
Automatic Validation of
Concurrent Programming

* * *
Final Report

Christof Bruetsch
CommunicationSystems Student

6th Semester

June 21, 2003

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147901119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

I Introduction 4

1 Introduction 4
1.1 Description of the AVCP Project 4
1.2 AVCP - The Plan . 4

II Project Development - The Phases 4

2 Phase I: The Chrishy Language 5
2.1 Lexical Grammar . 5
2.2 Syntactical Grammar . 7
2.3 Parser Generation . 10

2.3.1 JavaCC - JavaCompilerCompiler 10
2.3.2 JTB - JavaTreeBuilder 13

3 Phase II: The Generation of the States 15
3.1 Evaluation Concepts . 15
3.2 The State Evaluation . 15
3.3 Today’s Project Progress . 17
3.4 Multithread State Analysis . 17

III Project Structure and Tests 19

4 The Tool’s ‘Ingredients’ 19

5 Execution Tests 20
5.1 Tests on the Parser . 20
5.2 Tests on the Analyzer & the State Generator 22

6 Encountered Difficulties and Problems 25

IV Final Thoughts 25

7 Guidelines and Ideas for Following Projects 25

8 Concluding Comments 26

2

List of Tables

1 Explanations of the JavaCC Grammar 12
2 Execution Table . 18

List of Figures

1 JavaCC Parsing Flowchart . 11
2 Project Structure . 19

3

Part I

Introduction

1 Introduction

The handling with concurrent programs is often a very tricky matter and
only hardly solvable. Especially semaphores and locks (verrous in French)
offer a wide platform for complicated concurrency situations. Briefly, how
can we easily master the complexity of concurrency in programming? The
project ”Automatic validation of concurrent programs” - in the following
called ”AVCP” - makes us come a few steps closer.

1.1 Description of the AVCP Project

One possibility that leads to a better understanding of concurrency problems
is the generation of state diagrams. Due to the peculiar characteristic of the
human brain, pictures, images and charts do often say more than lines in a
hyper-complex coded program. So, such diagrams help us to get the point
much faster of how a program woks. The project’s outline was formulated
as follows:

”Develop a tool that parses a given program code and generates all possi-
ble states, identifying possible deadlocks and violations of the specifications.”

1.2 AVCP - The Plan

Conceptually, there are two main project phases. The first phase consists
of designing a new programming language which implements concurrency
expressions for semaphores and locks. The main condition is to remain simple
and handy, i.e. we would like to have a strongly limited set of grammar rules
for this language. Then, after having described the language by a set of
grammar rules, it is meant to use a parser generator in order to be able to
parse a given code written in this specific matter. I have chosen JavaCC, the
JavaCompilerCompiler to generate the parser and JTB, the JavaTreeBuilder
for the tree generation - the descriptions of these tools will follow in 2.3.1
and in 2.3.2 later on. The second phase represents the creation of a state
diagram. At the end we would like to have a graphical representation of
every possible state that can be generated by the given code.

The main tool is written in the Java 2 Programming Language.

4

Part II

Project Development -
The Phases

2 Phase I: The Chrishy Language

Chrishy is the approach to the demanded programming language mentioned
and was created with a limited set of grammar rules. In the following, the
listing and the explanation of the ChrishyGrammar, written in EBNF:
(personal commentary is represented like /* personal Comment */)

2.1 Lexical Grammar

/* the input is an unlimited set of inputelements */

input = { inputelement }

inputelement = whitespace

| comment

| token

/* the tokens of Chrishy */

token = ident

| number

| string

| "("

| ")"

| "{"

| "}"

| ":"

| ";"

| ","

/* the (logical) operators */

| "+"

| "-"

| "*"

| "/"

| "%"

5

| "="

| "=="

| "!="

| ">"

| "<"

| ">="

| "<="

| "!"

| "&"

| "|"

/* important keywords of Chrishy */

| "procedure"

| "var"

| "init"

| "end"

| "integer"

| "semaphore"

| "verrou"

| "if"

| "then"

| "else"

| "while"

/* important keywords for locks and semaphores */

| "verrouiller"

| "deverouiller"

| "P("

| "V("

/* the commentary */

comment = "/" "/" { cchar }

/* specifications of identifiers, numbers and strings */

ident = letter { letter | digit | "_" }

number = digit { digit }

string = "\"" { schar } "\""

6

/* the terminal symbols for identifiers, numbers and strings */

whitespace = " " | "\t" | "\f" | "\n"

letter = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i"

| "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r"

| "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"

| "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I"

| "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R"

| "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

/* string and commentary specifications are just pointed out literally. The
grammatical formulation is straightforward */

cchar = every character except "\n"

schar = every character except "\n" and "\""

2.2 Syntactical Grammar

/* a Chrishy code is divided in a declarations part and the rest of the program
*/

Program = { Declarations } Starter

/* variable declarations part */

Declarations = "var" ident { "," ident }":" Type "init" number ";"

/* the ”core” of the Chrishy Language */

Starter = "procedure" ident [Arguments] ";" { Body } "end"

{"procedure" ident [Arguments] ";" { Body } "end" }

Arguments = "(" "var" ident ":" Type { "," "var" ident ":" Type } ")"

/* the Body expression represents a section in a while- or ”if-then-else” -
block */

Body = Operation

| Condition

| Loop

| SemExp

| VerrExp

7

/* there are three types in Chrishy: integers, semaphores and locks */

Type = "integer"

| "semaphore"

| "verrou"

/* there is only one possibility to express arithmetic operations */

Operation = ident "=" Operand Operator Operand

Operand = ident

| number

Operator = "+"

| "-"

| "/"

| "*"

| "%"

/* concurrency expressions */

SemExp = "P(" ident ")" ";"

| "V(" ident ")" ";"

VerrExp = "verrouiller" "." ident ";"

| "deverrouiller" "." ident ";"

/* if - then - else */

Condition = "if" "(" CondExp ")" "then" CausalExp [else CausalExp]

CondExp = ["!"] ident Ops Operand [{ LogOp ["!"]

ident Ops Operand }]

CausalExp = "{" { Body } "}"

/* the while loop */

Loop = "while" CondExp "{" { Body } "}"

8

/* comparing and logical operators */

Ops = "=="

| "!="

| ">"

| "<"

| ">="

| "<="

LogOp = "|"

| "&"

/* end of syntactical grammar */

As we can see in the Syntactical Grammar, every expression is terminated
with a semicolon ”;”. For a better understanding of how the Chrishy lan-
guage works and how it is written, an example, specificially the reader /
writer problem with equal priorities which is a nice demonstration above all,
containing the most significant keywords follows:

// variable declarations

var nb_lecteurs: integer init 0;

var r, lr: semaphore init 1;

var mutex: semaphore init 1;

procedure debut_lecture;

P(lr);

P(mutex);

nb_lecteurs = nb_lecteurs + 1;

if (nb_lecteurs == 1) then {

P(r);

}

V(mutex);

V(lr);

end;

procedure fin_lecture;

P(mutex);

nb_lecteurs = nb_lecteurs -1;

if (nb_lecteurs == 0) then {

V(r);

9

}

V(mutex);

end;

procedure debut_ecriture;

P(lr);

P(r);

end;

procedure fin_ecriture;

V(r);

V(lr);

end;

2.3 Parser Generation

Basically, a parser converts text that can be read by humans into data struc-
tures known as parse trees, which are understood by the computer. This
process is similar to compiling a Java source file (i.e. .java) into the cor-
responding Java bytecode (i.e. .class) that can be executed on any Java
Virtual Machine. The correctness of the grammar is the key to a quick and
easy generation of the parser. Unfortunately it is quite impossible to detect
every illogical step made and so, such faults appear often later when it has
become much harder to correct them. More to say about failure recovery in
section 6 afterwards. Mentioned above, the JavaCC tool has been chosen as
parser generator:

2.3.1 JavaCC - JavaCompilerCompiler

JavaCC is one of the most popular automatic parser generators for use with
Java applications. JavaCC is a tool that reads a high-level grammar specifi-
cation (i.e. grammar.jj) and converts it to a Java program (i.e. program.java)
that recognizes matches to the grammar. In addition to the parser generator
itself, JavaCC provides other standard capabilities related to parser gener-
ation such as tree building, actions, debugging, etc. Both JavaCC and the
parsers generated by JavaCC may be executed on a variety of Java platforms
(i.e. ”Write Once, Run Anywhere”).

Name and function of each of the generated Java files:

TokenMgrError.java Returns a detailed message for the error when it is
thrown by the token manager to indicate a lexical error.

10

Figure 1: Flowchart illustrating the steps involved in creating a JavaCC
parser program

11

ParseException.java This exception is thrown when parse errors are en-
countered.

Token.java Describes the input token stream.

ASCII CharStream.java An implementation of interface CharStream, where
the stream is assumed to contain only ASCII characters (i.e. without
UNICODE processing).

ParserName.java This is the main parser program. My parser name is
ChrishyParser.java

ParserNameTokenManager.java Token Manager for the parser.

ParserNameConstants.java Definition of constants for the parser.

The power of automatic parser generation is that it allows programmers to
concentrate on the grammar and NOT worry about the correctness of the
implementation. This can be a tremendous time-saver in both simple and
complex projects. However, there are some major differences in the JavaCC
grammar compared to the EBNF:

Regular Expression Meaning

e1‖e2‖e3‖ . . . A choice of e1, e2, e3, etc (i.e. Logical OR).
(X)+ One or more occurrences of X
(X)∗ Zero or more occurrences of X
(X)? An optional occurrence of X
[X] A pattern that is matched by the characters specified in X
∼[X] A pattern that matches any characters NOT specified in X

Table 1: Explanations of the JavaCC Grammar

Due to these differences, I was forced to transform the Chrishy grammar
to a JavaCC grammar file. The token specifications are quite similar. It is
just the notation that changes. Example:

12

TOKEN: {

< IDENT: <LETTER> (<LETTER> | <DIGIT>)* >

| < NUMBER: (<DIGIT>)+ >

| < ASSIGN: "=" >

| <SEMICOLON: ";">

...

}

For the grammar production, we have a Java-like structure. The example for
the Operations gives the idea of how it is written:

Operation = ident "=" Operand Operator Operand

is transformed to

void Operation() :

{}

{

<IDENT> <ASSIGN> (<NUMBER> | <IDENT>) Operator()

(<NUMBER> | <IDENT>) <SEMICOLON>

}

2.3.2 JTB - JavaTreeBuilder

JTB is a syntax tree builder to be used with the JavaCompilerCompiler
(JavaCC) parser generator. It takes a plain JavaCC grammar file as input
and automatically generates the following:

• A set of syntax tree classes based on the productions in the grammar,
utilizing the Visitor design pattern.

• Two interfaces: Visitor and ObjectVisitor. Two depth-first visitors:
DepthFirstVisitor and ObjectDepthFirst, whose default methods sim-
ply visit the children of the current node.

• A JavaCC grammar with the proper annotations to build the syntax
tree during parsing.

New visitors, which subclass DepthFirstVisitor or ObjectDepthFirst, can
then override the default methods and perform various operations on and
manipulate the generated syntax tree. JTB takes the written JavaCC gram-
mar as argument and generates the following:

13

• The file jtb.out.jj, the original grammar file, now with syntax tree build-
ing actions inserted.

• The subdirectory / package syntaxtree which contains a java class for
each production in the grammar.

• The subdirectory / package visitor which contains Visitor.java, the de-
fault visitor interface, as well as DepthFirstVisitor.java, a default im-
plementation which visits each node of the tree in depth-first order.

After the syntaxtree implementation in the grammar, the parser could finally
be generated. However, it is mostly after this step that one comes across a
variety of bugs committed in the grammar. Various tests and debugging
procedures illustrated, that it is not too trivial to invent a new programming
language and write its corresponding grammar. But at the end, a work-
ing parser for the Chrishy Programming Language was born, which implies:
Phase I of the AVCP is accomplished.

14

3 Phase II: The Generation of the States

After having reached a level, where we can go and parse in the Chrishy
Language, it was now time to think first about the ”how” and then about the
”how far” we can go in the state generation. At the beginning, a graphical
state diagram was the aim. Now, after having invested a not too small
amount of time and effort in the creation of the programming language itself,
this aim became a little more an utopia because of the lack of time. So it was
decided to go just as far as possible. In the very beginning, the concentration
was focused on one single thread that executes a specific procedure of the
given code. Hence, the user has to designate, which procedure this thread
will execute. The implementation of more than one thread will be discussed
in section 3.4.

3.1 Evaluation Concepts

There were several different concepts of how to proceed to generate the states.
The first idea was to choose a limited set of breakpoints in the given code
and to make the modifications only dependent of them. This method did
not succeed because we need to take every little alternation of variables or
expressions into consideration in order to keep the state-logics straight. Step
by step the strategy evolved and at the end, the concept of an evaluation
of the states via a pseudo-object environment emerged. But what does that
mean? The idea was to transform the instructions given in Chrishy little by
little, into so called pseudo-objects, a pseudo implementation of the corre-
sponding instructions in Java. So, every important instruction in the code
will cause an increment of the current state by one. For instance, a loop
is transformed into a WhileFunction, a semaphore into a SemaphoreObject
and locks become VerrouObjects. Within this object-oriented environment,
the state will increase gradually. Above all, it is much easier to modify the
current state by just modifying the parameters of the related object. This is
the base concept that has been chosen finally.

3.2 The State Evaluation

The described concept, the pseudo-object implementation is indeed a pow-
erful method. Unfortunately, it worked not as desired because the changes
of the states require a deeper analysis of the given code. To illustrate that,
we assume the following lines in the code:

15

...

if(condition) then {

block_A

}

else{

block_B

}

...

Our first algorithm would translate that into:

// comment -> no state modification

arithmetic operation -> no state modification

if(){}else{} -> state = state + 1

(via an IfFunction object)

But as we can see, the if-then-else expression would be treated as one
single object. However, most of the time, then- and else-blocks will not be
empty, so we have a lack of information (instructions that are ignored). So, it
was decided, that EVERY instruction given - except comments - would cause
an effect on the states, i.e. the alternation of variables would have to be taken
into account. Hence, this modification means that the whole analysis of the
states would become much more complicated because we need to ”translate”
the instructions given in the Chrishy Programming Language into Java, what
we initially liked to omit. But nevertheless it has been done this way. The
instructions from above were now handled by a new algorithm.

// comment -> no state modification

arithmetic operation -> state = state + 1

if(){}else{} -> if(condition == true){

analyze block_A }

else { analyze block_B }

16

So, the analysis of statements (if- and while-conditions) was another item
that had to be performed. These statements are verified every time a new
thread comes across of it; e.g. after every while loop. The only situation,
where we decrement the state value, occurs after a second execution of such
a while loop. There we have to reinstruct the same set of instructions, i.e.
we have to go back to a specific state that has already been reached before
and execute the same instructions again. The extent of the algorithm for the
multithreaded application is described in 3.4 later on.

After this step, the project was now in a condition, where every thinkable
code could be analyzed with the limitation that it is only one thread that is
executing one method or one procedure.

3.3 Today’s Project Progress

The one-thread solution has been reached and works perfectly and so the
AVCP has evolved to a platform for a wide spectrum of applications. The
multithread implementation has not been realized until now; it will be the
subject of another project representing the continuation of this one. The
only multithread-like feature that marks the end of this first step of the whole
idea, is the implementation of a second thread with the only limitation that
they run in a sequential way, i.e. the only possibility is to let them execute
their parts of the code one after another. From this state forward, a real
multithread application will be possible to realize, but this also will be the
subject of a project that will follow.

3.4 Multithread State Analysis

State evaluations with more than one or sequentially launched threads will
be a little bit more complicated. In the following, some major thoughts
about the generation of a complete state diagram by presupposing a limited
number of threads n that execute a specific part of the code P (n). First we
assume n = 2 and let L(n) be the number of lines:

P(1): instruction 1.1 P(2): instruction 2.1

instruction 1.2 instruction 2.2

... ...

instruction 1.L(1) instruction 2.L(2)

17

The algorithm first executes P (1) and runs P (2) sequentially. After that,
step by step it will execute P (1) from instruction1.1 to 1.(L(1) − a), take
2.L(1) − a + 1 and finally 1.L(2) for a going from 0 to L(1). Afterwards,
we take a = 2 and perform the same procedure. This process endures until
a = L(1). For instance, let us consider 2 threads with 2 lines each:

P(1): instruction 1.1; instruction 1.2;

P(2): instruction 2.1; instruction 2.2;

This is executed in the following way:

1.1 / 1.2 / 2.1 / 2.2 -> store reached states

1.1 / 2.1 / 1.2 / 2.2 -> unify and store

1.1 / 2.1 / 2.2 / 1.2 -> unify and store

2.1 / 1.1 / 1.2 / 2.2 -> unify and store

2.1 / 1.1 / 2.2 / 1.2 -> unify and store

2.1 / 2.2 / 1.1 / 1.2 -> unify and give a pretty print of it

The disadvantage is that the number of possible executions does not
grow linearly. See Table 2 below. And this was only a special case, when
P (1) = P (2) and n is fixed to 2. If we have more than two threads, we will
probably need another algorithm.

Threads # Lines each # Executions

1 1 1
1 n 1
2 1 2
2 2 6
2 3 20
2 4 68
3 1 6
3 2 90

.

Table 2: The number of possible executions assuming a given number of
threads and an equal number of lines each

18

Part III

Project Structure and Tests

4 The Tool’s ‘Ingredients’

There are three main parts in the file structure of the tool. The first part
consists of the Parser files, i.e. the files generated by JavaCC that are de-
scribed in 2.3.1. The most important file for the Parser is ChrishyParser.java.
The main class of my tool is a part of this first section as well. It is called
GodderClass.java and stands for the leading class that handles both the user
interaction and the guidance of the parsing and the state analysis. The sec-
ond part is the syntaxtree. In this section, every grammar-related class is
contained as described in 2.3.1 too. In the last part, called visitor, we find
several different visitor patterns which represent different ways to go through
the syntaxtree. A little graph describing this partitioning is found in Figure
4.

Figure 2: Graph illustrating the importance of the GodderClass and the
dependencies between the most important structural elements

19

5 Execution Tests

Tests on our little program do not only serve us as debuggers, they also
demonstrate in a clear and simple way if the program works or not. At the
very end there is only the preciseness of the parsing and the state evaluation
that really count. To verify the correctness of our tool, I performed several
tests on the parser, i.e. the grammar. Subsequently, the state generation was
taken into account which consists of the Analyzer- part and the generation
of the states. The tool’s output messages are shown in SmallCap fontstyle.

5.1 Tests on the Parser

There are several testfiles that contain grammatical faults. Let’s verify on
the programs output, if they are parsed correctly.

Testfile 1, with a faulty integer variable declaration:

...

var test1: integger init 2;

...

JTB ChrishyLanguage Printer: Reading from file test1.txt...
Encountered ”integger.
Was expecting one of:
”integer” ...
”semaphore” ...
”verrou” ...

Testfile 2, containing a procedure without the demanded ”end;”-expression

...

procedure test;

...

\\ missing end expression

JTB ChrishyLanguage Printer: Reading from file test2.txt...
Encountered ”<EOF>.
Was expecting one of:
”end” ...
”if” ...
”while” ...
”verrouiller” ...

20

”deverrouiller” ...
”P(” ...
”V(” ...
<IDENT> ...

Testfile 3, with an operation in the header of a while loop instead of a
condition

...

while(a+b){...}

...

JTB ChrishyLanguage Printer: Reading from file test3.txt...
Encountered ”+.
Was expecting one of:
”>” ...
”<” ...
”<=” ...
”>=” ...
”==” ...
”!=” ...

Testfile 4. This file is written correctly and should not produce errors.
It contains the languages most features and finally proves that the parser
works (n.b.: it doesn’t make sense at all but it’s just about the grammar):

// this file compiles. it contains most of the language’s features

var semi : semaphore init 1; // tests variable declarations

var verri : verrou init 1;

var inti, winti : integer init 3;

procedure a;

inti = inti + 1; // tests diverse operations

inti = inti * winti;

if(inti >= winti & winti != 2) then { // tests the if-clause

while (inti < 30 & inti != winti) {// tests multiple conditions

P(semi);

deverrouiller.verri; // tests concurrency-clauses

V(semi);

inti = inti + 5;

}

21

}

else { if(inti != winti) then {} else{}}

end;

JTB ChrishyLanguage Printer: Reading from file test4.txt...
JTB ChrishyLanguage Printer: Java program parsed success-
fully.

5.2 Tests on the Analyzer & the State Generator

After having proved the perfect operational sequence of the parser, we are
interested in the question, if the analyzing tool also works properly. To prove
this, there is a quantity of additional testfiles:

Testfile 5 demonstrating what happens, when an illegal operation occurs:

var vari : integer init 0 ;

procedure test ;

vari = 1 / vari; // should generate a "division by zero"-error

end ;

Proceeding with the evaluation of the states...
Current State: 0
Division by zero. Please rewrite your Inputfile. Last reached
state was: 1

Testfile 6 shows that the state is incremented after each expression (here
there are only semaphores). It shows also that a semaphore blocks due to
it’s initialisation value:

var sem : semaphore init 2 ;

procedure test ;

P(sem) ;

P(sem) ;

P(sem) ; // the thread should be blocked here

end ;

Proceeding with the evaluation of the states...
Current State: 0
Current State: 1
Current State: 2
We are blocked due to a semaphore in the following state: 3

22

Testfile 7 The state value is incremented by passing the operation form
0 to 1. This testfile shows also that the evaluation of the condition in the
if-clause is performed accurately:

var counter: integer init 0;

var verr: verrou init 0;

procedure test;

counter = counter + 1;

if (counter == 1) then {

verrouiller.verr; // it doesn’t work if the then-block is executed

}

else { }

end;

Proceeding with the evaluation of the states...
Current State: 0
Current State: 1
We are blocked due to a lock in the following state: 2

Testfile 8, showing the state generation for a looping while structure. After
the recommencing of the loop, the state value is decremented to the value of
the threads first entry:

var counter, sillyOperator: integer init 0;

var semA: semaphore init 3;

procedure test;

while (counter >= 0) {

P(semA);

sillyOperator = sillyOperator + 0; // just an operation that counts

counter = counter + 1; // for an additional state

}

end;

Proceeding with the evaluation of the states...
Current State: 0
Current State: 1
Current State: 2
Current State: 3
Current State: 1 /* second execution of the loop */

23

Current State: 2
Current State: 3
Current State: 1 /* third execution of the loop */
Current State: 2
Current State: 3
We are blocked due to a semaphore in the following state: 1

Testfile 9 This test is dedicated to the case when we have two threads
that run sequentially through a common procedure. The state value has now
an additional digit for the second thread. The evaluation will come to an
end successfully.

var counter, sillyOperator: integer init 0;

var semA: semaphore init 5;

procedure test;

counter = counter * 0;

while (counter <= 1) {

P(semA);

sillyOperator = sillyOperator + 0;

counter = counter + 1;

}

end;

Proceeding with the evaluation of the states...
Current State: 0 0
Current State: 1 0
Current State: 2 0 /* first thread enters loop */
Current State: 3 0
Current State: 4 0
Current State: 2 0 /* first thread enters loop again */
Current State: 3 0
Current State: 4 0
Current State: 4 1
Current State: 4 2 /* second thread enters loop */
Current State: 4 3
Current State: 4 4
Current State: 4 2 /* second thread enters loop again */
Current State: 4 3
Current State: 4 4
Evaluation successful. Last significant state: 4 4

24

6 Encountered Difficulties and Problems

The first problems raised, when inventing the grammar for Chrishy, our own
programming language. Everybody who has ever created a grammar for a
language that did not exist yet, knows that this is a real source for errors:
Every little missing dot, comma or semicolon can cause a very long and time-
wasting search for the little bug that is often hidden behind one single pixel.
Another item that is worth mentioning were the problems of compatibility
between the two parser generating tools I used, i.e. JavaCC and JTB. In
fact, on JavaCC there was no further development after the year 2000. So,
certain methods that were generated became deprecated in meantime. This
signifies I had to rewrite methods that are not meant to be rewritten. These
new methods hardly interacted with JTB, so this was another big difficulty
to solve. Due to the fact that I spent most of the time creating the analyzer,
the large part of the complications were encountered there. However most
of them were errors due to the complexity of the traduction of the Chrishy
expressions into the pseudo-objects and especially into Java. The most de-
manding parts were the conditions. If-then-else-structures as well as while
loops were the most tricky traduction hurdles. The loops were implemented
by recursive calls to the analyzer, considering the number of executed intruc-
tions in the loop in order to maintain the logic of the state evaluation.

25

Part IV

Final Thoughts

7 Guidelines and Ideas for Following Projects

As mentioned, the multithread implementation and the state evaluation of
the latter are the main targets for following projects. Additional possibilities
are the development of a tool consisting of a GUI (Graphical User Interface)
which decomplicates the handling with the not too trivial components of the
AVCP and the extention of the Chrishy Language to one that implements
even more features. However, the latter is not recommended because the
whole project is based on this grammar. So changes in the rules or even
new rules would cause an enormeous amount of work to do. Nevertheless the
effort wold be worth it!

8 Concluding Comments

”Tempus fugit”, the time flies, as the Romans used to say. What concerns
me, I had the same feeling. Just began with it and the time is already
over. However, the AVCP project was and is still a very interesting and
exciting piece of work. And what we have reached is impressive: The parser
and the analyzer are working perfectly within the implemented two-threaded
environment. And the basis for future works on it is set and nothing lies on
the way to a graphical representation of the states. Besides that, this project
offered a better comprehension of concurrency in programming and a deeper
view in Parser generators as well as the Java Programming Language.

26

