
Bertrand Grandgeorge
SSC 3

SEMESTER PROJECT
Report

“AODV routing algorithm

for
multihop Ad Hoc networks”

PROJECT ADVISOR
David CAVIN
Distributed Systems Lab.
EPFL-IC-IIF-LSR

PROJECT CO-ADVISOR
Yoav SASSON
Distributed Systems Lab.
EPFL-IC-IIF-LSR

PROJECT DIRECTOR
Prof. André SCHIPER
Distributed Systems Lab.
EPFL-IC-IIF-LSR

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 2 of 20

Table of Contents

1. THE PROJECT 3

2. INTRODUCTION TO AD-HOC NETWORKS 3

2.1. Overview 3
2.2. Characteristics and issues 5
2.3. Terminology 5

3. A WORD ON 802.11 AND IPACKS 6

4. ROUTING IN MANET NETWORKS 7

4.1. Proactive/reactive protocols 7
4.2. Examples 8

5. AODV 9

5.1. Overview 9
5.2. AODV Terminology 10
5.3. Functioning principle 11

5.3.1. RReq broadcast 11
5.3.2. RReq forward 11
5.3.3. RRep generation 12
5.3.4. RRep forwarding 12
5.3.5. Error detection 12
5.3.6. Table maintenance 12

5.4. JAVA Implementation 12
5.4.1. Message Types 13
5.4.2. Route table entries and configuration parameters 15
5.4.3. Integration in Framework 16
5.4.4. Classes and Methods 17

5.5. Testing 19

6. STILL TO BE DONE 20

7. REFERENCES 20

8. SOURCE CODE 20

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 3 of 20

1. The project
Intitulé du projet:

« Le standard IEEE 802.11 qui décrit le fonctionnement des réseaux sans fil ne
considère que des environnements single-hop dans lesquels chaque station n'est capable de
communiquer directement qu'avec son entourage. Si on considère des réseaux de plus grande
taille sans infrastructure cablée, il est nécessaire d'envisager un algorithme qui permette de
propager un message en passant par plusieurs stations relais (sortes de router). Pour
résoudre ce problème, il existe déjà plusieurs algorithmes de routage bien adaptés au
contexte des réseaux ad hoc : AODV (Ad hoc On-demand Distance Vector).

Le premier but de ce projet consiste à porter une implémentation JAVA ou C de
l'algorithme MAODV Multicast Ad hoc On-demand Distance Vector), dérivé de AODV qui
permet de faire du multicast. Dans un deuxième temps, une simple application illustrant son
fonctionnement sera codée et déployée sur les iPaq du réseau mobile du LSR. »

Translation :

The IEEE 802.11 standard which describes wireless functioning takes only in account
single-hop environments in which each station is able to communicate directly only with its
neighbors. If we consider bigger networks without wired infrastructure, it is necessary to
consider an algorithm which permits the propagation of a message through several relay
stations (kind of routers). In order to solve this problem, several routing algorithms adapted to
Ad Hoc networks already exist: AODV (Ad hoc On-demand Distance Vector).

The first goal of this project consists in porting a JAVA or C implementation of the
MAODV algorithm (Multicast Ad hoc On-demand Distance Vector), derived from AODV
which permits multicast. In a secondary part, a simple application illustrating its use will be
coded on iPaqs from the LSR’s mobile network.

2. Introduction to Ad-Hoc Networks

2.1. Overview
Ad-Hoc networks are the new deal in wireless communication. Unlike traditional networks,
no infrastructure is actually needed. All “nodes” (i.e. communicating systems) are equal in
role, as no client or server exists. In addition to traditional wireless networks problems such
as, bandwidth optimization, power control and transmission quality enhancement, Ad-Hoc
networks brings his load of new challenges. The actual lack of infrastructure requires the
introduction of new tasks like discovery and maintenance, addressing (no server to give an
address to each node!) or routing.

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 4 of 20

From wired networks to AdHoc…

i.

ii.

iii.

AdHoc Networks

•No infrastructure

•All nodes mobile

WLAN or Mobile Network

Base Stations =>
Necessary infrastructure

All infrastructure

LAN or Internet

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 5 of 20

2.2. Characteristics and issues
Nodes are equal: all nodes can communicate with each other, with the same priority,
regardless of the position. This means that if two nodes are out of reach and want to
communicate, they have first to find each other over the network. But as no central control
exists (server, router), Ad-Hoc cannot rely on IP-like address which would uniquely identify a
node. So the first challenge is to provide some kind of identifier of each node, for it to know
how to “call” one another. Secondly, as all should be reachable, distant (not in the same cell)
nodes should communicate through a path of other nodes, acting as routers. This is another
subject of research: routing with nodes as routers!

Frequent changes in topology: as all nodes are mobile, no topology of the network can be
guaranteed. The challenge here will be to try to predict topology changes, in order to ascertain
permanent connectivity.

Wireless has lower capacity that wired: this is a technical issue, for now, wireless links are
able to transfer less data than wired links.

Security is limited: as no physical connection is needed, anyone can connect to any wireless
network. One should be aware that wireless communication will continue to be less secure
than wired.

Higher loss rates and delays: another technical issue is the link itself: air. Electromagnetic
waves encounter many interferences coming from all environment and causing higher loss
rates and delays.

Rely on battery: mobility requires the system to be transportable and therefore to function
with a battery. This becomes an issue if it wears out, by breaking the connectivity of
surrounding neighbors.

Power limited: each node even if equal in role can be different, and more specifically have
different power (CPU, memory …). This adds complexity in determining the speed of the
transfer.

Limited storage space: few data can be stored at a time.

2.3. Terminology
Node: any system (Portable computer, pocket computer, or even cellular phone) that is part of
the wireless network.

Cell: abstract field of reception of a particular node. A node can send or receive only to nodes
within the cell.

Packet: data unit of message. A message (data) is sent in several packets.

Source node: the node that is willing to send a message.

Destination node: the intended target of the message.

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 6 of 20

Forwarding node: all nodes between source and destination nodes. They are expected to
forward messages from source to destination.

Hop: path from one node to another. A route contains one more hop than forwarding nodes.

Broadcast: the only to transfer data in wireless network ; the signal can be received from
anywhere in the emission area.

Unicast: opposed to broadcast ; a message is sent to one destination only.

Flooding: the simplest routing algorithm. The data is just sent to everybody and forwarded,
until the destination is attained. Potentially all the network can receive the data, resulting in
saturation (congestion).

Congestion: when too much data is sent on a network link or zone, errors due to collisions and
physical limits may appear, resulting in data loss or delays.

3. A word on 802.11 and iPacks
802.11 are the IEEE Official standards for wireless communication:

o IEEE 802.11-1997:
Wireless LAN medium access control and physical layer specifications

o IEEE 802.11a-1999:

High-speed physical layer

o IEEE 802.11b-1999:
Higher-speed physical layer extension

o IEEE 802.11d-2001:

Specification for operation in additional regulatory domains

802.11 works with two different operating modes with different architectures:

• Infrastructure mode: Cooperative and structured (WLAN).
• Independent (ad Hoc) mode: Concurrent and distributed.

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 7 of 20

The iPacks are Compaq’s solution of pocket PCs. It can receive a 802.11 network card
through a PCMCIA port.

Operating system
Windows® Powered Pocket PC
Linux

Processor
206 MHz Intel StrongARM 32-bit RISC

Memory
32 MB RAM memory
16 MB ROM memory

Development environment
Visual C++
Java

Porting JAVA applications on these machines requires caution as the version supported is
only v1.6.1. This is not a final statement, considering the evolution of such equipment.

4. Routing in MANET networks
The goal is to find stable routes (despite mobility) to rely on for packets dissemination.
Furthermore the route should be—if not optimized—short. One problem in MANET
Networks is, as discussed before, the lack of Identifier for each node (IP-like address).
Supposing that this problem is solved by for instance, a number reflecting a unique serial
number of the system, we will now concentrate on how to send a message to an intended
target.

4.1. Proactive/reactive protocols
Routing protocols are divided in two categories: proactive and reactive protocols. Some
attempts have been made to develop adaptive/hybrid protocols able to work well on all
environments.

Proactive protocols:

o Always maintain routes
o Little or no delay for route determination
o Consume bandwidth to keep routes up-to-date
o Maintain routes which may never be used

Reactive protocols:

o Lower overhead since routes are determined on demand

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 8 of 20

o Significant delay in route determination
o Employ flooding (global search)
o Traffic control may be congestive

Hybrid protocols (combination of proactive and reactive) are also in research.

4.2. Examples
DSDV (Destination Sequenced Distance Vector: proactive): Each node maintains a routing
table which stores the next hop, cost metric towards each destination and a sequence number
that is created by the destination itself. Each node periodically forwards routing table to
neighbors. Each node increments and appends its sequence number when sending its local
routing table. Each route is tagged with a sequence number; routes with greater sequence
numbers are preferred. Each node advertises a monotonically increasing even sequence
number for itself. When a node decides that a route is broken, it increments the sequence
number of the route and advertises it with infinite metric
Destination advertises new sequence number

DSR (Dynamic Source Routing: reactive): The idea is that when a source node wants to send
a packet to a destination, but does not know a route to it, the source initiates a route discovery.

By sending a route request (RReq), the source node floods the network, in order to let all
nodes know who (what destination node) it is looking for. The RReq stores the route taken by
appending the identifier of each forwarding nodes and propagates in the network until the
intended target (destination) receives it.

This destination node sends then a route reply (RRep), using the reversed route taken by the
RReq. The RRep includes the complete route from source to destination. On reception of the
RRep, the source can finally send its packet after including the entire route in the packet
header. Intermediate nodes use the source route included in the packet to determine to which
node the packet should be forwarded.

Source S broadcasts a RReq in the network which
only forwarded only one time per node.

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 9 of 20

Intended target D sends the route reply.

The source S sends the data packet with the
route included in the header.

Other names like “Optimized Link State Routing” (OLSR: proactive) or “Zone Routing
Protocol” (ZRP: Hybrid), also exist.

AODV (Ad hoc On-demand Distance Vector: reactive): improvement of DSR, see next
chapter.

5. AODV
As seen before, in DSR sources includes routes in packet header. Depending on the length of
the route, this header can become heavy (even if the content of the packet is small) and
degrade performances. AODV solves this problem by improving DSR in that it does not need
to include entire route in each packet.

5.1. Overview
AODV stands for AdHoc On-Demand Distance Vector and is therefore (on-demand) a
reactive protocol. It could actually be seen as a hybrid protocol as it has also some proactive
characteristics (route table at each node).

The first change from DSR to AODV is the introduction of routing tables at the nodes, so that
packets do not have to contain entire route in their header. But AODV retains the desirable
feature of DSR, that routes are maintained only between nodes which need to communicate
(active routes).

Route Requests are forwarded in same way of DSR.
When a node re-broadcasts (forwards) a Route Request, it sets up a reverse path pointing
towards the source of the RReq.
The intended destination replies by sending a Route Reply (RRep) which is unicasted to next
hop in the newly built reverse route, to reach the originator of the RReq.
On reception of each control message (RReq, RRep…) a node can update its routing table in
order to take in account evolution of the network (i.e. topology changes, obsolete routes…).

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 10 of 20

5.2. AODV Terminology
(From the IETF’s “manet-aodv-12” draft)

active route:
A route towards a destination that has a routing table entry that is marked as valid. Only
active routes can be used to forward data packets.

broadcast:
Broadcasting means transmitting to the IP Limited Broadcast address, 255.255.255.255. A
broadcast packet may not be blindly forwarded, but broadcasting is useful to enable
dissemination of AODV messages throughout the ad hoc network.

destination:
An IP address to which data packets are to be transmitted. Same as "destination node". A
node knows it is the destination node for a data packet when its address appears in the
appropriate field of the IP header. Routes for destination nodes are supplied by action of the
AODV protocol, which carries the IP address of the destination node in route discovery
messages.

forwarding node:
 A node that agrees to forward packets destined for another node, by retransmitting them to a
next hop that is closer to the unicast destination along a path that has been set up using routing
control messages.

forward route:
A route set up to send data packets from a node originating a Route Discovery operation
towards its desired destination.

invalid route:
A route that has expired, denoted by a state of invalid in the routing table. An invalid route is
used to store the previously valid route information for an extended period of time. An
invalid route may not be used to forward data packets.

originating node:
A node that initiates an AODV message to be processed and possibly retransmitted by other
nodes in the ad hoc network. For instance, the node initiating a Route Discovery process and
broadcasting the RREQ message is called the originating node of the RREQ message.

reverse route:
A route set up to forward a reply (RREP) packet back to the originator from the destination or
from an intermediate node having a route to the destination.

sequence number:
An increasing number maintained by each originating node. When used in control messages
it is used by other nodes to determine the freshness of the information contained from the
originating node.

valid route:
See active route.

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 11 of 20

5.3. Functioning principle
AODV uses 5 different types of control messages: Route Requests (RReq), Route Reply
(RRep), Route Reply Acknowledgement (RRepAck), Route Error (RErr), and Hello (Hello)
messages.

We can highlight some steps in the algorithm, basically for each type of message sent:

5.3.1. RReq broadcast
Before sending a message to a destination, the originating node consults its routing table to
look if a next Hop (next forwarding node in route) exists. If none is found or route is obsolete,
the node need to initiate a route discovery.
So, like DSR, the originating node broadcasts a RReq in the network. Each RReq contains
information on the originating and destination node (ID and Sequence number). It is also
supposed to count the hops from source to destination.

5.3.2. RReq forward
All node receiving a RReq forwards it but only one time (as it will receive several time the
same RReq from its neighbors). At this time the route to the previous node is also created
updated. If a node is the destination itself, or has an active route to destination, ti responds by
a RRep.

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 12 of 20

5.3.3. RRep generation
RRep can be generated either from a destination node, or a forwarding node. In both cases,
they naturally don’t forward the RReq, but the information included in RRep is slightly
different. RRep are unicasted to previous node (the one from which the RReq comes).

5.3.4. RRep forwarding
Each node on route receives a RRep that it needs to forward to next hop found by consulting
its table for the originating node. The RReps are unicasted so that only nodes on route are
supposed to forward them to the originating node. Naturally, these forwarding nodes also
update their table with the information contained in the RRep, for the forward route to
destination.

5.3.5. Error detection
A RErr message is iteratively unicasted to all precursors (list of forwarding nodes in a route)
stored in node’s routing table. A node initiates a RErr message if either:

o it detects a link break for the next hop of an active route in its routing table while
transmitting data, or

o it gets a data packet destined to a node for which it does not have an active route, or
o it receives a Rerr from a neighbor for one or more active routes.

5.3.6. Table maintenance

A route is only updated if the new sequence number coming from the AODV control message
is either:

o higher than the destination sequence number in the route table, or
o the sequence numbers are equal, but the hop count (of the new information) plus one,

is smaller than the existing hop count in the routing table, or
o the sequence number is unknown.

5.4. JAVA Implementation
Note: I tried as much as I could to obey the IETF draft for manet-aodv 12th version[1], but
integration cannot be exactly the same as described for technical reasons (mainly framework
integration). I had a C implementation from Uppsala University, but considering the fact that I
had to integrate my work in a framework being built by another group, I decided it was
simpler to start right from the scratch. This way I also avoided the problem of translation in a
language that might not have all the functionality of C.

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 13 of 20

5.4.1. Message Types
Each message type becomes a JAVA object with fields described as below. One difference
with the draft is that message types are on 16bits (char) instead of 8. This is to be compatible
with the rest of the framework that includes a configuration file for this kind of constants. But
I still included the type as a field for the message objects. Another one is the length of the ID
(IP in the draft) which is 64bits instead of 32, for the same reason of compatibility.

Fields of each message type: (Different from draft)

Route Request message (RReq):

0 1 2 3 .
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Flags | Hop Count |
+-+
| RREQ ID |
+-+
| Destination ID Address |
+-+
| Destination ID Address |
+-+
| Destination Sequence Number |
+-+
| Originator ID Address |
+-+
| Originator ID Address |
+-+
| Originator Sequence Number |
+-+

Type: type of message (set to 1 in the draft)

Flags: 5 RReq parameters: J (join flag), R (repair flag) both reserved for multicast,

G(Gratuitous RRep flag): indicates whether a gratuitous RRep should be unicast to the
node specified in the Destination ID field.
D (Destination only flat): indicates only the destination may respond to this RReq.
U (Unknown sequence number)

Hop_Count: increasing value to count the hops from source to destination

RReq_ID: A sequence number uniquely identifying the particular RReq when taken in

conjunction with the originating node’s ID.

Dest_ID: The Identifier (address) of the destination for which a route is desired.

Dest_SeqNum: The greatest sequence number received in the pas by the originator for any

route towards the destination.

Orig_ID: The Identifier of the node which originated the Route Request.

Orig_SeqNum: The current sequence number to be used for route entries pointing to (and

generated by) the originator of the route request.

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 14 of 20

Route Reply message (RRep):
0 1 2 3 .
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+ .
| Prefix size | .
+-+
| Type | Flags | Hop Count |
+-+
| RREQ ID |
+-+
| Destination ID Address |
+-+
| Destination ID Address |
+-+
| Destination Sequence Number |
+-+
| Originator ID Address |
+-+
| Originator ID Address |
+-+
| Lifetime |
+-+

Type: type of message (set to 2 in the draft)

Flags: R(Repair flag), A(Acknowledgement field)

Prefix_Size: If nonzero, the 5-bit Prefix Size specified that the indicated next hop may be used

for any nodes with the same routing prefix (as defined by the Prefix Size) as the
requested destination.

Hop_Count: The number of hops from the Originator ID address to the Destination ID

address. For multicast route requests this indicates the number of hop to the mulicast
tree member sending the RRep.

Dest_ID: Identifier (address) of the destination for which a route is supplied.

Dest_SeqNum: The destination sequence number associated to the route.

Orig_ID: Identifier of the node which originated the RReq for which the route is supplied.

Lifetime: The time in milliseconds for which nodes receiving th RRep consider the route to be

valid.

Route Reply Acknowledgment message (RRepAck):

0 1 .
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Type: type of message (set to 4 in the draft)

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 15 of 20

Route Error message (RErr):
0 1 2 3 .
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Flags | DestCount |
+-+
| RREQ ID |
+-+
| Unreachable Destination ID Address |
+-+
| Unreachable Destination ID Address |
+-+
| Unreachable Destination Sequence Number |
+-+
| Additional Unreachable Destination ID Address |
+-+
| Additional Unreachable Destination ID Address |
+-+
| Originator Sequence Number |
+-+

Type: type of message (set to 3 in the draft)

N_flag: No delete flag; set when a node has performed a local repair of a link, and upstream

nodes should not delete the route.

Unreacheable_Dest_SeqNum: The sequence number in the route table entry for the

destination listed in the previous Unreachable Destination ID address field.

Dest_ID: The ID address of the destination that has become unreachable due to a link brake.

Dest_Count: The number of unreqchable destinations included in the message; MUST be at

least 1.

Dest_ID and Unreacheable_Dest_SeqNum are actually arrays containing the addresses and
Sequence Numbers.

5.4.2. Route table entries and configuration parameters
Route entries are specified by the AODV draft, but not all of them are used in this
implementation (though present) they are:

o Destination ID
o Destination Sequence Number
o Valid Destination Sequence Number
o Interface: not used here
o Hop Count: number of hops needed to reach destination
o Next Hop: next node ID to which message should be sent
o List of Precursors: list of forwarding nodes in the route
o Lifetime: expiration or deletion time of the route
o Routing Flags: not used here
o State: not used here

Parameters: (in configuration file with default value), again all of them are present in this
implementation, but not all used. They are rather explicit.

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 16 of 20

AODV Parameters (as specified in draft):

 Parameter Name Default Value (update formula)

ACTIVE_ROUTE_TIMEOUT 3,000 Milliseconds
ALLOWED_HELLO_LOSS 2
BLACKLIST_TIMEOUT RREQ_RETRIES * NET_TRAVERSAL_TIME
DELETE_PERIOD
HELLO_INTERVAL 1,000 Milliseconds
LOCAL_ADD_TTL 2
MAX_REPAIR_TTL 0.3 * NET_DIAMETER
MIN_REPAIR_TTL
MY_ROUTE_TIMEOUT 2 * ACTIVE_ROUTE_TIMEOUT
NET_DIAMETER 35
NET_TRAVERSAL_TIME 2 * NODE_TRAVERSAL_TIME * NET_DIAMETER
NEXT_HOP_WAIT NODE_TRAVERSAL_TIME + 10
NODE_TRAVERSAL_TIME 40
PATH_DISCOVERY_TIME 2 * NET_TRAVERSAL_TIME
RERR_RATELIMIT 10
RING_TRAVERSAL_TIME 2*NODE_TRAVERSAL_TIME*(TTL_VALUE+TIMEOUT_BUFFER)
RREQ_RETRIES 2
RREQ_RATELIMIT 10
TIMEOUT_BUFFER 2
TTL_START 1
TTL_INCREMENT 2
TTL_THRESHOLD 7
TTL_VALUE

5.4.3. Integration in Framework
The difficulty of this project resided in its integration in a changing framework. It was
necessary to have a cooperation with the framework implementers in order that they provide
enough tools for an algorithm like AODV to be implemented. However, working on
integrating something in a changing framework delays the implementation.

The framework includes a “message pool” to avoid building too many objects which is costly
in JAVA. To use it, one has to first get access to this message pool, and to implement a
message factory for each message object. The message factory actually tells the pool, how to
construct the message. Then to build a message, we ask the message pool to return a message
object of a specified type. And finally the message can be set with parameters, and at last sent.

The framework is composed of layers (Asynchronous Layers) arranged in a stack as a
network application requires. Each layer has a thread and a buffer in which messages are
stored to be consumed by upper layer. A layer notifies the upper layer if a message is put in its
buffer, and is awaken by the lower layer on reception of a message (which is buffered in the
lower layer).

AODV is a complete layer (routing) and takes its place above the dispatcher.

See figure next page.

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 17 of 20

The dispatcher is a layer dedicated to deliver message to the proper layer or module.

The modules are side programs (not part of the layer stack), which offer a special feature
useable by several layers. Already implemented is the Hello Module.

Application layer is situated on top of the stack. The implemented application is a chat
working in multihop.

Virtual Networks is situated above the communication layer (Asynchronous Multicast) and its
purpose is to create virtual networks so that only nodes on the same network can directly
communicate with each other. It was implemented so that multihop communication could be
tested.

5.4.4. Classes and Methods
AODV package contains 11 classes: 4 for the message objects and their corresponding
message factories, one for the route table, one for its entries, and one for the algorithm. There
are only four messages because Hello message were implemented in Module on side of the
layer stack.

Methods description (in class “AODV”):
Apart from the methods for package integration in framework (Constructor, Initialize, Send,
sendMessage, handleMessage, Startup), the methods are in concordance with AODV steps.

Constructor: empty, but necessary for building the stack.

Initialize: all the initializations needed, i.e. access to the pool, reading of the configuration file

(manet.config) for specific parameters…

sendMessage: overrides super-class sendMessage method in order to handle message coming

from the above layer. Actually calls this class’s handleMessage.

Absorbing Layer

Chat

Routing (AODV)

Dispatcher

Statistics

Virtual Networks

Asynchronous Multicast

Modules

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 18 of 20

Send: called when sending a message from the class, this method sends the actual message of

control and throws an error message stating the nature of the message for which the
error occurred.

Startup: start the thread inherited from Asynchronous Layer. It will sleep after sending a

message, and will be awaken by the lower layer upon message arrival.

handleMessage: takes action depending on the message received.
 If (AODV message type) process message with proper process<Msg> method
 Else if (destination is thisNode) put message in buffer
 Else if (destination is 0) put message in buffer and broadcast again if (TTL>1)
 Else if (route for destination known) send to next forwarding node
 Else generate a route discovery for destination (send an RReq).

RReqGen: Asks a route for a message to reach a destination. The RReq is buffered (to avoid

receiving duplicates from neighbors) and then broadcasted. RReq sending rate is
limited. Repeat RReq attempts for a route discovery of a single destination is not yet
implemented. It must use a binary exponential back off (to set waiting time before
resending an RReq). An expanding ring search technique should also be used to prevent
unnecessary flooding of RReq.

RReqProcess: takes action upon RReq arrival. Creates or updates a route to previous hop and

to Originator. If node is destination, generates a Route Reply. If not, forward RReq.

RReqFwd: Forwards (broadcast) Route Request if node is not destination and RReq’s TTL is

greater than 1.

RRepGen: Route Reply generation from destination. The destination sends a route reply to the

previous node.

RRepGenInter: Route Reply generation from intermediate node knowing a route to

destination. The node update updates its route table entry for the originating node by
placing next hop towards destination and last hop node in the precursor lists (for
respectively forward and reverse route).

RRepGratuitousGen: sends a gratuitous RRep to the Originator (if the gratuitous Flag is set in

the RReq). It builds a route from destination to Originator, just as if the destination had
issued a fictitious RReq for the originating node.

RRepProcess: takes action upon RRep arrival.
 Create or updates a route to the previous hop.
 Create or update forward route.
 If (node is not originator) forward RReq
 Else send message from queue for which node knows a route.

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 19 of 20

RRepFwd: forwards Route Reply if node is not the Originator (of the RReq), and a forward
route has been created or updated. The node sends a new route reply to next node, which
can be found by consulting the node’s route table for the originator1 of the RReq.

displayError: displays debugging message (with 3 levels of debug)

updateRreqBuff: scans for node’s sent RReq messages and remove obsolete values.

scanTable: scans the node’s routing table for a specified destination and returns its index, or
“-1” if not found.

updateTable(entry): updates the routing table, by replacing the specified entry by a new one.

updateTable(): scans the routing table to remove timed out routes.

5.5. Testing
Included with the framework is a chat, and with the use of virtual network, it is possible to
experience multihop routing. Virtual networks is a layer that allows to emulate networks with
nodes that might not all see each other. For example, one can create two networks, with nodes
belonging to one or the other (or both). The interest is that the node(s) belonging to both
networks will have to act as forwarding nodes, for the others to communicate from a network
to another. This is easier than to position nodes over a field to test multihop routing!

Virtual Networks

The chat is a simple application where people can send message to others by choosing a
node’s name from a list. It is necessary to do a broadcast at the beginning so that the lists are
filled with node names (no possibility of entering a node’s ID yet).
It shows 3 windows, one for the main chat, and one for each module (Neighbor, Statistics):

1 The node for which the route request is supplied

B. Grandgeorge AODV routing in AdHoc 14/2/2003

Page 20 of 20

Module windows:

6. Still to be done
o Generate and handle RReq’s: in order to detect the departure of a forwarding node, we

have to implement RReq message generation. This can be done with using Reto
Krumenacher’s neighboring module which sends periodically Hello messages. This
way, local repair can also be implemented.

o Implement RReq retry, using exponential backoff (to determine the waiting time for a

RRep) and ring search technique (to determine TTL of RReq’s) in order to not saturate
the network. This would require a thread that would wait for a RRep, while the layer’s
thread remains dormant.

o Add RRepAck feature in configuration file (for unreliable or unidirectional links). This

is to be certain RRep are not lost over the route discovery (as they are not resent).

7. References
o [1] Ad hoc On-Demand Distance Vector (AODV) Routing:

Draft-ietf-manet-aodv-12.txt
 Charles E. Perkins, Elizabeth M. Belding-Royer, Samir R. Das
http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-12.txt

o [2] DSR and AODV:

Mobile Ad Hoc Networks Jim Thompson, Musenki
http://nycwireless.net/presentation/jt_adhoc_tutorial.pdf

o [3] Mobile Ad Hoc Networks:

http://lcawww.epfl.ch/Publications /Giordano/Giordano01a.pdf Sylvia Giordano

o [4] 802.11 and iPacks:

General overview of IEEE 802.11 David Cavin
http://lsrwww.epfl.ch/cavin/work/manet/presentation.pdf

8. Source code
In annex.

