometimes differs from

the chronology of the corresponding technical reports. If the interested authors send me the
historical TR references, I will add them in an extended version of this paper.
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in the context of the V System [1.17]. In the paper, Cheriton and Zwaenepoel mention
operations such as join group, leave group, send message to group, etc. It is interesting to
notice that the paper also mentions the publish-subscribe paradigm. The concept of vir-
tual synchrony was introduced in the paper by Birman and Joseph, as a specification that
encompasses atomic broadcast (abcast), causal broadcast (cbcast) and group broadcast
(gbcast) [1.8]. The paper does not give any precise specification of these group com-
munication primitives, but stresses on the benefit of using these abstractions to develop
fault-tolerant software:

We argue that this approach to building distributed and fault-tolerant software
is more straightforward, more flexible and more likely to yield correct solutions
than alternative approaches.

The group membership abstraction and its specification appears in two papers in
1991: [1.41, 1.20]. The two papers give specifications for what is called today the pri-
mary partition group membership. [1.41] focusses on processor membership (i.e., the
members of the group are processors) in an asynchronous system model, and advocates
group membership as a mean to provide consistent failure notification. The specification
was later shown to be flawed (see Section 1.4.2). [1.20] discusses processor and process
membership in a synchronous system model. The process membership information is
obtained from the processor membership. The goal of group membership is here to solve
the continuous leader election problem.

1.3.2 Paradigms

We have already mentioned the rotating coordinator paradigm in the period 1972-1985.
However, the paradigm became really known in the “early years” period, thanks to
two papers [1.23, 1.11], which use the paradigm to solve consensus. In the rotating
coordinator paradigm, the coordinator role moves from one process p to another process
q, in a predetermined order, whenever p is suspected. Once all processes have been
suspected, the coordinator role returns to the first coordinator, etc. A process can thus
become the coordinator more than once. The paper by Chang and Maxemchuck [1.14],
which uses a rotating token to implement atomic broadcast, is sometimes mentioned in
the context of the rotating coordinator paradigm. However, token passing in [1.14] is not
related to failure suspicions, and thus does not correspond to the definition.

1.3.3 System Models

The synchronous round model and the fail-stop model mentioned in Section 1.2 are very
constraining from a practical point of view: they do not allow wrong failure suspicions.
From a practical point of view one would like to have a model that allows the system
to mistakenly suspect correct processes. Two such system models were proposed in that
period: the partially synchronous model [1.23] and the failure detector model [1.11].

The partially synchronous model considers bounds on the message transmission
delay and on the relative speed of processes. There are two variants of the model: (1)
the bounds exist, but are not known, and (2) the bounds are known, but hold only from
some unknown point on. The second variant is usually considered, but the first variant
is actually more appealing from a practical point of view.
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The failure detector model can be seen as a refinement of the partially synchronous
model. A failure detector is defined by a completeness property and by an accuracy
property. The completeness property defines the behaviour of the failure detectors with
respect to faulty processes, i.e., processes that crash. The accuracy property defines the
behavior of the failure detectors with respect to correct processes.

1.3.4 Algorithms

Many group communication algorithms were published in the period 1985-1991, and it is
impossible to mention them all. In chronological order, the two first papers to mention are
related to the group membership abstraction [1.21, 1.1]. The first paper defines dynamic
voting (or dynamic quorums) [1.21], the second view-based quorums [1.1]. The two
papers introduce some flavor of “primary partition group membership”. In [1.21], each
site maintains some information, which allows the site to determine who is in the same
partition. In [1.1], the authors write: “Each site s maintains a set called its view, the set
of sites s assumes it can communicate with. Associated with each view is a view-id and
two sites are said to be in the same view if their views have identical views-ids”. Read
and write quorums are based on views. The two papers show the algorithmic benefit of
a dynamic membership information. This became less clear later . . . (see Section 1.4.2).

While the benefit of group communication abstractions is discussed by Birman and
Joseph in [1.8], the same authors present the algorithms that implement these abstractions
in [1.7]. The paper presents algorithms for causal broadcast (based on piggybacking on
every message m the messages that are in the causal past of m) and for atomic broadcast,
based on an idea by Skeen (for each message m a sequence number sn(m) is computed,
and messages are delivered in the order of their sequence number). The paper discusses
also global broadcast (gbcast), with a rather complicated algorithm. Even though the
paper lacks of rigorous specifications for group communication primitives, and does not
address liveness, it constitutes a major milestone in the history of group communication.

Consensus algorithms are the key algorithmic contributions in the period 1985-1991:
(1) the consensus algorithm for the partially synchronous model based on the rotating
coordinator paradigm [1.23], (2) the Paxos algorithm based on leader election [1.32],
and (3) consensus algorithms for the asynchronous system augmented with failure de-
tectors [1.11], specifically the consensus algorithm using the �S failure detector and
based on the rotating coordinator paradigm. These three algorithms have in common the
separation of correctness into safety and liveness properties, where the safety proper-
ties hold no matter how asynchronously the system behaves. Termination (i.e., liveness)
requires some additional condition.

It is interesting to read Lamport’s comments about Paxos [1.29]: the algorithm was
submitted for publication in 1990, but not published before 1998. It was initially not
understood, and the reviewers of found the paper “mildly interesting, though not very
important”. . . Currently it is still an open question whether it is more efficient to solve
consensus using a rotating coordinator or leader election.

Another key contribution is the atomic broadcast algorithm by Chandra and Toueg
[1.11] based on reduction to consensus: the atomic broadcast algorithm inherits the
properties of the consensus algorithm, e.g., safety holds no matter how asynchronous the
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system is. The algorithm also shows the practical importance of consensus. References
of other atomic broadcast algorithms can be found in [1.22].

1.3.5 Summary

To summarize, in the period 1985-1991, the notion of group membership appears (implic-
itly and explicitly), the partially synchronous and the failure detector system models are
defined, and the rotating coordinator paradigm becomes popular. In terms of algorithms,
the main contributions are consensus algorithms whose safety properties hold even if the
system behaves completely asynchronously, and the atomic broadcast algorithm solved
by reduction to consensus.

1.4 Maturity and Confusion (1992–2002)

The contributions from 1985 to 1991 establish the theoretical basis for group communi-
cation and lead to substantial progress in the field during the next ten years. New topics
continue to emerge during this period, and some of these topics serve as a catalyst for
further research on theoretical foundations.

1.4.1 Maturity

The elegance and the power of failure detector model have influenced a large number
of researchers, and generated an important literature. Other important results were also
established.

Abstractions, Specifications and System Models. In the context of abstractions and
specifications, the paper by Hadzilacos and Toueg [1.27] has played an important role:
it has contributed in part by motivating subsequent authors to pay more attention to a
careful specification of group communication. A new group communication primitive,
called generic broadcast [1.38], which takes the message semantics into account, was
also proposed. The primitive is parametrized by a conflict relation, and ensures that
two conflicting messages are delivered in the same order by all processes, while non-
conflicting messages need not to be ordered.

In the context of system models, the failure detector model, initially defined in a
model where processes do not recover after a crash, has been extended to a model with
process recovery [1.2]. The paper introduces the notion of good process, a process that is
always up or eventually permanently up, and of bad process, a process that is eventually
permanently down or unstable (i.e., permanently crashing and recovering). The paper
also introduces the failure detector �Su, based on epoch numbers, for solving consensus
in the crash-recovery model.

The increasing maturity of the field is also witnessed by the comprehensive survey
on group communication specifications by Chockler, Keidar and Vitenberg [1.18]. The
“consensus” survey by Barborak, Malek and Dahbura [1.5] may also be mentioned here,
even though the paper is written from a system diagnosis perspective, rather than from
a distributed computing point of view.

Theoretical Results. Two important theoretical results were established in this period.
One, by Chandra, Hadzilacos and Toueg, shows that �S (or equivalently �W) is the
weakest failure detector that allows us to solve consensus in an asynchronous system.
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This has a very practical importance: a system that uses a �S-based consensus algorithm,
solves consensus in the maximum possible runs. Another result is the impossibility of
solving the group membership problem in an asynchronous system [1.12]. Before this
paper it was sometimes claimed that the group membership problem was not subject to
the FLP impossibility result, because the model allowed processes to crash (and to kill
other processes).

The following works are also worth mentioning. One is the paper by Malkhi and Re-
iter about Byzantine quorums, which significantly extended previous results and renewed
the research on quorum systems, e.g., [1.34]. The other work is by Fekete, Lynch and
Shvartsman [1.24] in which the authors formally specify and prove a view-oriented group
communication service (the proofs were subsequently checked by a theorem prover).

Algorithms. Many algorithms were published in this period, e.g., consensus algorithms
based on failure detectors2 and algorithms for solving other agreement problems by
reduction to consensus (atomic commitment, atomic multicast, group membership). The
most important algorithm to mention is probably the algorithm for solving consensus in
the static system model with process recovery, based on the failure detector �Su [1.2].

1.4.2 Confusion

Despite the maturity of the domain, group communication is far from being a solved
problem. Many contributions, including theoretical contributions, are still needed in
order to clarify some controversial issues, mostly in the context of the group member-
ship problem. We mention first the CATOCS controversy (causally and totally ordered
communication support), which generated lots of discussions some years ago.

The CATOCS Controversy. Cheriton and Skeen expressed several criticisms to the use
of group communication to build distributed applications [1.16]. These criticisms, which
have led to the so-called CATOCS controversy, can be summarized as follows: (1) group
communication cannot guarantee total ordering between operations that correspond to
groups of messages (e.g., transactions), (2) there is no efficiency gain over state-level
techniques, (3) semantic ordering cannot be expressed, and (4) group communication
does not ensure end-to-end guarantees. According to these criticisms, group communi-
cation has not brought anything useful to distributed computing. This is incorrect.

First, group communication define new abstractions, e.g. atomic broadcast. Abstrac-
tions are important, and the whole development of computer science consists of iden-
tifying new abstractions that contribute to the understanding of the field. Moreover,
abstractions allow the development of more complex applications, and decrease the risk
of errors. Do abstractions lead to inefficient solutions? This is an old story3. While early
implementation of group communication where known to be slow, this is no longer
2 It is interesting to note that already in 1983 (!), Fischer writes “We survey the considerable

literature on the consensus problem that was developed over the past few years and give an
informal overview of the major theoretical results in this area”. I don’t know what should be
said today . . .

3 In the early seventies, some people were claiming that it will never be possible to write programs
more efficiently than using assembly languages. I don’t know whether these people would be
eager to program a modern RISC processor at the assembler-language level!
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the case with current LAN technology. For example with 100Mbits/s Ethernet, atomic
broadcast becomes extremely fast, e.g., around 500-1000 atomic broadcasts per second.

It is true that group communication as such does not guarantee total ordering be-
tween operations that correspond to groups of messages. However, this does not prevent
providing higher level ordering guarantees using group communication.A good example
are the recent results showing the benefit of using atomic broadcast to implement trans-
actions over a replicated database [1.37, 1.28, 1.46]: the use of atomic broadcast greatly
simplifies the solution, while leading to better performances over standard database
replication techniques. It is also false to claim that semantic ordering constraints cannot
be expressed using group communications. Generic broadcast is an example of message
ordering communication primitive that uses message semantics [1.38].

The comment about the absence of end-to-end guarantees available from group
communication is maybe the most interesting. First, it is true that the absence of end-to-
end guarantees can lead to problems. For example, it has been shown that the absence
of end-to-end guarantees does not allow one to implement 2-safe transactions over a
replicated database using atomic broadcast [1.46]. However, (1) end-to-end guarantees
can be added to group communication primitives, and (2) the absence of end-to-end
guarantees can sometimes be an advantage. For example, it can be exploited to define
a new safety property for transactions called group-safety, weaker than 2-safety, which
can be sometimes more efficient than lazy replication while providing much stronger
guarantees [1.46].

The Group Membership Issue. The group membership issue is of a different nature
than the CATOCS controversy. Here, more contributions are definitely needed to clarify
important issues.

The year 1992 corresponds to the publication of the first partitionable membership
paper [1.3]. In that paper group membership is defined as “maintaining the Current
Configuration Set in consensus among the set of machines that are connected throughout
the activation of the membership protocol”. If this first definition leaves many questions
open, ten years later the fundamental questions related to partitionable membership
have still not been adequately addressed. For example, in [1.18] Chockler et al. give the
following specification in the context of the partitionable membership problem: “If the
failure detector behaves like �P , then for every stable component S there exists a view
V = S such that every process in S installs V as its last view”. This looks like the
detection of a global (stable) property. Is the partitionable group membership problem
an agreement problem, or does it rather correspond to the detection of a stable property?

While the specification of the partitionable membership problem is one issue, the
role of this abstraction is still unclear. Convincing examples are needed. While the
Isis processor membership abstraction [1.41] has clear limitations (one single group, all
processors member of this group, progress only in the majority partition of the network),
this limitation can be left by relying on multiple process groups, with one group for every
set of replicated servers. Partitionable membership is not needed for solving agreement
problems when the network can partition.

These comments may suggest that the simpler primary partition membership problem
is fully understood. Unfortunately, this is not the case. Many specifications have been
published, but none of them is satisfactory: it has been shown that current specifications
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(partitionable, but also primary partition) admit trivial solutions or allow for undesirable
behavior [1.4].

The question of the algorithmic role of the primary partition membership problem
requires also some clarification. One role was clearly identified about 15 years ago
(see Section 1.3.4). The role that is mentioned nowadays is failure detection, e.g., the
notification of the crash of a process. However, failure notification does not need to be
consistent to be able to solve agreement problems, e.g., consensus or atomic broadcast,
as known from the failure detector approach [1.11]. Using group membership for solving
atomic broadcast is an overkill. Moreover, since atomic broadcast does not require the
consistent failure notification provided by group membership, one can wonder whether
group membership should not be solved on top of atomic broadcast, as in [1.35], rather
than the opposite (as done currently in many implementations). Group membership
also allows the system to discard messages from output buffers. However, having one
mechanism for solving two problems (failure notification and discarding messages from
output buffers) is not a good solution [1.15].

Finally, the last issue that needs to be better addressed is the specification of dynamic
group communication, i.e., group communication in an environment where processes
can be added and removed during the computation4. One typical example is the view
synchronous multicast primitive in the context of primary partition membership. The
primitive appears close to reliable broadcast. However, both specifications are far away.
The same holds for (static) vs. (dynamic) atomic broadcast. This is not satisfactory.

1.5 Conclusion

Results of more than twenty years of research have contributed to a very good under-
standing of many issues related to group communication. The need to ensure safety and
liveness in the context of agreement problems (e.g., consensus, atomic broadcast) and
the practical importance of consensus are now recognized. Nevertheless, group com-
munication is not yet a solved problem. More work is needed on some issues, e.g., to
come with convincing specifications of the membership problem (primary partition and
partitionable), and with better specifications for dynamic group communication. The
algorithmic benefit of the membership abstraction needs also to be better understood.
Strong contributions are needed, to build on more solid grounds. Only so will group
communication be better accepted outside of our community.
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