
Theoretical Computer Science 291 (2003) 79–101
www.elsevier.com/locate/tcs

Optimistic atomic broadcast:
a pragmatic viewpoint�

Fernando Pedonea ;∗, Andr(e Schiperb
aHewlett-Packard Laboratories, Software Technology Laboratory, Palo Alto, CA 94304, USA

bCommunication Systems Department, EPFL, Ecole Polytechnique F(ed(erale de Lausanne,
1015 Lausanne, Switzerland

Abstract

This paper presents the Optimistic Atomic Broadcast algorithm (OPT-ABcast) which exploits
the spontaneous total-order property experienced in local-area networks in order to allow fast
delivery of messages. The OPT-ABcast algorithm is based on a sequence of stages, and messages
can be delivered during a stage or at the end of a stage. During a stage, processes deliver
messages fast. Whenever the spontaneous total-order property does not hold, processes terminate
the current stage and start a new one by solving a Consensus problem which may lead to the
delivery of some messages. We evaluate the e2ciency of the OPT-ABcast algorithm using the
notion of delivery latency. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Atomic Broadcast is a useful abstraction for the development of fault-tolerant dis-
tributed applications. Understanding the conditions under which Atomic Broadcast
is solvable is an important theoretical issue that has been investigated extensively.
Solving Atomic Broadcast e2ciently is also an important and highly-relevant prag-
matic issue. We present in this paper the Optimistic Atomic Broadcast algorithm
(called hereafter OPT-ABcast), which allows processes, in certain cases, to deliver
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messages fast. The idea of our OPT-ABcast algorithm stems from the observation
that, with high probability, messages broadcast in a local-area network are received
totally ordered (e.g., when network broadcast or IP-multicast are used). We call this
property spontaneous total-order. Our algorithm exploits this observation: whenever the
spontaneous total-order property holds, the OPT-ABcast algorithm delivers
messages fast.
The OPT-ABcast algorithm is based on the reduction of Atomic Broadcast to Con-

sensus proposed in [4]. However, contrary to [4], in the OPT-ABcast algorithm, Con-
sensus is not always required to deliver messages. Processes executing the OPT-ABcast
algorithm see the system evolve as a sequence of stages, and Consensus is only nec-
essary when processes move from one stage to the next. For any stage k, messages
can be delivered by some process p, either (1) during stage k (i.e., before p executes
Consensus), or (2) at the end of stage k (i.e., after p terminates the kth Consen-
sus execution). Messages can be delivered much quickly during a stage than at the
end of a stage, since messages delivered during a stage do not require Consensus.
We evaluate the e2ciency of the OPT-ABcast algorithm using the notion of delivery
latency. The e2ciency of the OPT-ABcast algorithm is directly related to the spon-
taneous total-order property: the event that triggers the termination of a stage is the
violation of this property.
The rest of the paper is structured as follows. Section 2 describes related work, and

Section 3 is devoted to the system model and to the deCnition of delivery latency.
In Section 4 we present an overview of the results. Section 5 describes the OPT-
ABcast algorithm, and Section 6 discusses its e2ciency. Failure handling is discussed
in Section 7. Section 8 concludes the paper.

2. Related work

This work is at the intersection of two domains: (1) Atomic Broadcast algorithms,
and (2) optimistic algorithms.
The literature on Atomic Broadcast algorithms is abundant (e.g., [1,3,4,5,7,10,13,16]).

However, the multitude of diEerent models (synchronous, asynchronous, etc.) and as-
sumptions needed to prove the correctness of the algorithms renders any fair comparison
di2cult. We base our solution on the Atomic Broadcast algorithm as presented in [4]
because it provides a theoretical framework that permits to develop the correctness
proofs under assumptions that are realistic in many real systems (i.e., unreliable failure
detectors).
Optimistic algorithms have been widely studied in transaction concurrency control

(e.g., [2,11]). To our knowledge, there has been no attempt, prior to this work, to use
optimistic approaches for solving agreement problems. The closest to the idea presented
in the paper is [8], where the authors reduce the Atomic Commitment problem to
Consensus and, in order to have a fast decision, exploit the following property of
the Consensus problem: if every process starts Consensus with the same value v, then
the decision is v. This paper presents a more general idea, and does not require all the
initial values to be equal. Moreover, we have here the typical trade-oE of optimistic
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algorithms: if the optimistic assumption holds, there is a beneCt (in e2ciency), but if
the optimistic assumption does not hold, there is a loss (in e2ciency).

3. System model and de�nitions

3.1. System model

We consider an asynchronous system composed of n processes �= {p1; : : : ; pn}.
A process can only fail by crashing (i.e., we do not consider Byzantine failures).
A process that never crashes is correct, otherwise it is faulty. Processes communicate
by message passing, and are connected through FIFO Reliable Channels, deCned by
the two primitives send(m) and receive(m). Messages are unique and taken from a set
M. FIFO Reliable Channels have the following properties: (i) if process q receives
message m from p, then p sent m to q (no creation), (ii) q receives m from p at
most once (no duplication), (iii) if p sends m to q, and q is correct, then q eventually
receives m (no loss), and (iv) if p sends m to q before sending m′ to q, then q does
not receive m′ before receiving m (FIFO order).
Each process p has access to a local failure detector module Dp that provides (possi-

bly incorrect) information about the processes that have crashed. A failure detector may
make mistakes, that is, it may suspect a process that has not failed or never suspect
a process that has failed. Failure detectors have been classiCed according to accuracy
and completeness properties which characterise the mistakes they can make [4]. In
this paper, we require (strong completeness), that is, eventually every process that
crashes is permanently suspected by every correct process. Except for the Consensus
algorithm, the results presented in the paper are independent of the accuracy property
of Dp.
An algorithm A is a collection of n deterministic automata, one per process, and

computation proceeds in steps of A. In each step, a process can (1) receive a message
that was sent to it, (2) query its failure detector module, (3) modify its state, and
(4) send a message to a single process [4]. Informally, a run R of A deCnes a (possibly
inCnite) sequence of steps of A.

3.2. Consensus

Consensus is deCned by the primitives propose(v), and decide(v), that satisfy the
following properties: (i) every correct process eventually decides some value (termi-
nation), (ii) every process decides at most once (uniform integrity), (iii) no two correct
processes decide diEerently (agreement), and (iv) if a process decides v, then v was
proposed by some process (uniform validity).
Although Consensus is not solvable in purely asynchronous systems [6], several

algorithms are known that solve Consensus in asynchronous systems augmented with
failure detectors (e.g., [4,14]). We do not address this issue in the paper, and assume
the existence of an algorithm that solves Consensus.
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3.3. Reliable Broadcast and Atomic Broadcast

We assume the existence of a Reliable Broadcast, deCned by the primitives
R-broadcast(m) and R-deliver(m). Reliable Broadcast satisCes the following properties
[9]: (i) if a correct process R-broadcasts a message m, then it eventually R-delivers m
(validity), (ii) if a correct process R-delivers a message m, then all correct processes
eventually R-deliver m (agreement), and (iii) for every message m, every process
R-delivers m at most once, and only if m was previously R-broadcast by sender(m)
(uniform integrity).
Atomic Broadcast is deCned by A-broadcast(m) and A-deliver(m). In addition to the

properties of Reliable Broadcast, Atomic Broadcast satisCes the total order property [4]:
(iv) if two correct processes p and q A-deliver two messages m and m′, then p
A-delivers m before m′ if and only if q A-delivers m before m′.

3.4. Delivery latency

In the following, we introduce the delivery latency as a measure of the e2ciency
of algorithms solving any Broadcast problem (deCned by the primitives �-broadcast
and �-deliver). The delivery latency is a variation of the Latency Degree introduced
in [14], which is based on modiCed Lamport’s clocks [12]:
• initially all clocks are zero,
• a send event and a local event on a process p do not modify p’s local clock,
• let ts(send(m)) be the timestamp of the send(m) event, and ts(m) the timestamp

carried by message m: ts(m) def= ts(send(m)) + 1,
• the timestamp of receive(m) on a process p is the maximum between ts(m) and p’s
current clock value.
The delivery latency of a message m �-broadcast in run R of an algorithm A solving

a Broadcast problem, denoted dlR(m), is deCned as the diEerence between (1) the
largest timestamp of all �-deliver(m) events (at most one per process) in run R and
(2) the timestamp of the �-broadcast(m) event in run R. Let �Rm be the set of processes
that �-deliver message m in run R. The delivery latency of m in R is formally deCned
as

dlR(m) def= max
p∈�Rm

(ts(�-deliverp(m))− ts(�-broadcast(m)));

where ts(�-deliverp(m)) and ts(�-broadcast(m)) denote, respectively, the timestamps of
the �-broadcast(m) and �-deliver(m) events.
For example, consider a broadcast algorithm Ab where a process p, willing to broad-

cast a message m, sends m to all processes, each process q on receiving m sends an
acknowledge message ACK(m) to all processes, and as soon as q receives n ACK(m)
messages, q delivers m. Let R be a run of Ab, as shown in Fig. 1, where m is the only
message broadcast in R. In this case, dlR(m)= 2.
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The delivery latency can be used to measure the �-broadcast(m)-�-deliver(m)
“message chain” of a run produced by some Broadcast algorithm A. 1 For example,
algorithm Ab requires that processes send an ACK(m) message only after receiving
message m, and so, no run generated by Ab where m is broadcast will have
sendp(ACK(m)) preceding receivep(m), for all process p. Nevertheless, algorithm Ab
allows a process q to send ACK(m) after having received ACK(m) from some pro-
cess p (see Fig. 2). Thus, there exists a run R′ of Ab where m is the only message
broadcast, and receiveq(ACK(m)) precedes sendq(ACK(m)). This leads to
dlR

′
(m)= 3.

When characterising a Broadcast algorithm A with the delivery latency parameter,
we consider only the set of runs R produced by A that exhibit the shortest “message
chain” (i.e., the smallest delivery latency).

4. Overview of the results

4.1. OPT-ABcast algorithm

The OPT-ABcast algorithm exploits the spontaneous total-order property: if a pro-
cess p sends a message m to all processes, and a process q sends a message m′ to all
processes, then the two messages might be received in the same order by all processes.
This property typically holds with high probability in local-area networks under nor-
mal execution conditions (e.g., moderate load). However, under abnormal execution
conditions (e.g., high network loads), this property might be violated. More gener-
ally, one can consider that the system passes through periods when the spontaneous
total-order message reception property holds, and periods when the property does not
hold.
Fig. 3 illustrates the spontaneous total-order property in a system composed of

eight workstations (UltraSparc 1+) connected by an Ethernet network (10 Mbits=s).
In the experiments, each workstation broadcasts messages to all the other workstations,
and receives messages from all workstations over a certain period of time (around

1 A message chain is a sequence m1; m2; : : : ; mk of messages, such that for each i, 06i6k, the receipt of
mi causally precedes the sending of mi+1 [15].
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10 s). Broadcasts are implemented with IP-multicast, and messages have 1024 bytes.
From Fig. 3, it can be seen that there is a relation between the time between suc-
cessive broadcast calls, and the percentage of messages that are received in the same
order.
In the OPT-ABcast algorithm, processes progress in a sequence of stages. Messages

can be delivered during a stage or at the end of a stage, and the key aspect is that
during a stage, messages can be delivered faster than at the end of a stage. In order
for a process p to deliver messages during a stage k, p has to determine whether
the spontaneous total-order property holds. Process p determines whether this prop-
erty holds by exchanging information about the order in which messages are received
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(see Fig. 4). 2 Once p receives this order information from all the other processes, p
uses a pre:x function to determine whether there is a non-empty common sequence
of messages received by all processes.
Whenever the spontaneous total-order property does not hold, processes terminate

the current stage, and start a new one (see Fig. 5). The termination of a stage involves
the execution of a Consensus, which can lead to the delivery of messages. Process
failures are discussed in Section 7.

4.2. Delivery latency of the OPT-ABcast algorithm

The notion of e2ciency is captured by the delivery latency parameter deCned in Sec-
tion 3.4, which measures the length of the message chain of the OPT-ABcast algorithm
between an A-broadcast and an A-deliver. We show that messages delivered during a
stage have a delivery latency equal to 2, and messages delivered at the end of a stage
have a delivery latency equal to 4. The additional cost payed by messages delivered at
the end of a stage comes from the Consensus execution. The OPT-ABcast algorithm
is based on a Reliable Broadcast and a Consensus, and thus, in order to determine the
delivery latency of messages, we use the Reliable Broadcast implementation presented
in [4], and the Consensus implementation presented in [14].
Known Atomic Broadcast implementations for the asynchronous model augmented

with failure detectors deliver messages with a delivery latency equal to 3. This means
that if the spontaneous total-order property is violated too frequently, the OPT-ABcast
algorithm may become ine2cient. However, in case the spontaneous total-order prop-
erty holds frequently, messages can be delivered e2ciently using the OPT-ABcast
algorithm.

2 In Figs. 4 and 5, 〈m1; m2; : : :〉 denotes sequence m1; m2; : : : of messages.
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5. The optimistic atomic broadcast algorithm

5.1. Additional notation

The OPT-ABcast algorithm presented in the next section handles sequences of mes-
sages. In the following we deCne some terminology needed for the presentation of the
algorithm.
A sequence of messages is denoted by seq= 〈m1; m2; : : :〉. We deCne the operators
⊕ and � for concatenation and decomposition of sequences. Let seqi and seqj be two
sequences of messages. Then, seqi⊕ seqj is the sequence of all the messages in seqi
followed by the sequence of all the messages in seqj, and seqi� seqj is the sequence
of all the messages in seqi that are not in seqj. So, the sequence seqi� seqj does
not contain any messages in seqj. The preCx function 	 applied to a set of sequences
returns the longest common sequence that is a preCx of all the sequences, or the empty
sequence denoted by �.
For example, if seqi= 〈m1; m2; m3〉 and seqj = 〈m1; m2; m4〉, then seqi⊕ seqj = 〈m1; m2;

m3; m1; m2; m4〉, seqi� seqj = 〈m3〉, and 	(seqi ; seqj)= 〈m1; m2〉.

5.2. Overview of the OPT-ABcast algorithm

Algorithm 1 (see page. 89) solves Atomic Broadcast. Processes executing Algo-
rithm 1 progress in a sequence of local stages numbered 1; : : : ; k; : : : : Messages
A-delivered by a process during stage k are included in the sequence stgA deliverk .
These messages are A-delivered without the cost of Consensus. Messages A-delivered
by a process at the end of stage k are included in the sequence endA deliverk . These
messages are A-delivered with the cost of a Consensus execution. We say that a mes-
sage m is A-delivered in stage k if m is A-delivered either during stage k or at the
end of stage k.
Every stage k is terminated by a Consensus to decide on a sequence of messages,

denoted by msgStgk . Algorithm 1 guarantees that if a correct process starts Consensus
(by invoking the propose primitive), all correct processes also start Consensus. Notice
that if not all correct processes invoke the propose primitive in the kth Consensus
execution, then Consensus termination cannot be ensured.
The sequence msgStgk contains all messages that are A-delivered by every pro-

cess that reaches the end of stage k. Process p starts stage k + 1 once it has
A-delivered all messages in endA deliverk ; where endA deliverk =msgStgk �
stgA deliverk .
The correctness of Algorithm 1 is based on two properties:

1. for any correct processes p and q, all the messages A-delivered by p in stage k
are also A-delivered by q in stage k (i.e., stgA deliverkp ⊕ endA deliverkp = stgA
deliverkq ⊕ endA deliverkq ), and

2. every sequence of messages A-delivered by some process p in stage k before p
executes Consensus k is a non-empty preCx of the sequence decided in Consensus
k (i.e., stgA deliverkp is a preCx of msgStgk).
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5.3. Detailed OPT-ABcast algorithm

All tasks in Algorithm 1 execute concurrently. At each process p, tasks GatherMsgs
(lines 11–12) and TerminateStage (lines 25–35) are started at initialisation time. Task
StgDeliverk (lines 13–24) is started by p when p begins stage k. Process p periodically
evaluates the condition in line 13, and executes task StgDeliverk whenever the sequence
(R delivered�A delivered)� stgA deliverk contain at least one message. Lines 20
and 21 in task StgDeliverk are atomic, that is, task StgDeliverk is not interrupted
(by task TerminateStage) after it has executed line 20 and before having executed
line 21.
Algorithm 1 uses an “underline” notation (e.g., k) to specify the type of message

a process is waiting for. For example, a process that waits for message (k;msgSeqq)
(line 15) will receive a message (i;−) such that i= k.
Process p in stage k manages the following sequences.
• R deliveredp: contains all messages R-delivered by p up to the current time,
• A deliveredp: contains all messages A-delivered by p up to the current time,
• stgA deliverkp : is the sequence of messages A-delivered by p during stage k, up to
the current time,
• endA deliverkp : is the sequence of messages A-delivered by p at the end of
stage k.
When p wants to A-broadcast message m, p executes R-broadcast(m) (line 9). After

p R-delivers a message m (line 11), p includes m in R deliveredp, and eventually
executes task StgDeliverk (line 13). The R-deliver at line 11 only R-delivers messages
that have been R-broadcast at line 9. At task StgDeliverk , p sends a sequence of
messages that it has not A-delivered yet to all processes (line 14), and waits for such
sequence from all processes (line 15). The next actions executed by p depend on the
messages it receives at the wait statement (line 15).
1. If p receives a sequence from all processes, and there is a non-empty preCx common

to all these sequences, p A-delivers the messages in the common preCx (line 20).
If not, p R-broadcasts message (k;ENDSTG) to terminate the current stage k (line
23).

2. Once p R-delivers message (k;ENDSTG) at line 25, p terminates task StgDeliverk

(line 26), and launches the kth Consensus execution (line 27), proposing a sequence
of all messages p has R-delivered up to the current time but not A-delivered in any
stage k ′, k ′¡k.

3. Upon deciding for Consensus k (line 28), p builds the sequence endA deliverk

(line 29) and A-delivers the messages in endA deliverk (line 30). Process p then
starts stage k + 1 (lines 32–35).

5.4. Proof of correctness

The correctness of the OPT-ABcast algorithm follows from Propositions 5:1 (Agree-
ment), 5:2 (Total Order), 5:3 (Validity), and 5:4 (Integrity). In order to prove some
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results that follow, we consider the number of times that processes execute lines
13–21 in a given stage. Hereafter, stgA deliverk; lkp denotes the value of stgA deliverkp
after p executes line 21 for the lk th time in stage k, lk¿0, and stgA deliverk;0p

denotes the value of stgA deliverkp before p executes lines 13–21 for the Crst time

(i.e., stgA deliverk;0p = �). Similarly, pre:xlp and msgSeqlp denote, respectively, the val-
ues of pre:xp and msgSeqp after process p executes lines 17 and 15 for the lth time
in a given stage.

Lemma 5.1. If p and q are two processes that execute the lk th iteration of line 21
in stage k, then stgA deliverk; lkp = stgA deliverk; lkq .

Proof. We Crst show that for any l, 0¡l6lk , pre:x
l
p= pre:x

l
q. Since p and

q execute line 21 for the lth time in stage k, p and q receive a message of
the type (k; msgSeq) from every process in the lth iteration of lines 15. From line
17 and the fact that communication between processes follows a FIFO order,
pre:xlp=	∀r msgSeqlr , and pre:x

l
q=	∀r msgSeqlr , where msgSeq

l
r is the lth message

of the type (k; msgSeqr) received from process r, and we conclude that pre:xlp= pre:x
l
q.

From line 21, stgA deliverk; l= stgA deliverk; l−1⊕ pre:xl, and a simple induction on
lk leads to stgA deliverk; lkp = stgA deliverk; lkq .

Lemma 5.2. If some process p executes line 21 l times, then all processes in �
execute the send statement at line 14 l times.

Proof. This follows directly from the algorithm since p can only execute line 21 after
receiving message (k; msgSeq) (line 15) from all processes. Thus, if p executes line
21 l times, it receives message (k; msgSeq) from all processes l times, and from the no
creation property of Reliable Channels, all processes execute the send(k;−) statement
at line 14 l times.

Lemma 5.3. For any process p, and all k¿1, if p executes the statement
decide(k; msgStgk), then (a) stgA deliverkp is a pre:x of msgStgk , and (b) stgA
deliverkp does not contain the same message more than once.

Proof. Assume that p executes decide(k; msgStgk). By uniform validity of Consensus,
there is a process q that executed propose(k; R deliveredq�A deliveredq), such that
R deliveredq�A deliveredq=msgStgk . Let lk be the number of times that p executes
line 21 before executing decide(k;−). From Lemma 5.2, all processes in � execute
the send statement at line 14 lk times.
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Algorithm 1. OPT-ABcast algorithm

1: Initialisation (see Section 5.3 for a description of the variables):
2: R delivered← �
3: A delivered← �
4: k ← 1
5: stgA deliverk ← �
6: endA deliverk ← �
7: fork tasks { GatherMsgs, StgDeliver1, TerminateStage }
8: To execute A-broadcast(m):

9: R-broadcast(m)

10: A-deliver(−) occurs as follows:

11: when R-deliver(m) {Task GatherMsgs}
12: R delivered← R delivered ⊕ 〈m〉

13: when (R delivered� A delivered)� stgA deliverk �= � {Task StgDeliverk}
14: send (k; (R delivered� A delivered)� stgA deliverk) to all
15: wait until for [∀q ∈ �: received (k; msgSeqq) from q or Dp �= ∅]
16: � = { q |p received (k; msgSeqq) from q }
17: pre:x← 	∀q∈� msgSeqq
18: if � = � and pre:x �= � then
19: stgDeliver ← pre:x � stgA deliverk
20: [ deliver all messages in stgDeliver following their order in stgDeliver;
21: stgA deliverk ← stgA deliverk ⊕ pre:x ]
22: else
23: R-broadcast(k;ENDSTG)
24: end task
25: when R-deliver(k;ENDSTG) {Task TerminateStage}
26: terminate task StgDeliverk , if executing
27: propose(k; R delivered� A delivered)
28: wait until decide(k; msgStgk)
29: endA deliverk ← msgStgk � stgA deliverk
30: deliver all messages in endA deliverk following their order in endA deliverk

31: A delivered← A delivered⊕ (stgA deliverk ⊕ endA deliverk)
32: k ← k + 1
33: stgA deliverk ← �
34: endA deliverk ← �
35: fork task StgDeliverk
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We show by induction on lk that stgA deliverk; lkp is a preCx of R deliveredq�
A deliveredq, and stgA deliverk; lkp does not contain the same message more than once.
BASE STEP. (lk =0) In this case, stgA deliverk;0p = � and the lemma is trivially true.
INDUCTIVESTEP. Assume that the lemma holds for all l′k , 0¡l′k¡lk . We show that
stgA deliverk; lkp is a preCx of R deliveredq�A deliveredq, and stgA deliverk; lkp does not
contain the same message more than once. By line 21, stgA deliverk; lkp =

stgA deliverk; (lk−1)
p ⊕ pre:xlkp . Since communication channels are FIFO, any message

sent by some process r in the lk th execution of send(k; msgSeqlkr ) (line 14) is received
by p in the lk th execution of receive(k; msgSeqlkr ) (line 15), and so, after p executes
line 17, pre:xlkp =	∀r msgSeqlkr . From lines 14 and 15, msgSeqlkr =(R deliveredr �A
deliveredr)� stgA deliverk; (lk−1)

r , and so, pre:xlkp =	∀r ((R deliveredr �A deliveredr)
� stgA deliverk; (lk−1)

r ). By Lemma 5.1, we have pre:xlkp =	∀r((R deliveredr�A del-
iveredr)�stgA deliverk; (lk−1)

p ). Therefore, stgA deliverk; lkp =stgA deliverk; (lk−1)
p ⊕(	∀r

(R deliveredr �A deliveredr)� stgA deliverk; (lk−1)
p ). From the induction hypothesis,

item (a), we have that stgA deliverk; (lk−1)
p is a preCx of R deliveredq�A deliveredq.

Furthermore, from item (b) of the induction hypothesis, all messages in stgA
deliverk; (lk−1)

p are unique. Thus, stgA deliverk; lkp =	∀r (R deliveredr�A deliveredr), 3
and so, stgA deliverk; lkp is a preCx of R deliveredq�A deliveredq. It also follows that
stgA deliverk; lkp does not contain the same message more than once. For a contradic-
tion, assume that message m is more than once in stgA deliverk; lkp . Thus, for every
process r, m is more than once in R deliveredr . From the algorithm, lines 11 and
12, m has been R-delivered more than once by r, contradicting uniform integrity of
Reliable Broadcast.

Lemma 5.4. For any two correct processes p and q, and all k¿1, if p executes line
30 in stage k, then q executes line 30 in stage k.

Proof. If p executes line 30 in stage k, then p executes the decide(k; msgStgk) state-
ment at line 28, and the propose(k;−) statement at line 27. Therefore, p R-delivers
a message of the type (k;ENDSTG) at line 25. By the agreement property of Reliable
Broadcast, q eventually R-delivers message (k;ENDSTG), and executes the propose(k;−)
statement at line 27. By agreement of Consensus, q executes the decide(k; msgStgk)
statement, and line 30.

Lemma 5.5. For any two processes p and q, and all k¿1, if both p and q execute
line 29; then stgA deliverkp ⊕ endA deliverkp = stgA deliverkq ⊕ endA deliverkq .

Proof. From line 29, endA deliverkp =msgStgk � stgA deliverkp , and so, stgA deliverkp
⊕ endA deliverkp = stgA deliverkp ⊕ (msgStgk � stgA deliverkp ). By Lemma 5.3, stgA
deliverkp is a preCx of msgStgk , and so, stgA deliverkp ⊕ endA deliverkp =msgStgk .

3 Let seqi and seqj be two sequences such that seqi is a preCx of seqj , and messages in seqj are unique.
We can show that seqi ⊕ (seqj � seqi)= seqj .
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From a similar argument, stgA deliverkq ⊕ endA deliverkq =msgStgk . Therefore, we con-
clude that stgA deliverkp ⊕ endA deliverkp = stgA deliverkq ⊕ endA deliverkq .

Lemma 5.6. For any process p, and all k¿1, if message m∈ stgA deliverkp ⊕ endA
deliverkp then there is no k ′, k ′¡k, such that m∈ stgA deliverk′p ⊕ endA deliverk

′
p .

Proof. The proof is by contradiction. Assume that there exist a process p, a mes-
sage m, some k, and some k ′¡k, such that m∈ stgA deliverkp ⊕ endA deliverkp , and
m∈ stgA deliverk′p ⊕ endA deliverk

′
p . We distinguish two cases: (a) m∈ stgA deliverkp ,

or (b) m∈ endA deliverkp . Note that from line 29, it cannot be that m∈ stgA deliverkp
and m∈ endA deliverkp .
Case (a): From lines 21, 17 and 15 stgA deliverkp is a common non-empty pre-

Cx among the messages of the type (k; msgSeq) received by p from all processes.
Thus p has received the message (k; msgSeqp) (i.e., a message that p sent to it-
self), such that m∈msgSeqp. But msgSeqp=R deliveredp�A deliveredp (line 14), and
so, m =∈A deliveredp. When p executes line 14 at stage k, A deliveredp=⊕k−1

i=1 (stgA
deliverip ⊕ endA deliverip). This follows from line 31, the only line where A delivered
is updated. Therefore, m =∈⊕k−1

i=1 (stgA deliver
i
p ⊕ endA deliverip), contradicting the fact

that there is a k ′¡k such that m∈ stgA deliverk′p ⊕ endA deliverk
′

p .
Case (b): From line 29, m∈msgStgk , and from line 28, and validity of Consen-

sus, there is a process q that executes propose(k; R deliveredq�A deliveredq) such
that m∈R deliveredq�A deliveredq. So, m =∈A deliveredq. Since when q executes
line 27, A deliveredq=⊕k−1

i=1 (stgA deliver
i
q⊕ endA deliveriq); m =∈⊕k−1

i=1 (stgA deliver
i
q⊕

endA deliveriq), and from Lemma 5.5 ⊕k−1
i=1 (stgA deliver

i
p ⊕ endA deliverip)=⊕k−1

i=1

(stgA deliveriq⊕ endA deliveriq). Thus, m =∈⊕k−1
i=1 (stgA deliver

i
p ⊕ endA deliverip), a con-

tradiction that concludes the proof.

Proposition 5.1 (Agreement). If a correct process p A-delivers a message m, then
every correct process q eventually A-delivers m.

Proof. Consider that p has A-delivered message m in stage k. We show that q also
A-delivers m in stage k. There are two cases to consider: (a) p A-delivers messages
in endA deliverkp , and (b) p does not A-deliver messages in endA deliverkp .
Case (a): From Lemma 5.4 and the fact that p A-delivers messages in endA deliverkp ,

q A-delivers messages in endA deliverkq , and from Lemma 5.5, stgA deliverkp ⊕ endA
deliverkp = stgA deliverkq ⊕ endA deliverkq . Since p A-delivers m in stage k, m∈ stgA
deliverkp ⊕ endA deliverkp , and so, m∈ stgA deliverkq ⊕ endA deliverkq . Therefore, q
either A-delivers m at line 20 (in which case m∈ stgA deliverkq ), or at line 30 (in
which case m∈ stgA deliverkq ).
Case (b): Since p does not A-deliver messages in endA deliverkp , from Lemma 5.4, no

correct process q A-delivers messages in endA deliverkq . However, m is A-delivered in
stage k by p, and so, it must be that m∈ stgA deliverkp . Assume that m∈ stgA deliverk; lkp ,
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where lk is such that for any l′k¡lk , m =∈ stgA deliverk; l
′
k

p . Therefore, p executes the
lk th iteration of line 21 in stage k, and we claim that q also executes the lk th iteration
of line 21 in stage k. The claim is proved by contradiction. From the algorithm, q
executes R-broadcast(k;−). By agreement and validity of Reliable Broadcast, every
correct process R-delivers the message (k;ENDSTG) and executes propose(k;−). By
agreement and termination of Consensus, every correct process decides on Consensus
k, and eventually A-delivers messages in endA deliverk , contradicting the fact that
no correct process A-delivers messages in endA deliverk , and concluding the proof
of the claim. Since p and q execute the lk th iteration of line 21 in stage k, and
m∈ stgA deliverk; l′kp , from Lemma 5.1, m∈ stgA deliverk; l′kq , and from lines 20–21, q
A-delivers m.

Proposition 5.2 (Total order). If correct processes p and q both A-deliver messages
m and m′, then p A-delivers m before m′ if and only if q A-delivers m before m′.

Proof. Assume that p A-delivers message m in stage k, and m′ in stage k ′, k ′¿k.
Therefore, m∈stgA deliverkp ⊕endA deliverkp , and m′∈stgA deliverk′p ⊕endA deliverk

′
p ,

and it follows immediately from Lemma 5.5 that q A-delivers m before m′. Now,
assume that m and m′ are A-delivered by p in stage k. Thus, m precedes m′ in
stgA deliverkp ⊕ endA deliverkp , and by Lemma 5.5, stgA deliverkp ⊕ endA deliverkp =
stgA deliverkq ⊕ endA deliverkq .
We claim that if m precedes m′ in stgA deliverkq ⊕ endA deliverkq , then q A-delivers

m before m′. If m;m′ ∈ stgA deliverkq (respectively m;m′ ∈ endA deliverkq ), then, from
task stgDeliverk , line 20 (respectively TerminateStage, line 30), q A-delivers m before
m′. Thus, consider that m∈ stgA deliverkq and m′ ∈ endA deliverkq . To reach a contra-
diction, assume that q A-delivers m′ before m. Before A-delivering m at line 20, q
executes line 26 and terminates task stgA deliverkq , and so, m cannot be A-delivered
in stage k, contradicting that m and m′ are A-delivered in stage k, and concluding the
proof of the lemma.

Lemma 5.7. If a correct process p executes line 25 in stage k, then every correct
process q executes line 25 in stage k.

Proof. The proof is by induction on k. BASE STEP. (k =1) Initially, all correct pro-
cesses are in stage 1. Thus, if p executes line 25 in stage 1 and R-delivers message
(1;ENDSTG), by the agreement property of Reliable Channels, every correct process
eventually executes line 25 and R-delivers message (1;ENDSTG). INDUCTIVE STEP. As-
sume that if a correct process p executes line 25 in stage k − 1, then every correct
process q executes line 25 in stage k − 1. We show that if p executes line 25 in stage
k, then q also executes line 25 in stage k. From the algorithm and the termination prop-
erty of Consensus, after R-delivering message (k − 1;ENDSTG), all correct processes
eventually terminate Consensus in stage k − 1 and execute lines 32–35, starting stage
k. Since p R-delivers message (k;ENDSTG), by agreement of Reliable Channels, every
correct process q R-delivers message (k;ENDSTG).
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Lemma 5.8. No correct process p has a task stgDeliverkp , k¿0, that is permanently
blocked in the wait statement of line 15.

Proof. For a contradiction, consider that there exists a correct process p such that for
some lk¿0, task stgDeliverkp is permanently blocked at the lk th iteration of line 15.
Therefore, (a) there is a process q such that p never receives the message (k; msgSeq)
for the lk th time from q and (b) q =∈Dp. From (b), and the completeness property
of Dp, q is a correct process. From Lemma 5.7, if p executes line 25 in stage k,
then q executes line 25 in stage k, but since p never receives (k; msgSeq) for the lk th
time from q, by the no loss property of Reliable Channels, q does not send message
(k; msgSeq) for the lk th time to p (line 14).
We now prove the following claim: if q does not execute send(k; msgSeq) for

the lk th time, q executes R-deliver(k;ENDSTG). When p executes the wait statement
for the lk th time in stage k, there exists a message m such that m∈ (R deliveredp
�A deliveredp)� stgA deliverk; (lk−1)

p . So, (1a) m =∈ stgA deliverk; (lk−1)
p , and from line

31, (1b) m =∈⊕k−1
i=1 stgA deliver

i
p ⊕ endA deliverip . If q does not send the message (k;

msgSeq) for the lk th time to p, then either (i) (R deliveredq� (⊕k−1
i=1 (stgA deliver

i
q

⊕ endA deliveriq)))� stgA deliverk; (lk−1)
q is empty (line 13) or (ii) task stgDeliverkq is

terminated before q sends message (k; msgSeq) for the lk th time to p (i.e., q terminates
stage k). Furthermore, since p executes line 15 for the lk th time, p has executed the
(lk−1)th iteration of lines 13–21, and received a message from all processes at line 15
for the (lk−1)th time. Thus, every process executes the send statement at line 14 at least
lk−1 times, and, from Lemma 5.1, (2a) stgA deliverk; (lk−1)

p = stgA deliverk; (lk−1)
q . From

Lemma 5.5, (2b) for all k ′; 16k ′¡k, stgA deliverk
′

p ⊕ endA deliverk
′

p = stgA deliverk
′

q

⊕ endA deliverk′q . From (1a) and (2a), we conclude that m =∈ stgA deliverk; (lk−1)
q , and,

from (1b) and (2b), m =∈⊕k−1
i=1 stgA deliver

i
q⊕ endA deliveriq. Since q does not send

message (k; msgSeq) for the lk th time to p at line 14, m will never be in R deliveredq.
However, by the agreement property of Reliable Broadcast, eventually m∈R deliveredq
(item (i) of the claim is false), and so, task stgDeliverkq is terminated at line 24 or 26
before q sends message (k; msgSeq) for the lk th time to p (item (ii) of the claim is
true), and q executes R-deliver(k;ENDSTG), concluding our claim.

By the agreement of Reliable Broadcast, p eventually R-delivers message (k;
ENDSTG), and so, p executes line 26 and terminates task stgDeliverkp , contradicting our

initial hypothesis that task stgDeliverkp remains permanently blocked.

Proposition 5.3 (Validity). If a correct process p A-broadcasts a message m, then p
eventually A-delivers m.

Proof. For a contradiction, assume that p A-broadcasts m but never A-delivers it.
From Proposition 5.1, no correct process A-delivers m. Since p A-broadcasts m, it
R-broadcasts m, and from the validity of Reliable Broadcast, p eventually R-delivers m
and includes m in R deliveredp. Since no correct process A-delivers m, m =∈
A deliveredp, and for all k, m =∈ stgA deliverk , k¿0. From the agreement of
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Reliable Broadcast, there is a stage k1 such that for all l¿k1, and every correct process
q, m∈ (R deliveredq�A deliveredq)� stgA deliverlq .

Let k2 be a stage such that for all l¿k2 every faulty process has crashed (i.e.,
no faulty process executes stage l), and let k¿max(k1; k2). Thus, no faulty process
executes stage k, and for every correct process q, m∈ (R deliveredq�A deliveredq)
� stgA deliverkq at stage k. From Lemma 5.8, for every correct p, no task stgDeliverkp
remains permanently blocked at line 15, and if task stgDeliverkp is terminated, task

stgDeliver(k+1)
p is eventually started by p. Thus, all correct processes execute the when

statement at line 13, and there are two cases two consider: (a) for all lk¿0, every
process executes the then branch of the if statement at line 18 (in which case there
are no faulty processes in the system), and (b) for some lk¿0, there is a process r
that executes the else branch, and R-broadcasts message (k;ENDSTG).
Case (a): We claim that there exists an l′k¿0 such that m∈ 	∀r ∈� msgSeq

l′k
r . From

the algorithm, for all r, msgSeqlkr =(R deliveredr �A deliveredr)� stgA deliverk; lkr ,
and so, m∈msgSeqlkr . Assume, for a contradiction, that for every l′k¿0, m =∈ 	∀r∈�
msgSeql

′
k
r . Since m∈msgSeqlkr , for all r, this can only be possible if for two processes

p′ and p′′, m precedes some message m′ in msgSeqlkp′ and m′ precedes m in msgSeqlkp′′ .
However, in this case, eventually, 	∀r∈� msgSeqr = �, and processes do not execute
the then branch, contradicting the assumption of case (a).
Case (b): By the validity of Reliable Broadcast, r R-delivers message (k;ENDSTG).

From Lemma 5.7, if p reaches line 25 in stage k, then q reaches line 25 in stage k, and
from agreement of Reliable Broadcast, every correct process q R-delivers (k;ENDSTG)
and executes propose(k; R deliveredq�A deliveredq, such that m∈R deliveredq�
A deliveredq. By agreement and termination of Consensus, every q decides on the
same msgStgk , and by validity of Consensus m∈msgStgk . It follows that q A-delivers
m, a contradiction that concludes the proof.

Proposition 5.4 (Uniform integrity). For any message m, each process A-delivers m
at most once, and only if m was previously A-broadcast by sender(m).

Proof. We Crst show that, for every message m, each process A-delivers m only
if m was previously A-broadcast by sender(m). There are two cases to consider.
(a) A process p A-delivers m at line 20. Thus, p received a message (k; msgSeqq)
from every process q, for some k, and m∈msgSeqq. From line 14, m∈R deliveredq,
and from line 12, p has R-delivered m. By uniform integrity of Reliable Broad-
cast, sender(m) R-broadcasts m, and so, sender(m) A-broadcasts m. (b) Process p
A-delivers m at line 30. Thus, from line 29, m∈msgSetk , for some k, and p exe-
cuted decide(k; msgStgk). By uniform validity of Consensus, some process q executed
propose(k; R deliveredq�A deliveredq), such that m∈R deliveredq�A deliveredq.
From an argument similar to the one presented in item (a), sender(m) A-broadcasts m.
We now show that m is only A-delivered once by p. From Lemma 5.6, it is clear

that if m is A-delivered in stage k (i.e., m∈ stgA deliverk ⊕ endA deliverk), then m is
not A-delivered in some other stage k ′, k ′ �= k. It remains to be shown that m is not
A-delivered more than once in stage k. There are three cases to be considered: m is
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A-delivered at line 20 and will not be A-delivered again (a) at line 20 or (b) at line
30, and (c) m is A-delivered at line 30 and will not be A-delivered again at line 20.
Case (a): After A-delivering m at line 20, p includes m in stgA deliverkp , and from

line 19, p will not A-deliver m again at line 20.
Case (b): For a contradiction, assume that m is A-delivered once at line 20 and again

at line 30. Thus, when p executes line 29, m =∈stgA deliverkp . Since m has already been
A-delivered at line 20, it follows that task StgDeliverk is terminated after p A-delivers
m at line 20 and before p executes line 21. This leads to a contradiction since lines
20 and 21 are executed atomically.
Case (c): Before executing line 30, p executes line 26, and terminates task

StgDeliverk . So, once p A-delivers some message at line 30 in stage k, no message
can be A-delivered at line 20 in stage k by p.

Theorem 5.1. Algorithm 1 solves Atomic Broadcast.

Proof. Immediate from Propositions 5.1, 5.2, 5.3, and 5.4.

6. E+ciency of the OPT-ABcast algorithm

6.1. On the necessity of Consensus

In this section, we discuss the e2ciency of the OPT-ABcast algorithm. Intuitively,
the idea is that if Consensus is not needed to deliver some message m, but necessary
to deliver some other message m′, then the delivery latency of m′ is greater than the
delivery latency of m. Before going into details about the delivery latency of messages
delivered with and without the cost of a Consensus execution (see Section 6.2), we
present a more general result about the necessity of Consensus in the OPT-ABcast
algorithm. Brie;y, Proposition 6.1 states that in a failure-free and suspicion-free run,
Consensus is not executed in stage k if the spontaneous total-order property holds
in k.

Lemma 6.1. For any two processes p and q, and all k¿1, if p executes line 21 for
the lk th time in stage k; lk¿0, then q executes line 21 for the (lk − 1)th time in
stage k.

Proof. If p executes line 21 for the lk th time in stage k, then p executes the wait
statement at line 15 for the lk th time in stage k such that p does not suspect any
process and receives a message from every process (furthermore, there is a non-empty
preCx between all messages received by p). From the no-creation property of Reliable
Channels, every process q executes the send statement at line 14 for the lk th time in
stage k. For a contradiction, assume that q does not execute line 21 for the (lk − 1)th
time. Then, q executes R-broadcast(k, ENDSTG) (line 23) in the l′k iteration of lines 14
–24, l′k6(lk−1), and q Cnishes task StgDeliverk (line 24). Therefore, q never executes
the send statement at line 14 for the lk th time, a contradiction.



96 F. Pedone, A. Schiper / Theoretical Computer Science 291 (2003) 79–101

Proposition 6.1. Let R be a failure-free and suspicion-free run of the OPT-ABcast
algorithm. If for every two processes p and q, all k¿0, and all lk¿0; ((R deliveredp�
A deliveredp)� stgA deliverk; lkp ) 	 ((R deliveredq�A deliveredq)� stgA deliverk; lkq )
�= �, then no process executes Consensus k in R.

Proof. Assume that there is a process p that executes Consensus k in R. From the
algorithm, p R-delivers a message of the type (k, ENDSTG), and by uniform integrity
of Reliable Broadcast, some process q executed R-broadcast(k, ENDSTG). From line
18, either (a) q suspects some process, or (b) there is an iteration lk¿0 of lines 14
–17, such that pre:xlk+1

q = �. Case (a) contradicts the hypothesis that no process is

suspected, so it must be that pre:xlk+1
q = �.

From Lemma 6.1 and lines 17, 14 and 15, pre:xlk+1
q =	∀r msgSeqlk+1

r =	∀r ((R del-
iveredr �A deliveredr)�stgA deliverk; lkr ), and so, 	∀r ((R deliveredr�A deliveredr)
� stgA deliverk; lkr )= �. Therefore, there must exist two processes p and q such that
((R deliveredp�A deliveredp)� stgA deliverk; lkp ) 	 ((R deliveredq�A deliveredq)
� stgA deliverk; lkq )= �, contradicting the hypothesis.

Thus, from Proposition 6.1, in a failure-free and suspicion-free run, Consensus is
only necessary in stage k if the spontaneous total-order property does not hold in k.

6.2. Delivery latency of the OPT-ABcast algorithm

We now discuss in more detail the e2ciency of the OPT-ABcast algorithm. For
every process p and all stages k, there are two cases to consider: (a) messages
A-delivered by p during stage k (line 20), and (b) messages A-delivered by p at
the end of stage k. The main result is that for case (a), the OPT-ABcast algorithm can
A-deliver messages with a delivery latency equal to 2, while for case (b), the deliv-
ery latency is at least equal to 4. Since known Atomic Broadcast algorithms deliver
messages with a delivery latency of at least 3, these results show the tradeoE of the
OPT-ABcast algorithm: if the spontaneous total-order property only holds rarely, the
OPT-ABcast algorithm is not attractive, while otherwise, the OPT-ABcast algorithm
leads to smaller costs than known Atomic Broadcast algorithms.
Propositions 6.2 and 6.3 assess the minimal cost of the OPT-ABcast algorithm to

A-deliver a message m. Proposition 6.2 deCnes a lower bound on the delivery latency
of m, and Proposition 6.3 states that this bound can be reached in runs where no
process A-delivers m at the end a of stage. We consider a particular implementation
of Reliable Broadcast that appears in [4]. 4

Proposition 6.2. Assume that the OPT-ABcast algorithm uses the Reliable Broadcast
implementation presented in [4]. If R is a set of runs generated by the OPT-ABcast

4 Whenever a process p wants to R-broadcast a message m, p sends m to all processes. Once a process
q receives m, if q 	=p then q sends m to all processes, and, in any case, q R-delivers m.
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send(m)
R-broadcast(m)

A-deliver(m)
R-deliver(m)

send(k,<m>)

A-broadcast(m)

p

q

r

s

Fig. 6. Run of OPT-ABcast with dlR(m)= 2.

algorithm such that m is a message A-delivered in runs in R, then there is no run R,
R∈R, such that dlR(m)¡2.

Proof. Assume that m is A-delivered in stage k, and let p be a process that
A-delivers m in R. There are two cases to consider: (a) m is A-delivered by p during
stage k, and (b) m is A-delivered by p at the end of stage k. In case (a), p received
a message (−; msgSeqq) from every process q such that m∈msgSetq. Since q exe-
cutes send(−; R deliveredq�A deliveredq) such that m∈R deliveredq�A deliveredq,
q executes R-deliver(m), and by uniform integrity of Reliable Broadcast, there is
some process r that executes R-broadcast(m), which is the process that executes
A-broadcast(m). From the implementation of Reliable Broadcast, ts(A-broadcastr(m))
= ts(sendr(m)), and by the deCnition of delivery latency, ts(A-deliverp(m))= ts(sendr
(m)) + 2, and so, dlR(m)¿2.

In case (b), it follows that p executes R-deliver(−, ENDSTG), and so, there is some
process q that executes R-broadcast(−, ENDSTG) (line 23). Since q executes line 23, it
must be that m∈R deliveredq�A deliveredq, and so, q R-delivered m from some r.
From an argument similar to the one presented in case (a), dlR(m)¿2.

Proposition 6.3. Assume that the OPT-ABcast algorithm uses the Reliable Broadcast
implementation presented in [4]. If R is a set of runs generated by the OPT-ABcast
algorithm, such that in runs in R; m is a message only A-delivered during stage k,
for some k¿0, then there is a run R; R∈R, such that dlR(m)= 2.

Proof. Immediate from Fig. 6, where process p A-broadcasts message m. (Some mes-
sages have been omitted from Fig. 6 for clarity.) Let #; #′ ∈{p; q; r; s}. We have
ts(receive#(m))= ts(sendp(m)) + 1, and ts(receive#(k; 〈m〉) from #′)= ts(send#′(k; 〈m〉))
+ 1. But ts(send#′(k; 〈m〉))= ts(receive#′(m)), and therefore, ts(receive#(k; 〈m〉) from
#′)= ts(sendp(m)) + 2. From Fig. 6, we have that ts(A-broadcastp(m))= ts(sendp(m)),
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and ts(A-deliver#(m))= ts(receive#(k; 〈m〉) from #′). By the deCnition of delivery
latency, we conclude that dlR(m)= 2.

The results that follow deCne the behaviour of the OPT-ABcast algorithm for mes-
sages A-delivered at the end of stage k. Proposition 6.4 establishes a lower bound for
this case, and Proposition 6.5 shows that this bound can be reached when there are no
process failures and no failure suspicions.

Proposition 6.4. Assume that the OPT-ABcast algorithm uses the Reliable Broadcast
implementation presented in [4], and the Consensus implementation presented in [14].
Let R be a set of runs generated by the OPT-ABcast algorithm, such that m and m′

are the only messages A-broadcast and A-delivered in R. If m and m′ are A-delivered
at line 30 by some process p, then there is no run R; R∈R, such that dlR(m)¡4
and dlR(m′)¡4.

Proof. Assume for a contradiction that there is a run R in R such that dlR(m)¡4
and dlR(m′)¡4. Since p A-delivers m and m′ at line 30, p R-delivers message (−,
ENDSTG), and by uniform integrity of Reliable Broadcast, there is a process q that
executes R-broadcast(−, ENDSTG). Thus, q has R-delivered at least one message that
is neither in A deliveredq nor in stgA deliverq (line 13). Without loss of generality,
assume that this message is m. Since q R-delivered m, there is a process r that executes
R-broadcast(m), and this is the process that executes A-broadcast(m). From the deCni-
tion of delivery latency, we have that ts(proposep(−))= ts(A-broadcastr(m))+2. From
the contradiction hypothesis, dlR(m)= ts(A-deliverp(m))− ts(A-broadcastr(m))¡4, and
so, ts(A-deliverp(m))= ts(A-broadcastr(m)) + 2 + c¡4, where c is the length of the
message chain generated by the Consensus execution (i.e., between proposep(−) and
decidep(−)). We conclude that c¡2. This leads to a contradiction since for the Con-
sensus algorithm presented in [14], the minimal messages chain is 2, and therefore,
c¿2.

Proposition 6.5. Assume that the OPT-ABcast algorithm uses the Reliable Broadcast
implementation presented in [4], and the Consensus implementation presented in [14].
Let R be a set of runs generated by the OPT-ABcast algorithm, such that in every
run in R, m and m′ are the only messages A-broadcast and A-delivered, and there
are no process failures and no failure suspicions. If m and m′ are A-delivered at
line 30 by some process p, then there is a run R; R∈R, such that dlR(m)= 4 and
dlR(m′)= 4.

Proof. Immediate from Fig. 7, where process q A-broadcasts message m, and pro-
cess r A-broadcasts message m′. (The Consensus execution and some messages have
been omitted for clarity.) For all #∈{p; q; r; s}, ts(receive#(m))= ts(sendq(m)) + 1,
and ts(receive#(m′))= ts(sendr(m′)) + 1. It also follows that ts(receive#(k;ENDSTG))=
ts(send s(k;ENDSTG)) + 1. From Fig. 7, ts(send s(k;ENDSTG))= ts(receives(m))= ts
(receives(m′)), and therefore, ts(receive#(k;ENDSTG))= ts(send#′(m)) + 2, #′ ∈{q; r}.
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R-broadcast(m)
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Fig. 7. Run of OPT-ABcast with dlR(m)= 4 and dlR(m′)= 4.

By the Consensus algorithm given in [14], ts(decide#(−))= ts(propose#(−)) + 2.
From Fig. 7, ts(propose#(−))= ts(receive#(k;ENDSTG)), and we have that ts(decide#
(−))= ts(receive#(k;ENDSTG)) + 4. We conclude by the deCnition of delivery latency,
and from ts(A-deliver#(m))= ts(A-deliver#(m′))= ts(decide#(−)), ts(A-broadcastq(m))
= ts(sendq(m)), and ts(A-broadcastr(m))= ts(send r(m)), that dl

R(m)= 4 and dlR(m′)
= 4.

6.3. Cost analysis of the OPT-ABcast algorithm

In the following, we characterise the OPT-ABcast algorithm by the number of mes-
sage exchanged between processes to A-deliver messages during a stage and at the end
of a stage. In both cases we consider best-case scenarios (i.e., runs in which there are
no failures and no suspicions). Moreover, we distinguish the case of a point-to-point
network from the case of a broadcast network. In the former case, (n − 1) messages
are necessary to send a message to all processes, and in the latter case, a sent to all
issues only 1 message in the network. Our analysis assumes that the OPT-ABcast algo-
rithm uses the Reliable Broadcast implementation presented in [4], and the Consensus
implementation presented in [14].
Messages A-delivered during a stage. A message m that is A-delivered during a stage

(see Fig. 6) is R-broadcast by sender(m) and R-delivered by all processes. From the
implementation of Reliable Broadcast presented in [4], this requires (n− 1)2 messages
in a point-to-point network, and n messages in a broadcast network. Furthermore,
before A-delivering m, every process p receives a message of the type (k; msgSeq),
m∈msgSeq, from all processes. In a point-to-point network, this requires n(n − 1)
messages, and in a broadcast network, n messages. Thus, to A-deliver a message during
a stage, (2n−1)(n−1) messages are issued in a point-to-point network, and 2n messages
are issued in a broadcast network.
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Table 1
Cost of delivering a message

Algorithm Point-to-point Broadcast Delivery latency

OPT-ABcast(during a stage) (2n− 1)(n− 1) O(n2) 2n O(n) 2
OPT-ABcast(end of a stage) (4n− 1)(n− 1) O(n2) 4n− 1 O(n) 4
CT Atomic Broadcast [4] (3n− 1)(n− 1) O(n2) 3n− 1 O(n) 3

Messages A-delivered at the end of a stage. A message m that is A-delivered at
the end of a stage (see Fig. 7) has the cost of a message A-delivered during a stage
plus the cost of a Consensus execution. From the Consensus implementation given in
[14], in a point-to-point network, 2n(n − 1) messages are issued, and in a broadcast
network, 2n− 1 messages are issued. Therefore, to A-deliver a message at the end of
a stage, (4n − 1)(n − 1) messages are issued in a point-to-point network, and 4n − 1
messages are issued in a broadcast network.
The OPT-ABcast in perspective. As a reference, Chandra and Toueg Atomic Broad-

cast algorithm, based on the Reliable Broadcast implementation presented in [4], and the
Consensus implementation presented in [14], issues (3n−1)(n−1) messages to deliver
a message in a point-to-point network, and 3n−1 messages in a broadcast network.
Table 1 shows the results presented in this section and in the previous section.

7. Handling failures

In the OPT-ABcast algorithm (line 18), whenever task StgDeliverk does not receive
messages from all processes in �, the current stage k is terminated, which leads to
an execution of Consensus to A-deliver the messages. Therefore, as soon as a process
p∈� crashes, the A-deliver of messages will always be slow (i.e., with a delivery
latency of at least 4). This can easily be solved by adding a membership service to our
OPT-ABcast algorithm as follows. Let vi be the current view of system � (vi⊆�):
• at line 18, replace condition �=� by �= vi.
Once a process p crashes (or is suspected to have crashed), p is removed from the
view, and fast A-deliver of messages is again possible. We do not discuss further
this extension to the OPT-ABcast algorithm, but we note that the instance of the
membership problem needed to remove a crashed process can easily be integrated into
the Consensus problem that terminates a stage.

8. Conclusion

This work originated from the pragmatic observation that, with high probability, mes-
sages broadcast in a local-area network are “spontaneously” totally ordered. Exploiting
this observation led us to develop the OPT-ABcast algorithm. Processes executing the
OPT-ABcast algorithm progress in a sequence of stages, and messages can be delivered
during stages or at the end of stages. Messages are delivered faster during stages than
at the end of stages. For any process, the current stage is terminated, and another one
started, whenever the spontaneous total-order property does not hold.
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The e2ciency of the OPT-ABcast algorithm has been quantiCed using the notion
of delivery latency. The delivery latency of messages delivered during a certain stage
has been shown to be equal to 2 (best case), while the delivery latency of messages
delivered at the end of a stage equal to 4 (best case). This result shows the trade-oE
of the OPT-ABcast algorithm: if most messages are delivered during the stages, the
OPT-ABcast algorithm outperforms known Atomic Broadcast algorithms, otherwise,
the OPT-ABcast algorithm is outperformed by known Atomic Broadcast algorithms.
Finally, to the best of our knowledge, the OPT-ABcast algorithm is the Crst agree-

ment algorithm to exploit an optimistic property. If this property is satisCed the ef-
Cciency of the algorithm is improved, if the property is not satisCed the e2ciency
of the algorithm deteriorates (however, the optimistic property has no impact on the
safety and liveness guarantees of the system). We believe that this opens interesting
perspectives for revisiting or improving other agreement algorithms.
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