
THÈSE NO 3261 (2005)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

Institut d'informatique fondamentale

SECTION DES SYSTÈMES DE COMMUNICATION

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Bachelor of Technology in Electrical Engineering, Indian Institute of Technology, Kanpur, Inde
et de nationalité indienne

acceptée sur proposition du jury:

Lausanne, EPFL
2005

TIME-COMPLEXITY BOUNDS ON AGREEMENT PROBLEMS

Partha DUTTA

Prof. R. Guerraoui, directeur de thèse
Prof. D. Dolev, rapporteur

Prof. B. Faltings, rapporteur
Prof. M. Raynal, rapporteur

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147901081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In many distributed systems, designing an application that maintains consistency
and availability despite failure of processes, involves solving some form of agreement.
Not surprisingly, providing efficient agreement algorithms is critical for improving
the performance of many distributed applications. This thesis studies how fast we
can solve fundamental agreement problems like consensus, uniform consensus, and
non-blocking atomic commit.

In an agreement problem, the processes are supposed to propose a value and even-
tually decide on a common value that depends on the proposed values. To study
agreement problems, we consider two round-based message-passing models, the well-
known synchronous model, and the eventually synchronous model. The second
model is a partially synchronous model that remains asynchronous for an arbitrary
number of rounds but eventually becomes synchronous.

We investigate two aspects of the performance of agreement algorithms. We first
measure time-complexity using a finer-grained metric than what was considered so
far in the literature. Then we optimize algorithms for subsets of executions that are
considered to be common in practice.

Traditionally, the performance of agreement algorithms was measured in terms of
global decision: the number of rounds required for all correct (non-faulty) processes
to decide. However, in many settings, upon deciding, any correct process can provide
the decision value to the process that is waiting for a decision. In this case, a more
suitable performance metric is a local decision: the number of rounds required for
at least one correct process to decide. We present tight bounds for local decisions
in the synchronous and the eventually synchronous models. We also show that
considering the local decision metric allows us to uncover fundamental differences
between agreement problems, and between models, that were not apparent with
previous metrics.

In the eventually synchronous model, we observe that, for many cases in practice,
executions are frequently synchronous and only occasionally asynchronous. Thus we
optimize algorithms for synchronous executions, and give matching lower bounds.
We show that, in some sense, synchronous executions of algorithms designed for
the eventually synchronous model are slower than executions of algorithms directly

i

ii

designed for the synchronous model, i.e., there is an inherent price associated with
tolerating arbitrary periods of asynchrony. Finally, we establish a tight bound on
the number of rounds required to reach agreement once an execution becomes syn-
chronous and no new failures occur.

Résumé

Dans les systèmes répartis, la conception d’une application consistante et disponible
malgré des erreurs de processus nécessite un protocole d’accord. Comme on peut
s’y attendre, il est difficile de fournir des algorithmes d’accord efficaces. Cette thèse
étudie la complexité des problèmes d’accord fondamentaux comme le consensus, le
consensus uniforme, et la validation atomique non-bloquante.

Dans un problème d’accord, les processus sont supposés proposer une valeur et
ensuite décider d’une valeur commune qui sera déterminée en fonction des valeurs
proposées. Pour étudier les problèmes d’accord, nous considérons deux modèles de
communication basés sur des rondes: le modèle synchrone bien connu, et le modèle
finalement synchrone. Le second modèle est un modèle partiellement synchrone,
qui reste asynchrone pour un nombre arbitraire de rondes, pour finalement devenir
synchrone.

Nous étudions deux aspects de la performance d’algorithmes d’accord. D’abord,
nous mesurons la complexité en temps avec une métrique plus fine que celle utilisée
jusqu’à présent dans la littérature. Puis nous optimisons les algorithmes pour les
sous-ensembles d’exécutions considérés comme les plus fréquentes dans la pratique.

Traditionnellement, la performance d’algorithmes d’accord est mesurée en termes
de décision globale: le nombre de rondes requis pour que tous les processus corrects
(sans défaillance) décident. Cependant, dans bien des contextes, n’importe quel
processus correct peut fournir la valeur de décision au processus qui attend qu’une
décision soit prise. Dans ce cas, une métrique de la performance mieux adaptée sera
la décision locale: le nombre de rondes requis pour qu’au moins un processus correct
puisse décider. Nous présentons des bornes exactes pour les décisions locales dans les
modèles synchrone et finalement synchrone. Nous montrons également qu’en matière
de décision locale, notre métrique nous permet de découvrir des différences fonda-
mentales entre les problèmes d’accord, et entre les modèles eux-mêmes, différences
qui n’apparaissaient pas avec les métriques précédentes.

Dans le modèle finalement synchrone, nous observons que dans bien des cas, les
exécutions sont en pratique souvent synchrones, et seulement occasionnellement
asynchrones. Nous optimisons donc les algorithmes pour des exécutions synchrones,
et donnons des bornes inférieures adaptées. Nous montrons que d’une certaine façon,

iii

iv

les exécutions synchrones d’algorithmes conçus pour le modèle finalement synchrone
sont plus lentes que les exécutions d’algorithmes conçus directement pour le modèle
synchrone; cela signifie que la tolérance aux périodes asynchrones a un prix. Finale-
ment, nous établissons une borne inférieure exacte sur le nombre de rondes requis
pour chaque accord une fois qu’une exécution devient synchrone et qu’aucune nou-
velle erreur n’apparâıt.

Acknowledgements

First of all, I would like to thank my advisor Rachid Guerraoui who introduced me
to the wonderful world of distributed algorithm, and has been a constant source of
inspiration and encouragement. Without his guidance this thesis would not have
materialized.

I am grateful to Prof. Emre Telatar for presiding over my thesis exam and to the
members of the jury, Prof. Danny Dolev, Prof. Boi Faltings, and Prof. Michel
Raynal, for the time they spent examining my thesis.

I am indebted to my co-authors, in alphabetical order, Romain Boichat, Arindam
Chakraborty, Svend Frølund, Idit Keidar, Leslie Lamport, Ron Levy, Bastian Pochon,
and Marko Vukolić. Their ideas and comments were invaluable in writing the papers
and this thesis.

I would like to thank Petr Kouznetsov for many discussions on distributed algo-
rithms which improved my understanding of the topic. Many thanks also to Sidath
Handurukande and Arnas Kupsys for many interesting coffee-sessions. The current
and the past members of the Distributed Programming Laboratory provided a great
working environment, and Kristine Verhamme took care of many important details
— a big thank you to them. I would also like to express my thanks to all my
friends in Lausanne, Martigny, and Zurich who made my Ph.D. days an enjoyable
experience.

Finally, I want to thank my parents and sister for their love and support.

v

vi

Preface

This thesis concerns the Ph.D. work I did under the supervision of Prof. Rachid
Guerraoui at the School of Computer and Communication Sciences, EPFL, from
2000 to 2005. During this period, I also worked on (1) a deconstruction of the
Paxos algorithm of Lamport [DFGP02, BDFG03a, BDFG03b], (2) incompatibility
results for non-blocking atomic commit [DGP04], and (3) time-complexity of atomic
register implementations [DGLC04]. More recently, I also worked on the best-case
time-complexity of Byzantine agreement [DGV04].

This thesis focuses on the time-complexity of agreement algorithms where processes
may fail by crashing, and it is a composition of extended and revised version of four
papers: [DG02a, DG02b, DGP03, DGK04].

[BDFG03a] R. Boichat, P. Dutta, S. Frølund, and R. Guerraoui. Deconstructing Paxos.
Distributed Computing Column of ACM SIGACT News, 34(1):47–67, March
2003.

[BDFG03b] R. Boichat, P. Dutta, S. Frølund, and R. Guerraoui. Reconstructing Paxos.
Distributed Computing Column of ACM SIGACT News, 34(2):42–57, June
2003.

[DFGP02] P. Dutta, S. Frolund, R. Guerraoui, and B. Pochon. An efficient universal
construction for message-passing systems. In Proceedings of the 16th Inter-
national Symposium on Distributed Computing (DISC-16), number 2508 in
Lecture Notes in Computer Science, pages 133–147. Springer-Verlag, October
2002.

[DG02a] P. Dutta and R. Guerraoui. Fast indulgent consensus with zero degrada-
tion. In Proceedings of the Fourth European Dependable Computing Confer-
ence (EDCC-4), number 2485 in Lecture Notes in Computer Science, pages
191–208. Springer-Verlag, October 2002.

[DG02b] P. Dutta and R. Guerraoui. The inherent price of indulgence. In Proceedings
of the 21st ACM Symposium on Principles of Distributed Computing (PODC-
21), pages 88–97, July 2002. To appear in Distributed Computing.

vii

viii

[DGK04] P. Dutta, R. Guerraoui, and I. Keidar. The overhead of consensus failure
recovery. IC Technical Report 200456, École Polytechnique Fédérale de Lau-
sanne, June 2004.

[DGLC04] P. Dutta, R. Guerraoui, R. Levy, and A. Chakraborty. How fast can a dis-
tributed atomic read be? In Proceedings of the 23rd ACM Symposium on
Principles of Distributed Computing (PODC-23), pages 236-245, July 2004.

[DGP03] P. Dutta, R. Guerraoui, and B. Pochon. Tight bounds on early local decisions.
In Proceedings of the 17th International Symposium on Distributed Computing
(DISC-17), number 2848 in Lecture Notes in Computer Science, pages 264–
278. Springer-Verlag, October 2003.

[DGP04] P. Dutta, R. Guerraoui, and B. Pochon. Fast non-blocking atomic commit:
An inherent tradeoff. Information Processing Letters (IPL), 91(4):195–200,
August 2004.

[DGV04] P. Dutta, R. Guerraoui, and M. Vukolić. The complexity of asynchronous
Byzantine consensus. IC Technical Report 200499, École Polytechnique Fédérale
de Lausanne, November 2004.

Contents

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 4

1.3 Contributions . 5

2 Background (Definitions) 9

2.1 Models . 9

2.2 Agreement problems . 12

2.3 Time complexity metrics . 14

2.4 Configurations and full-information algorithms 16

3 Background (Related Results) 19

3.1 The layering technique . 19

3.2 A warm-up example . 24

3.3 Eventually synchronous model . 27

4 Synchronous Model 31

4.1 Consensus . 31

4.2 Uniform consensus . 37

4.3 NBAC and IC . 41

4.4 A matching algorithm . 44

ix

x CONTENTS

4.5 Summary of the results . 52

5 Eventually Synchronous Model (Part A) 55

5.1 Local decision lower bound . 56

5.2 Global decision lower bound . 60

5.3 A matching algorithm . 68

5.4 Summary of the results . 86

6 Eventually Synchronous Model (Part B) 89

6.1 The lower bound . 89

6.2 A matching algorithm when t < n/2 95

6.3 A matching algorithm when t < n/3 101

7 Conclusion 105

List of Figures

2.1 A generic algorithm in RM . 11

2.2 Common notations used in the diagrams 17

3.1 Round k of Case 1, Lemma 4 . 21

3.2 Round f + 1 of Case 1, Theorem 2 25

3.3 Round f + 1 of Case 2, Theorem 2 26

4.1 Round f + 1 of Case 1, Lemma 12 35

4.2 Round f + 1 of Case 2, Lemma 12 36

4.3 Round f + 1 of Case 1, Lemma 14 39

4.4 Round f + 1 of Case 2, Lemma 14 41

4.5 Round 1, Lemma 15 . 42

4.6 Interactive consistency algorithm Aic 45

4.7 Claim 4, Lemma 22(a) . 51

5.1 Rounds f + 1 and K1 of Case 2, Lemma 27 57

5.2 Round f + 1 of Case 3, Lemma 27 59

5.3 Rounds t and t + 1 of Case 1, Claim 28.1 62

5.4 Rounds t and t + 1 of Case 2, Claim 28.1 64

5.5 Round 1 of Case 3, Lemma 29 . 67

5.6 Uniform consensus algorithm Aem1 69

xi

xii LIST OF FIGURES

6.1 Rounds G and G + 1, Lemma 49 . 92

6.2 Uniform consensus algorithm Aem2 96

6.3 Uniform consensus algorithm Aem3 102

Chapter 1

Introduction

Fault-tolerant agreement lies at the heart of many critical computer applications.
For instance, one of the primary ways to simultaneously maintain application consis-
tency and availability despite failures is state-machine replication [Lam78, Lam89,
Sch90]: a central server is emulated by many replica servers, some of which may
fail, and replicas agree on the order in which the requests are executed. Similarly,
a distributed transaction service may require database servers to agree on whether
to commit or abort a transaction [Gra78]. Indeed, providing a fault-tolerant service
frequently reduces to solving some agreement problem, and the performance of the
service is directly impacted by the efficiency of the underlying agreement algorithm.
The goal of this thesis is to investigate how fast we can achieve agreement in a
distributed system.

1.1 Context

Distributed systems

A distributed system is a collection of computing entities (also called, processes)
that communicate with each other. In a typical distributed computation, the pro-
cesses perform local computation and exchange relevant information to achieve some
global objective. Models of distributed systems differ according to how the processes
communicate. In a message-passing model, the processes communicate by sending
and receiving messages over point-to-point or multicast communication channels. In
a shared-memory model, the processes communicate by reading or modifying shared
objects. Models also differ in how processes fail, i.e., deviate from the assigned algo-
rithms. In this work, we exclusively consider point-to-point message-passing models
where a process may fail only by crashing, i.e., by prematurely stopping its execu-
tion, and crashed processes do not recover. We also assume that there is an upper

1

2 Chapter 1. Introduction

bound on the number of processes that may crash in any execution. Non-faulty
processes are also called correct processes.

Agreement problems

An agreement algorithm enables a set of processes to agree on a common decision
value (output) that depends on the proposal values (input) of the processes. A pri-
mary example of an agreement problem is consensus [LSP82, FLP85], which requires
that no two correct processes decide differently (agreement), every correct process
eventually decides (termination), and a decision value is the proposal value of some
process (validity). Uniform consensus is variant of consensus that, in addition, re-
quires that no two processes decide differently (uniform agreement) [Had87, HT93].
We also consider in this thesis two other closely related agreement problems: non-
blocking atomic commit and interactive consistency.

Synchrony assumptions

Agreement problems have been extensively studied in the synchronous model [Lyn96,
AW98, Ray02], where computation proceeds in rounds of message exchange. In an
execution of the synchronous model, for every round k, all messages sent by a process
in round k are received in the same round, unless the process crashes in round k, in
which case any subset of messages sent by the process may be lost. Although the
strong synchrony assumptions in the synchronous model allow us to design simple
and efficient agreement algorithms, we would typically like our algorithm to work
even with weak, or possibly no, timing assumptions. However, in one of the seminal
results in distributed computing, Fischer et al. [FLP85] showed that if we make no
timing assumptions (the asynchronous model) then consensus is impossible to solve
even if a single process may crash. To circumvent this impossibility, agreement
problems are frequently studied in partially synchronous models that make weak
timing assumptions but still allow us to solve the problems [DDS87, DLS88]. We
consider in this thesis, a natural partially synchronous model, called the eventually
synchronous model, where any execution is asynchronous for an arbitrary period of
time but eventually becomes synchronous. More precisely, every execution has an
unknown round number, called the Global Stabilization Round (GSR), such that
any message sent in a round lower than GSR may be lost, but for every round
k ≥ GSR, all messages sent by a process in round k are received in the same round,
unless the process crashes in round k, in which case any subset of messages sent
by the process may be lost (i.e., from round GSR, an execution behaves as in the
synchronous model).

1.1. Context 3

Time-complexity of agreement

An obvious measure of the efficiency of an agreement algorithm is how quickly all
correct processes can decide, or halt, called global decision and global halting, respec-
tively. (We say that a process halts if the algorithm assigns no further computation
step to the process.) Two points are worth noting, (1) only the time required by
the correct processes is considered because faulty processes may crash before decid-
ing, and (2) upon deciding, a process may continue to send messages to help other
processes decide, and thus, may not halt immediately.

Let us consider the synchronous model and suppose that at most t out of a total
of n processes, p1, ..., pn, may crash in any execution. One of the earliest lower
bounds obtained on agreement algorithms is the number of rounds required in the
worst-case: there is an execution of every consensus algorithm that takes at least
t + 1 rounds for a global decision [FL82, DLM82, DS83]. (For ease of presentation,
in this chapter, we ignore the boundary cases, e.g. when t is close to n.) This lower
bound is tight, i.e., there is a consensus algorithm that globally decides by round
t+1 in every execution. The same tight bound also holds for global halting, and for
the three other agreement problems that we consider, namely, uniform consensus,
non-blocking atomic commit, and interactive consistency.

Worst-case executions are rare in practice. Thus, it is interesting to investigate
whether algorithms can globally decide or halt before t + 1 rounds for some subset
of executions. In particular, one immediate generalization of the above worst-case
lower bound is to consider lower bounds for the subset of executions in which at
most f processes crash, for some given f ≤ t. (The worst-case lower bound is
simply the special case f = t.) These bounds are called early decision or early
halting bounds and were first studied in [DRS90], where it was shown that the lower
bound for early global halting is f + 2 rounds for consensus. Furthermore, a simple
extension of the t+1 bound implies that the bound for a early global decision is f +1
rounds for consensus. In contrast, both early global decision and early global halting
lower bounds are f + 2 rounds for uniform consensus, as well as for non-blocking
atomic commit and interactive consistency [KR03, CBS04]. All these bounds are
tight [CBS04, DGFHR03, CBF04].

Now let us consider the eventually synchronous model. In this model, any consensus
algorithm also solves uniform consensus, and moreover, non-blocking atomic commit
and interactive consistency are impossible to solve in the presence of crashes [Gue95].
Thus, we only consider uniform consensus in the eventually synchronous model.

As any message may be lost before GSR, clearly, the processes can not decide be-
fore GSR. The only tight bound known in this model was the special case where
GSR = 1 and f = 0 (i.e., executions that are failure-free and synchronous from the
very beginning): every uniform consensus algorithm in the eventually synchronous
model has a failure-free synchronous execution which requires at least 2 rounds for
a global decision [KR03]. The most efficient uniform consensus algorithm known

4 Chapter 1. Introduction

in this model required 2f + 2 rounds in synchronous executions with at most f
crashes [MR99].

1.2 Motivation

Synchronous model

As we discussed above, lower bounds on the time complexity of agreement have been
traditionally stated in terms of the time required for all correct processes to decide
or halt. From a practical perspective, what we might sometimes want to measure
and optimize, is the time needed for at least one correct process to decide, i.e., for
a local decision. Indeed, a replicated service can respond to its clients as soon as a
single replica decides on a reply (and knows that other replicas will reach the same
decision). Similarly, the client of a transaction service might be happy to know the
outcome once it has been determined, even if some database servers have yet to be
informed of the outcome.

Surprisingly, despite the large body of work on the performance of agreement, so
far, no study on local decision lower bounds has appeared in the literature. To get
an intuition that the local decision bound may be different from the global decision
bound, consider the following simple consensus algorithm in the synchronous model.
Every process maintains an estimate value that is initialized to its proposal value.
Process p1 decides at the very beginning (which we call deciding at round 0) on its
estimate, and then sends the decision value to all in round 1. In general, at the end
of round i− 1, process pi decides on its estimate, and then sends its decision value
to all in round i. Moreover, if a process receives a decision value, then it adopts that
value as its estimate. It is easy to see that the algorithm satisfies the agreement
property of consensus: if pi is the lowest correct process to decide, then at the end
of round i, every alive (non-crashed) process has adopted the decision value of pi

as its estimate. Thus, no correct process can decide on a different value. Observe
that, in executions of this algorithm with at most f ≤ t crashes, at least one correct
process decides by round f . Thus, for consensus, the early local decision tight bound
cannot be more than f , whereas, we know that the early global decision tight bound
is f + 1. In fact, we show that the early local decision tight bound for consensus is
f . But this observation raises several new questions.

• Can we match both the local and the global decision lower bounds with the
same algorithm? The consensus algorithm we sketched above matches the local
decision lower bound but clearly does not match the global decision bound: it
has an execution in which some correct process decides in round n. Is there
any algorithm that matches both bounds?

• Does the lower bound change if we consider a more general metric, namely, the

1.3. Contributions 5

number of rounds required for at least c correct processes to decide? (Recall
that a local decision requires at least one correct process to decide, and a global
decision requires all correct processes to decide.)

• What is the local decision bound for uniform consensus, non-blocking atomic
commit and interactive consistency? Can their local and global decision bounds
be matched by the same algorithm?

Eventually synchronous model

Although algorithms in the eventually synchronous model tolerate arbitrary periods
of asynchrony, for many cases in practice, executions are frequently synchronous
and only occasionally asynchronous. Thus, it is important to optimize algorithms
so that processes decide quickly in synchronous executions (i.e., in executions with
GSR = 1). Recall that we only consider uniform consensus in this model.

Obviously, any lower bound in the synchronous model also holds in synchronous
executions of the eventually synchronous model. But are these bounds tight? In
particular,

• Does the t + 1 rounds worst-case bound in the synchronous model also holds
in synchronous executions of the eventually synchronous model?

• What is the tight bound for early local and global decisions in synchronous
executions?

More generally, how quickly can a uniform consensus algorithm globally decide after
the system becomes synchronous?

1.3 Contributions

Synchronous model

We show that the lower bound for early local decision is f rounds for consensus, i.e.,
for every consensus algorithm that can tolerate t crashes, there is an execution with
at most f ≤ t crashes that takes at least f rounds for even one correct process to
decide. More interestingly, we show that no single consensus algorithm can match
both the early local decision and the early global decision bounds for even two
consecutive values of f . Furthermore, we show that the number of rounds needed
for even two correct processes to decide is the same as that for a global decision;
i.e., f + 1 rounds.

In the synchronous model, we also show that the early local decision lower bound
for uniform consensus, non-blocking atomic commit and interactive consistency is

6 Chapter 1. Introduction

f + 1 rounds, except for the failure-free case (f = 0) where, for uniform consensus,
the lower bound is 1 round, and for the other two problems, the lower bound is
2 rounds. For all the three problems, the number of rounds needed for even two
correct processes to decide is same as that for a global decision; i.e., f + 2 rounds.
However, unlike consensus, for each of the remaining three problems, we show that
a single algorithm can match the local decision, global decision, and global halting
bounds.

Eventually synchronous model

Our results in the eventually synchronous model reveal that there is an inherent
price of tolerating asynchrony (i.e., a price of indulgence [Gue00]). More precisely,
for every uniform consensus algorithm in the eventually synchronous model where
at most t processes can crash in any execution, we show that:

• (worst-case global decision) there is a synchronous execution which requires
at least t + 2 rounds for all correct processes to decide. (The corresponding
bound for uniform consensus algorithms in the synchronous model is t + 1.)

• (early local decision) for every f ≤ t−3, there is a synchronous execution with
at most f crashes which requires at least f + 2 rounds for even one correct
process to decide. (The corresponding bound for uniform consensus algorithms
in the synchronous model is f + 1.)

We then present a matching algorithm for the above two bounds: for every f ≤ t,
our uniform consensus algorithm globally decides (and therefore, locally decides)
by round f + 2 in every synchronous execution with at most f crashes. Thus,
synchronous executions of algorithms designed in the eventually synchronous model
are slower than executions of algorithms designed directly for the synchronous model.

Finally, we address the question of how fast can an algorithm globally decide after
the system becomes synchronous. We consider the number of rounds required for
a global decision after the system becomes synchronous and no new crash occurs.
(Note that this bound is different from the number of rounds required after GSR
because from GSR onwards, the system becomes synchronous but the processes may
still crash.) Perhaps surprisingly, the bound depends on the total number of crashes
that are tolerated, and in particular, whether t ≥ n/3:

• For every uniform consensus algorithm in the eventually synchronous model,
there is an execution that requires at least two rounds for a global decision
after the system becomes synchronous and no new crash occurs.

• When t ≥ n/3, for every uniform consensus algorithm in the eventually syn-
chronous model, there is an execution that requires at least three rounds for a
global decision after the system becomes synchronous and no new crash occurs.

1.3. Contributions 7

We also give matching algorithms for both cases, t < n/3 and t ≥ n/3. In addition,
when t < n/3, we show that the tight bound on the number of rounds required for
early global decision after the system becomes synchronous (i.e., after GSR) is f +2.

Roadmap

This thesis is organized as follows. In Chapter 2, we give the definitions of the
models and the agreement problems that we consider. We also define the time-
complexity metrics for agreement, and a compact notation for presenting the lower
bounds. Chapter 3 introduces the layering technique from [MR02, KR03] and some
related results that are useful for proving our lower bounds. Chapter 4 presents our
results in the synchronous model. Our results on uniform consensus in the eventually
synchronous model are covered in the following two chapters. Chapter 5 focuses on
the lower bounds in synchronous executions, whereas Chapter 6 gives the bounds for
a global decision once the execution becomes synchronous and no new crash occurs.
We conclude the thesis in Chapter 7 by summarizing our results and discussing some
open issues.

8 Chapter 1. Introduction

Chapter 2

Background
Part A — Definitions

2.1 Models

A distributed system is a collection of computing entities that may communicate
with each other. In this section, we present some models of distributed systems that
are relevant to this thesis.

Round-Based Model (RM). We consider a distributed system model consisting
of a finite and static set of processes, any pair of which may communicate by message-
passing over a bi-directional communication channel. The set of processes is denoted
by Π = {p1, p2, . . . , pn}, where i is the process identifier (pid) of process pi, and we
consider n ≥ 3.

Each process is assigned a deterministic state machine (with possibly infinite states).
The set of possible states is denoted by Qi, and the set of initial states by Initi ⊆ Qi.
An algorithm A specifies the state machine Ai that is assigned to each process pi.
We model the channels using a single set mset (a message buffer), the state of which,
at any given point of computation, is the set of messages that are sent but not yet
received. We assume that every message m has a unique message identification tag
m.id, and two tags which identify the sender and the recipient of m, m.sender and
m.recp, respectively.

Given an algorithm A, a run of A is an infinite sequence of rounds (of message-
exchange). Rounds are identified by round numbers that are positive integers start-
ing from 1. Each round consists of three subrounds executed one after the other. In
each subround, processes atomically perform the following actions in lock-step:

• Send subround : each process pi sends a message to every process, i.e., puts n
messages in mset.

9

10 Chapter 2. Background (Definitions)

• Receive subround : each process pi receives some set of messages M , i.e., re-
moves some messages from mset. (M might be the emptyset ∅.)

• Computation subround : each process pi applies the set of messages M received
in the receive subround to the state machine Ai assigned to pi. Ai changes its
state accordingly and outputs a message for each process, to be send in the
send subround of the next round.

A run of of A satisfies the following properties for every process pi:

1. Initially, mset = ∅.

2. The initial state of pi is in Initi.

3. If pi receives a message m in the receive subround of a round, then m.rcpt = pi,
and m ∈ mset immediately before that subround

4. If pi does not execute a subround, then it does not execute any subsequent
subround, or a higher round; i.e., the processes are crash-stop.

We now introduce some definitions on the runs in RM.

• We say that a process is correct in a run if it executes an infinite number of
rounds in that run. Otherwise, the process is said to be faulty. If subround sb
of round k is the last subround executed by a faulty process pi, then we say
that pi crashes at subround sb of round k, or simply that pi crashes at round
k.

• A process enters a round k if it executes the send subround of round k, and a
process completes round k if it executes all subrounds of round k.

• If pi completes round k − 1 but does execute any subround of round k, then
we say that pi crashes at the beginning of round k. Furthermore, if pi crashes
at the beginning of round 1, then we say that pi crashes initially.

• A round k message of pi is a message sent by pi in the send subround of round
k. We say that a message m is lost in run r if m is sent but not received in
run r.

• A model is a set of runs selected (from all possible runs of all possible algo-
rithms in RM) by restricting when processes can crash, and specifying which
messages are received. A model M ′ is a submodel of model M if M ′ ⊆ M .

A generic algorithm (modified from [Gaf98]) in RM is shown in Figure 2.1. A specific
algorithm additionally describes the local computation done in lines 1 and 5.

2.1. Models 11

at process pi

1: initialize()
2: in round k {rounds 1, 2,3 ...}
3: send round k messages
4: receive messages
5: compute()

Figure 2.1: A generic algorithm in RM

Eventually Synchronous Model (EM). The Eventually synchronous M odel,
denoted EM, is a submodel of RM. Every run r in EM satisfies the following three
properties:

1. loopback — if a process executes the receive subround in round k, then the
process receives its own round k message in that subround,

2. communication closed rounds — every message received in a receive subround
is sent in the send subround of that round, and

3. eventual synchrony — there is an unknown but finite round number GSR(r)
(Global Stabilization Round of run r) such that, in every round k ≥ GSR(r),
if a process pi executes the receive subround of round k, then every process pj

that executes the receive subround of round k, receives in that subround, the
round k message sent by pi to pj . If pi crashes in the send subround, i.e., does
not execute the receive subround, then there are no delivery guarantees: any
message sent by pi in round k may be lost. (We sometimes drop the parameter
r in GSR(r) when we make a general statement about all runs in the model.)

For 1 ≤ t ≤ n, model EMt is a submodel of EM containing all runs of EM in which
at most t processes are faulty. Notice that, for 1 ≤ t < w ≤ n, EMt ⊂ EMw, and
EMn = EM .

Synchronous Model (SM). The Synchronous M odel, denoted by SM, is a sub-
model of EM that consists of all runs r of EM such that GSR(r) = 1. For 1 ≤ t ≤ n,
model SMt is a submodel of SM that consists of all runs of SM in which at most t
processes are faulty. SM1t is a submodel of SMt that consists of all runs of SMt in
which at most one process crashes in each round. Notice that, for 1 ≤ t < w ≤ n,
SMt ⊂ SMw, SMn = SM, and SMt ⊂ EMt.

Discussion. We only consider models EMt, SMt, and SM1t (1 ≤ t ≤ n) in this
thesis. Model SM is the well-known synchronous crash-stop model [Lyn96, AW98].
Model EM is simply a round based model that eventually provides the same guar-
antees as the synchronous model SM. Model EM is inspired by the fail-stop Basic

12 Chapter 2. Background (Definitions)

Round Model of [DLS88], which we denote here by DLS. In every run of DLS, there
is a round GST in every run such that, in round GST and in higher rounds, mes-
sages sent from correct processes to correct processes are received in the same round
in which they are sent. Thus, in DLS, messages sent by faulty processes are never
guaranteed to be received. In EM however, any message sent in round k ≥ GSR is
guaranteed to be received if the sender and the recipient do not crash by round k.

2.2 Agreement problems

In the following, we give an overview of the agreement problems studied in this thesis.
We assume that the state of every process pi contains two special components: propi

and deci. Component propi cannot be modified, and component deci can be modified
at most once. In addition, there is a known set of values V such that, the value ⊥
is not in V , there are at least two distinct values in V , and in every state in Initi,
propi equals a value from V and deci equals ⊥. We say that the proposal value of pi

in a run r is v, or pi proposes v, if propi equals v in the initial state of pi in run r.
We say that pi decides d (d is not necessarily in V) in r if pi executes a subround in
r which sets deci to d. (However we make an exception for the trivial case where a
process decides before sending any message, i.e., the process computes the decision
value without any external communication. In this trivial case, we assume that deci

contains the decision value at initialization, and we say that pi decides initially.)

This work is primarily concerned with determining time-complexity bounds for the
consensus and the uniform consensus problems. Additionally, we prove our lower
bound results in the synchronous model for weak binary agreement and weak binary
uniform agreement to strengthen the results. We also contrast our bounds for uni-
form consensus with those for the non-blocking atomic commit and the interactive
consistency problems. We now define these agreement problems.

An algorithm A solves consensus, uniform consensus or interactive consistency, in
model M , if all runs of A in M satisfy the following properties, respectively:

• Consensus (denoted by NC) [LSP82, FLP85] (a) (agreement) no two cor-
rect processes decide differently, (b) (termination) every correct process even-
tually decides, and (c) (validity) if a process decides v then some process has
proposed v.

• Uniform consensus (denoted by UC) [Had87, HT93] (a) (uniform agree-
ment) no two processes decide differently, (b) (termination) every correct pro-
cess eventually decides, and (c) (validity) if a process decides v then some
process has proposed v.

• Interactive consistency (denoted by IC) [PSL80] (a) (uniform agreement)
no two processes decide differently, (b) (termination) every correct process

2.2. Agreement problems 13

eventually decides, and (c) (IC validity) every process that decides, decides
on an ordered n-tuple D such that the jth element of D is either the proposal
value of pj or ⊥, and may be ⊥ only if pj is faulty.

An agreement problem is called binary if V is fixed to {0, 1}. We consider three
binary agreement problems. An algorithm A solves non-blocking atomic commit,
weak binary agreement or weak binary uniform agreement, in model M , if all runs
of A in M satisfy the following properties, respectively:

• Non-blocking atomic commit (denoted by NBAC) [Gra78, Ske81] (a)
(uniform agreement) no two processes decide differently, (b) (termination) ev-
ery correct process eventually decides, (c) (abort validity) 0 can be decided
only if some process proposes 0 or is faulty, and (d) (commit validity) 1 can
be decided only if all processes propose 1. (Traditionally, the proposal values
in NBAC are denoted by yes and no and the decision values by abort and
commit.)

• Weak binary agreement (denoted by WA) [KR03] (a) (agreement) no
two correct processes decide differently, (b) (termination) every correct process
eventually decides, and (c) (weak validity) for each v ∈ {0, 1}, there is a failure-
free run in which some process decides v.

• Weak binary uniform agreement (denoted by UA) [KR03] (a) (uniform
agreement) no two processes decide differently, (b) (termination) every correct
process eventually decides, and (c) (weak validity) for each v ∈ {0, 1}, there is
a failure-free run in which some process decides v.

We study the time-complexity of these six agreement problems. For ease of presenta-
tion, we assume that V always contains 0 and 1. We make the following observations
which we use frequently in our lower bound proofs.

• Any uniform consensus algorithm also solves consensus because the uniform
agreement property implies the agreement property.

• Any consensus, uniform consensus or non-blocking atomic commit algorithm
also solves weak binary agreement. Consider any consensus or uniform con-
sensus algorithm A. If all processes propose 1 and the run is failure-free, then
from the validity property, all processes decide 1. Similarly, if all processes
propose 0 and the run is failure-free, then all processes decide 0. Thus A sat-
isfies weak validity property, and hence, solves weak binary agreement. Now
consider any non-blocking atomic commit algorithm B. If all processes are
correct and propose 1, then from abort-validity property, all processes decide
1. If all process are correct and propose 0, then from commit-validity, all pro-
cesses decide 0. Thus, B satisfies weak validity property, and hence, solves
weak binary agreement.

14 Chapter 2. Background (Definitions)

• Any uniform consensus or non-blocking atomic commit algorithm also solves
weak uniform binary agreement. The argument underlying this observation is
similar to that of the previous observation.

• If an algorithm A solves NC, UC, NBAC or IC in any model M1 then A solves
that problem in any submodel M2 of M1. Notice that runs of A in M2 are a
subset of runs of A in M1. Thus if, in every run in M1, A satisfies one of the
properties of the above agreement problems, then A satisfies that property in
every run in M2.

However, the Weak validity property of WA and UA is special: it is a condition
on a set of runs, whereas, other properties are conditions on a single run.
Consider any algorithm B that solves WA or UA in SMt. Then, B satisfies
weak validity in SMt, i.e., for each v ∈ {0, 1}, there is a failure-free run of B
in SMt in which some process decides v.

Recall that, the only models that we consider in this thesis are EMt, SMt, and
SM1t (1 ≤ t ≤ n). Thus, the submodels of SMt that we consider in this thesis
are SM1w and SMw (1 ≤ w ≤ t). Notice that any failure-free run of B in SMt is
also a failure-free run of A in any of those submodels. Thus, if B has a failure-
free run r in SMt in which some process decides v, then r is also a failure-free
run of B in any of the considered submodel of SMt. Thus, if B solves WA and
UA in SMt, then B solves the problem in any of the considered submodel of
SMt. (The same statement does not hold for WA or UA algorithms in EMt.)

2.3 Time complexity metrics

We now discuss some time-complexity metrics for agreement problems. Let r be a
run of any algorithm that solves an agreement problem in some model M . We say
that a process pi decides in round k > 0 of a run r, if pi executes a subround in
round k that modifies the value in deci. We say that pi decides in round 0, if it
decides initially.

Roughly speaking, a process is said to halt when its algorithm does not require the
process to take any further steps. However, in the models we consider, a correct
process executes an infinite number of rounds. So we define halting in a restricted
and indirect manner (which is nevertheless sufficient for our purposes). Assume
that every message has a binary tag halted, which is by default 0. Additionally,
assume that any message that is received with halted tag set to 1, is ignored; i.e.,
all messages sent by a halted process are ignored. We say that pi halts in round k
if pi has decided in round k or in a lower round, and every message sent by pi in a
higher round has its halted tag set to 1.

We distinguish four time complexity metrics: global decision, global halting, local
decision and local halting. We denote the four metrics by gd, gh, ld and lh, respec-

2.3. Time complexity metrics 15

tively. Consider any run r of an algorithm that solves an agreement problem.

• We say that run r globally decides (resp. globally halts) in round k if every
correct process decides (resp. halts) in round k or in a lower round, and some
correct process decides (resp. halts) in round k [FL82, DRS90, CBS04, KR03].

• We say that run r locally decides (resp. locally halts) in round k if every correct
process decides (resp. halts) in round k or in a higher round, and some correct
process decides (resp. halts) in round k.

If a run r globally decides at round k, we write (r, gd) = k. Similarly, the round
at which r globally halts, locally decides, and locally halts, are denoted by (r, gh),
(r, ld), (r, lh), respectively. Note that a local decision always occurs before a global
decision (and similarly for halting). As every correct process decides before it halts,
so (r, ld) ≤ (r, lh) ≤ (r, gh), and (r, ld) ≤ (r, gd) ≤ (r, gh).

Given a model M1, a submodel M2 of M1, an agreement problem P, and a time
complexity metric T, we denote by the ordered tuple (M1, M2, P, T) the following
tight bound.

(M1, M2, P, T) is the round number k such that the following two conditions
hold:

1. (lower bound) every algorithm that solves P in M1 has a run r in M2 such
that (r, T) ≥ k, and

2. (matching algorithm) there is an algorithm A that solves P in M1 such that,
every run r of A in M2 has (r, T) ≤ k.

In short, for algorithms that solve P in M1, (M1, M2, P, T) is the tight bound
for achieving T in M2. The notation captures the common time-complexity tight
bounds for agreement problems in round-based models, where submodel M2 denotes
the set of runs (e.g., failure-free runs) for which we want to optimize the algorithms
in M1. If we set M2=M1, the tuple denotes the worst-case bound in M1. Let us
recall some known results on consensus (NC) and uniform consensus (UC) using our
notation. (For every pair of real numbers a ≤ b, [a, b] denotes the set of integers x
such that a ≤ x ≤ b.)

Theorem 1 (from [FL82, DLM82, DS83, DM90, Mer85, MT88]) ∀t ∈
[0, n − 2], ∀f ∈ [0, t], (SM t, SM f , WA, gd) = f + 1. Every weak binary agree-
ment algorithm in SM t has a run in SM f in which some correct process decides in
round f +1 or in a higher round, and there is a weak binary agreement algorithm A

16 Chapter 2. Background (Definitions)

in SM t such that, in every run of A in SM f , every correct process decides by round
f + 1.

Theorem 2 (from [DRS90]) ∀t ∈ [2, n− 2], ∀f ∈ [0, t− 1], (SM t, SM f , WA, gh)
= f +2. Every weak binary agreement algorithm in SM t has a run in SM f in which
some correct process halts in round f + 2 or in a higher round, and there is a weak
binary agreement algorithm A in SM t such that, in every run of A in SM f , every
correct process halts by round f + 2.

Theorem 3 (from [CBS04, KR03]) ∀t ∈ [2, n − 1], ∀f ∈ [0, t − 2], (SM t, SM f ,
UA, gd) = f +2. Every weak binary uniform agreement algorithm in SM t has a run
in SM f in which some correct process decides in round f + 2 or in a higher round,
and there is a weak binary uniform agreement algorithm A in SM t such that, in
every run of A in SM f , every correct process decides by round f + 2.

2.4 Configurations and full-information algorithms

We introduce few additional notions on runs of an agreement algorithm. Fix any
algorithm A that solves an agreement problem in EM or any of its submodel.

Configurations. A configuration captures the state of the system at the end of
a round. For k > 0, a round k configuration of a run r is an ordered n-tuple such
that,

• if pj completes round k, then element j of the tuple contains the state of pj

after executing the computation subround of round k, else

• element j of the tuple contains a special symbol >.

We ignore the messages in mset at the end of round k, because from the commu-
nication closed round property of EM , we know that, those messages will be never
received. A round 0 configuration of r is an ordered n-tuple where element j equals
the proposal value of pj . C is a round k configuration of A if C is the round k
configuration of some run of A.

Extensions. A run r is an extension of a round k configuration C, if C is the
round k configuration of r. A round k1 configuration C ′ is an extension of C if
k ≤ k1 and there is a run r such that the round k configuration of r is C and round
k1 configuration of r is C ′. In a round k configuration C, we say that pi is alive
(respectively, decided or halted) in C if pi completes round k (respectively, decides
or halts by round k) in C. If pi is not alive in C, we say that pi has crashed in C.

2.4. Configurations and full-information algorithms 17

messages that are lost or not sent

messages that are received

crash of a process

decide

q
process q cannot distinguish run R1
from run R2 (when q is alive)

v proposal value v

decide and halt

R1 R2

Figure 2.2: Common notations used in the diagrams

Full-information algorithms. In a full-information algorithm, every message
includes the entire state of the sender, and the state of a process includes all previous
states of the process (which in turn includes all received messages). To strengthen
our lower bound results, we always consider full-information algorithms in our lower
bound proofs.

Valency [KR03]. Consider any full-information algorithm. For each run r, we
denote by val(r) the decision value of any correct process in r. (This definition
is unambiguous because, in every agreement problem we consider, no two correct
processes decide differently.) For any round k configuration C, r(C) denotes a run
that is an extension of C such that, every process that is alive is C is correct in r(C),
and in every round higher than k, no message is lost (i.e., correct processes receive
messages from all correct processes). Note that the run r(C) is unambiguously
defined by these conditions because, (1) as A is a full-information algorithm, C
completely defines the run until round k, and (2) the message exchange pattern is
completely defined from round k + 1. We define val(C) as val(r(C)).

Notations in diagrams. Figure 2.2 depicts the common notations that we use in
the diagrams of this thesis. For clarity of presentation, in the runs presented in our
diagrams, we only indicate the messages that assist in distinguishing the constructed
runs from each other.

18 Chapter 2. Background (Definitions)

Chapter 3

Background
Part B — Related Results

In this chapter we revisit some related results that are useful in showing our lower
bounds. In particular, we frequently use a variant of Lemma 2.3 of [KR03] (Lemma 6
in this thesis) that captures the level of indistinguishability among runs that remain
after a given number of rounds. As in [KR03], we use the layering technique, in-
troduced in [MR02], to prove this lemma. (In the following, we point out when our
notions differ from those in [KR03].)

3.1 The layering technique

Consider any weak binary agreement (WA) algorithm A in a synchronous model
where at most t processes may crash and at most one process crashes in each round
(SM1t). In any run of SM1t, the round k configuration is completely determined
by the initial configuration and the failure pattern: the failure pattern for a run in
SM1t specifies, for each round k, the process pi that crashes in round k (or that no
process crashes), and the set of processes which did not receive the round k message
from pi.

Extensions in SM1t. We denote an extension by one round, of a round k con-
figuration C, as follows: for i ∈ [1, n] and S ⊆ Π, C.(i, S) denotes the round k + 1
configuration reached by crashing pi in (the send subround of) round k + 1 in such
a way that a process pj does not receive a round k + 1 message from pi if and only
if at least one of the following holds:

(1) pj = pi, (2) pj is crashed in C, or (3) pj ∈ S.

19

20 Chapter 3. Background (Related Results)

Configuration C.(0, ∅) denotes the one round extension of C in which no process
crashes. Clearly, C.(i, S) for i ∈ [1, n] and S ⊆ Π, is a possible extension of C in
SM1t if at most t−1 processes have crashed in C and pi is alive in C — we then say
that (i, S) is applicable to C. Obviously, (0, ∅) is applicable to to any configuration.

Layers. A layer L(C) is the set of configurations defined as {C.(i, S) | i ∈ [0, n], S ⊆
Π, (i, S) is applicable to C}. (In other words, if C is a round k configuration, then
L(C) is the set of all round k + 1 configurations that extend C in SM1t.) For a
set of round k configurations SC, L(SC) is a set of round k + 1 configurations de-
fined as ∪C∈SCL(C). Lk(SC) is recursively defined as follows: L0(SC) = SC and for
k > 0, Lk(SC) = L(Lk−1(SC)). (In other words, if SC is a set of round l configu-
rations, then Lk(SC) is the set of all round (l + k) configurations that extend any
configuration in SC.)

Similar configurations. Two configurations C and D at the same round are
said to be similar, denoted C ∼ D, if they are identical or they differ at exactly
one process. A pair of configurations C and D is similarity connected if there are
configurations C = C0, . . . , Cm = D such that Ci ∼ Ci+1 for every i in [0,m − 1].
A set of configurations SC is similarity connected if, every pair of configurations in
SC is similarly connected. (Our definition of similarity does not include the second
property of the original definition in [KR03]: there exists a process that is alive in
both C and D, and has identical states in C and D. When this property is required
in our lower bound proofs, we derive it directly from our assumptions on t and n.)

We now revisit Lemma 2.3 of [KR03]. Roughly speaking, this lemma says that,
in SM1t, if we start with a similarity connected set (of configurations) SC, we can
keep the set of extensions from SC similarity connected, provided we can crash one
process in every round we extend.

Lemma 4 Let SC = L0(SC) be a similarity connected set of configurations such
that, in any configuration of SC, no process has crashed, then for all k ∈ [1, t],
Lk(SC) is a similarity connected set of configurations in which no more than k
processes are crashed in any configuration.

Proof: The proof is by induction on the round number k. The base case k = 0 is
immediate. For the inductive step, assume that Lk−1(SC) is similarity connected
and in every configuration of Lk−1(SC) at most k−1 processes have crashed. Notice
that, from the definition of SM1t, in every extension by one round which is applicable
to a configuration in Lk−1(SC), at most one more process can crash. Therefore, in
every configuration in Lk(SC), at most k processes have crashed. We now show that
Lk(SC) is similarity connected through the following three claims.

3.1. The layering technique 21

C.(0, ∅)

pi

Config C

ql

ql+1

Config C

Q

C(i, Ql)

Config C Config C

C.(i, ∅)

C(i, Ql+1)

pi

pi pi

ql

ql+1

Q

ql

ql+1

Q ql

ql+1

Q

Figure 3.1: Round k of Case 1, Lemma 4

1. For any configuration C ∈ Lk−1(SC), L(C) is similarity connected. Consider
any configuration in L(C) that is different from C.(0, ∅), say C1 = C.(i, Q),
where Q ⊆ Π, and pi is alive in C. We claim that C1 and C.(0, ∅) are similarity
connected. Since C1 is arbitrarily selected from L(C), our claim implies that
every configuration in L(C) is similarity connected to C.(0, ∅), and hence, L(C)
is similarity connected.

Now we prove our claim. (Figure 3.1 depicts the runs with the relevant
messages.) C.(i, ∅) ∼ C.(0, ∅) since the configurations differ only at pi. If Q = ∅
then we are done. Hence, let Q = {q1, q2, . . . , qm}. For every l in [1,m], let
Ql = {q1, . . . , ql}, and Q0 = ∅. For every l in [0,m− 1], C.(i, Ql) ∼ C.(i, Ql+1)
because the two configurations differ only at ql+1. Thus, C(i, ∅) = C.(i, Q0)
and C1 = C.(i, Qm) are similarly connected.

2. For any pair of configurations C,D ∈ Lk−1(SC), if C ∼ D then L(C) ∪ L(D)
is similarity connected. If C and D are identical then the claim immediately
follows from claim 1. So consider the case where C and D are distinct. As

22 Chapter 3. Background (Related Results)

C ∼ D, there is a process pi such that C and D are different only at pi. Then,
configurations C.(i, Π) and D.(i,Π) are identical because no process receives
message from pi in round k, and pi has crashed. Hence, C.(i,Π) ∼ D.(i,Π). We
know from claim 1 that L(C) and L(D) are each similarity connected. Thus
every configuration in L(C) is similarly connected to C.(i,Π) and every con-
figuration in L(D) is similarity connected to D.(i,Π). As, C.(i,Π) ∼ D.(i,Π),
so every configuration in L(C) is similarity connected to every configuration
in L(D). Thus, L(C) ∪ L(D) is similarly connected.

3. Lk(SC) is similarity connected. Consider any pair of configurations C ′, D′ ∈
Lk(SC). Thus, there are configurations C,D ∈ Lk−1(SC) such that C ′ ∈ L(C)
and D′ ∈ L(D). As Lk−1(SC) is similarity connected, so there is a chain of
configurations C = C0, ..., Cm = D such that, for every l ∈ [0,m − 1], Cl ∼
Cl+1. Thus, from claim 2, L(Cl) ∪ L(Cl+1) is similarity connected. A simple
induction using claim 2 shows that L(C1)∪ ...∪L(Cm) is similarly connected.
Thus C ′ ∈ L(C = C0) is similarity connected to D′ ∈ L(D = Cm). As C ′ and
D′ are arbitrarily selected from Lk(SC), Lk(SC) is similarity connected.

2

Remark. Our lemma is a simple generalization of Lemma 2.3 of [KR03]. The
statement of our lemma looks similar to that of [KR03], but the model considered
in [KR03], say SM1′t, is actually a submodel of the model SM1t that we consider
here. In SM1′t, C.(i, S) is an extension of C only if S is a prefix of Π = {p1, ..., pn},
whereas, in SM1t, S can be any subset of Π. Thus Lk(SC) in SM1′t is a subset
of Lk(SC) in SM1t, and Lk(SC) being connected in SM1t implies that Lk(SC) is
connected in SM1′t.

Informally, the next lemma says that, for any WA algorithm in SM1t and any f ∈
[0, t], there are two f round configurations which are almost identical (differ at only
one process) but have different decision values in failure-free extensions.

Lemma 5 Let t ∈ [1, n−1]. Consider any WA algorithm A in SM1t. For every f ∈
[0, t], there are two runs of A in SM1t such that their round f configurations, y and
y′, satisfy the following: (1) at most f processes have crashed in each configuration,
(2) the configurations differ at exactly one process, and (3) val(y) = 0, whereas
val(y′) = 1.

Proof: Consider any initial configuration C ′ of algorithm A in model SM1t. Let C be
the configuration in which all processes propose 0. Consider the following n−1 (not
necessarily distinct) initial configurations: for every i ∈ [1, n − 1], in configuration
Ci, processes p1, ..., pi propose the same value as in C ′, and the remaining processes
propose 0. Notice that, for every i ∈ [1, n− 2], Ci and Ci+1 may differ only at pi+1.

3.1. The layering technique 23

Furthermore, C1 and C may differ only at p1, and C ′ and Cn−1 may differ only
at pn. Thus C and C ′ are connected through a chain of configurations, such that,
any two adjacent configurations in the chain are similar. Since C ′ was arbitrarily
selected, the set of initial configurations of A in SM1t is similarity connected. Let
I be the set of initial configurations of A in SM1t. From the definition of Lf (I),
it follows that Lf (I) is the set of round f configurations of A in SM1t. Then from
Lemma 4, it follows that the set of round f configurations of A in SM1t is similarly
connected.

Consider any failure-free run r0 of algorithm A in which correct processes decide
0. (From the validity property of WA, such a run of A exists.) We denote by z,
the round f configuration of r0. Similarly, consider any failure-free run r1 of A in
which correct processes decide 1. We denote by z′, the round f configuration of r1.
Obviously, val(z) = 0 and val(z′) = 1.

As the set of round f configurations of A in SM1t is similarly connected, so there
are some round f configurations of A in SM1t, z = y0, y1, . . . , ym = z′, such that
yj ∼ yj+1 for every j in [0,m − 1]. Clearly, there is some yi ∈ {y0, . . . , ym−1} such
that, val(y0) = . . . = val(yi) 6= val(yi+1). (Otherwise, val(z) = val(y0) = val(y1) =
. . . = val(ym) = val(z′); a contradiction.)

As val(yi) = val(y0) and z = y0, so val(yi) = 0. Therefore, val(yi+1) = 1. Since both
yi and yi+1 are round f configurations in SM1t, at most f processes have crashed
in each configuration. As yi ∼ yi+1, the two configurations are either identical or
differ at exactly one process. Since val(yi) 6= val(yi+1), the configurations cannot
be identical, i.e., they differ at exactly one process. 2

As any NC, UC, NBAC, and UA algorithm is also a WA algorithm, and SM1t is a
submodel of SMt, so the following lemma immediately follows from Lemma 5.

Lemma 6 Let t ∈ [1, n− 1] and V = {0, 1}. Consider any algorithm A in SMt that
solves NC, UC, NBAC, WA or UA. For every f ∈ [0, t], there are two runs of A in
SMt such that their round f configurations, y and y′, satisfy the following: (1) at
most f processes have crashed in each configuration, (2) the configurations differ at
exactly one process, and (3) val(y) = 0, whereas val(y′) = 1.

We will use Lemma 6 frequently as the starting point for our lower bound proofs.
Informally, an agreement algorithm divides the set of runs into two subsets (e.g.,
0-deciding runs and 1-deciding runs), such that every correct process can distinguish
a run of one subset from any run of the other subset. Lemma 6 captures the level
of indistinguishability between the runs from different subsets that remains after f
rounds.

24 Chapter 3. Background (Related Results)

3.2 A warm-up example

Early global halting lower bound. The lower bound part of Theorems 1, 2
and 3 can be derived from Lemma 6. We revisit Theorems 1 and 3 in Chapter 4.
As an example, we now show how to derive the lower bound of Theorem 2: every
weak binary agreement algorithm in SM t has a run in SM f in which some correct
process halts in round f + 2 or in a higher round.

Theorem 2 (from [DRS90]) (lower bound) ∀t ∈ [2, n− 2], ∀f ∈ [0, t− 1], (SM t,
SM f , WA, gh) ≥ f + 2.

Proof: Suppose by contradiction that there is a WA algorithm A in SMt and an
integer f in [0, t− 1] such that, in every run of A with at most f crashes, all correct
processes halt by round f + 1.

It follows from Lemma 6 that, there are two runs of A in SMt such that their round f
configurations, y and y′, satisfy the following: (1) at most f processes have crashed
in each configuration, (2) the configurations differ at exactly one process, say pi, and
(3) val(y) = 0 and val(y′) = 1. Let z and z′ denote the configurations at the end of
round f + 1 of r(y) and r(y′), respectively.

As r(y) is a run with at most f crashes, it follows from our initial assumption on A
that all correct processes have decided val(y) = 0 and halted by round f +1. As z is
the round f +1 configuration of r(y), and all correct processes in r(y) are alive in z,
it follows that, in z, all alive processes have decided val(y) = 0 and halted. Similarly,
in z′, all alive processes have decided val(y′) = 1 and halted. Since f ≤ n− 3, there
are two processes q1 and q2 that are distinct from pi, and which have halted in both
z and z′. There are two cases to consider.

Case 1. Process pi is alive in y and y′. Consider the following two runs of A.
(Figure 3.2 depicts the runs with the relevant messages.)

R1 is a run such that (1) the round f configuration is y, (2) pi crashes in round f +1
such that only q1 receives the message from pi, (3) no process distinct from pi crashes
after round f . Notice that q1 cannot distinguish the round f + 1 configuration of
R1 from z, and therefore, q1 decides 0 and halts at the end of round f + 1 in R1.
By agreement, every correct process decides 0 in R1.

R2 is a run such that (1) the round f configuration is y′, (2) pi crashes in round
f + 1 such that only q1 receives the message from pi, (3) no process distinct from pi

crashes after round f . Notice that q1 cannot distinguish the round f + 1 configura-
tion of R2 from z′, and therefore, q1 decides 1 and halts at the end of round f + 1
in R2. By agreement, every correct process decides 1 in R1. However, notice that

3.2. A warm-up example 25

r(y)

pi

Config y

q1

q2

0

0

r(y’)

pi

Config y’

q1

q2

1

1

R1

pi

Config y

q1

q2

0

R2

pi

Config y’

q1

q2

1

Config z Config z’

q1 q1

q2

Figure 3.2: Round f + 1 of Case 1, Theorem 2

q2 cannot distinguish R1 from R2: at the end of round f , the two runs are different
only at pi, only q1 receives a message from pi in round f + 1, and q1 halts in round
f + 1. Thus, q2 is correct and decides the same value in both runs; a contradiction.

Case 2. (See Figure 3.3.) Process pi has crashed in either y or y′. (Process pi has
not crashed in both y and y′ because pi has different states in y and y′.) Without
loss of generality, we can assume that pi has crashed in y′, and hence, pi is alive in
y. Let us reconsider run R1 in this setting. Process q1 receives round f +1 messages
from pi, decides 0 and halts. Whereas process q2 does not receive any message, and
hence, cannot distinguish round f +1 configuration of R1 from z′. (Recall that, now
in y′, process pi is crashed.) Thus, as in z′, q2 decides 1, a violation of agreement. 2

26 Chapter 3. Background (Related Results)

r(y)

pi

Config y

q1

q2

0

0

r(y’)

pi

Config y’

q1

q2

1

1

R1

pi

Config y

q1

q2

0

Config z Config z’

1

q2q1

Figure 3.3: Round f + 1 of Case 2, Theorem 2

Byzantine agreement – an informal discussion. Roughly speaking, in the
synchronous model with Byzantine failures (called Byzantine model, hereafter), the
processes may fail by behaving arbitrarily [LSP82], i.e., a faulty process might re-
place its assigned algorithm with any arbitrary algorithm. Several algorithms solve
some variant of WA in this setting, sometimes called Byzantine agreement. In the
Byzantine model, just as in the crash-stop one, it is possible to match the f + 2
round lower bound for early global halting [DRS90]. However, the early global de-
cision lower bound has not been considered in this setting. From Theorem 1 and
Theorem 3, we know that the tight bound for early global decision in the crash-
stop model is f + 1 for WA and f + 2 for UA. However, UA is not considered in a
Byzantine model because we cannot impose any requirement on the decision value
of the processes that behave arbitrarily. In the Byzantine model, one might wonder
whether we can match the f + 1 global decision lower bound of WA.

A simple variant of the proof of Theorem 2 above shows that, in the Byzantine
model, the lower bound for a early global decision of WA can be improved to f + 2,
the same as that for global halting. Suppose that all correct processes decide by

3.3. Eventually synchronous model 27

round f + 1 in every run in which f processes fail. Consider configurations z and
z′, in the above proof. Suppose that, if pi is not Byzantine faulty, and it is alive in
both y and y′, then pi sends in round f + 1, message m to q1 in z, and message m′

to q2 in z′. (No process distinct from pi is Byzantine faulty in the runs we consider.)
Consider a run R in which pi is Byzantine faulty and sends m to q1 and m′ to q2, and
no other process fails, thereafter. Then, in R, q1 decides 0 (as in z), and q2 decides
1 (as in z′); a violation of consensus agreement. The proof for the case where pi has
crashed in either y or y′ does not need to be modified. Notice that our proof does
not need processes to halt in round f + 1, because q1 and q2 decide differently (i.e.,
disagreement occurs) at round f + 1 itself, and not at some later round. Thus, the
tight bound for a WA early global decision is lower in the crash-stop model than in
the Byzantine model. (We do not consider Byzantine failure elsewhere in this work.)

3.3 Some useful results in the eventually synchronous
model

In this section, we recall three well-known results in the eventually synchronous
model EMt. (Recall that we always assume n ≥ 3.)

Lemma 7 (from [Gue95]) If t ≥ 1, then there is no NBAC algorithm in EMt.

Proof: Suppose by contradiction that t ≥ 1 and there is a NBAC algorithm A in
EMt. Consider two runs of A, run R0 and run R1 such that (1) p1 crashes initially,
(2) all other processes are correct, (3) GSR = 1, and (4) p1 proposes 0 in R0 and 1
in R1, and other processes propose 1 in both runs.

As p1 crashes before sending any message in both R0 and R1, no process distinct
from p1, say p2, can distinguish R0 from R1. From commit-validity, all correct
processes decide 0 in in R0, and hence, in R1. Suppose p2 decides 0 in R1 in round
k′.

Consider run R2 such that (1) all processes are correct and propose 1, (2) until
round k′, every messages that is sent is received in the same round in which it is
sent, except that the messages sent by p1 in the first k′ rounds to other processes
are lost, and (3) GSR(R2) = k′ + 1. Note that, before round k′ + 1, no process
distinct from p1 can distinguish R2 from R1. Thus, p2 decides 0 in R2. However,
as all processes are correct and propose 1, from the abort-validity property, correct
processes must decide 1 in R2; a contradiction. 2

Lemma 8 (from [Gue95]) If t ≥ 1, then in EMt, every NC algorithm is also a UC
algorithm.

28 Chapter 3. Background (Related Results)

Proof: Suppose by contradiction that there is a NC algorithm A in EMt that does
not satisfy the uniform agreement property. Thus there is a run r of A such that
some process pi decides v, another process pj decides v′ 6= v, and at least one process
from {pi, pj} crashes in r. Let pi and pj decide at rounds k0 and k1, respectively.
Without loss of generality, assume that k0 ≤ k1. There are two cases to consider:

1. Process pi crashes in some round k2 ∈ [k0 + 1, k1]. Consider another run r′

such that (1) r′ is identical to r until round k1 except that pi is correct in r′,
and in rounds [k2, k1], all messages sent by pi to processes distinct from pi are
lost, but pi receives all the messages sent to itself, and (2) no process crashes
after round k1, and (3) GSR(r′) = k1 + 1.

Clearly, the round k0 configuration in r and r′ are identical, and thus, pi

decides v in r′. Until round k1, process pj cannot distinguish r from r′, because
in both runs, no round k′′ messages from pi, such that k′′ ∈ [k2, k1], is received
by any process distinct from pi. Thus, in round k1 of r′, pj decides v′. Since
both pi and pj are correct in r′, the run violates agreement.

2. Process pi crashes at some round higher than k1 or does not crash in run r.
Consider another run r′′ such that (1) r′′ is identical to r until round k1, (2) no
process crashes after round k1, and (3) GSR(r′′) = k1 + 1.

As r and r′′ are identical until round k1, in r′′, pi decides v and pj decides
v′. Since both pi and pj are correct in r′′, the run violates agreement.

2

Lemma 9 (from [DLS88, CT96]) If t ≥ n/2, then there is no UC algorithm in
EMt.

Proof: Suppose by contradiction that t ≥ n/2 and there is a UC algorithm A in
EMt. Consider the set P that contains every process pi in Π such that i ∈ [1, n/2],
and Q = Π\P . As t is an integer, so t ≥ dn

2 e, and |P |, |Q| ≤ dn
2 e ≤ t.

Consider a run RP of A such that (1) all processes propose 0, (2) processes in Q crash
initially, (3) all processes in P are correct, and (4) GSR(RP) = 1. From the validity
property, all processes in P decide 0. Suppose run RP globally decides at round kP .
Consider another run RQ of A such that (1) all processes propose 1, (2) processes
in P crash initially, (3) all processes in Q are correct, and (4) GSR(RQ) = 1. From
the validity property, all processes in Q decide 1. Suppose run RQ globally decides
at round kQ. Let k′ = max{kP , kQ}.

We now construct another run RPQ as follows: (1) all processes are correct, (2) in
the first k′ rounds, any message sent from a process in P to a process in Q, and
from a process in Q to a process in P , is lost, all other messages are received, and
(3) GSR(RPQ) = k′ + 1.

3.3. Eventually synchronous model 29

It is easy to see that, in the first k′ rounds, the processes in P cannot distinguish
RPQ from RP , and the processes in Q cannot distinguish RPQ from RQ. Thus, in
RPQ, the processes in P decide 0 and the processes in Q decide 1; a violation of
uniform agreement. 2

30 Chapter 3. Background (Related Results)

Chapter 4

Tight Bounds in the
Synchronous Model

In this chapter we investigate local decision bounds for agreement problems in the
synchronous model. Additionally, we show that in some sense local decision and
global decision tight bounds are incompatible for consensus, and we revisit the global
decision lower bounds for consensus and uniform consensus (Theorems 1 and 3).

4.1 Consensus

In this section, we give two lower bounds for weak binary agreement (WA) in the
synchronous model. Since any consensus (NC) algorithm solves weak binary agree-
ment, the lower bounds immediately apply to consensus.

Local decision

The following lemma says that any WA algorithm in SMt has a run in SMf (i.e., a
run with at most f crashes) in which every correct process decides in round f or in
a higher round.

Lemma 10 ∀t ∈ [1, n− 1], ∀f ∈ [0, t], (SMt, SMf , WA, ld) ≥ f .

Proof: Suppose by contradiction that there is an WA algorithm A in SMt and an
integer f in [0, t] such that, in every run of A with at most f crashes, some correct
process decides by round f − 1. Notice that the contradiction is immediate for the
case f = 0: no process can decide by round −1. So we consider the case f ∈ [1, t].
(Also recall that we have defined the notion of deciding in round 0, as deciding in
the initialization subround of round 1.)

31

32 Chapter 4. Synchronous Model

It follows from Lemma 6 that, there are two runs of A in SMt such that their round
f −1 configurations, y and y′, satisfy the following: (1) at most f −1 processes have
crashed in each configuration, (2) the configurations differ at exactly one process,
say pi, and (3) val(y) = 0 and val(y′) = 1.

As r(y) is a run with at most f − 1 crashes, it follows from our assumption on A
that, in r(y), there is a correct process q1 that has decided val(y) = 0 by round
f − 1. As all correct processes in r(y) are alive in y, it follows that, in y, q1 is alive
and has decided val(y) = 0.

We now show that no alive process distinct from pi has decided in y (which implies
that pi = q1). Suppose by contradiction that some alive process distinct from pi,
say q2, has decided in y. Since q2 is alive in y, it is correct in r(y), and hence, q2

decides 0 in r(y). Thus q2 has decided 0 in y. As y and y′ differ only at pi and pi is
distinct from q2, so q2 is alive and has decides 0 in y′. Thus, in r(y′), q2 is a correct
process and decides 0. However, every correct process in r(y′) decides val(y′) = 1;
a contradiction.

Thus, pi is the only alive process that has decided in y. Consider any run r′ that
extends y and in which only process pi crashes after round f−1. At most f processes
crash in r′. At the end of round f −1 in r′, the only alive process which has decided
is pi, but pi is a faulty process in r′. Thus, r′ is a run with at most f crashes in
which no correct process decides by round f − 1; a contradiction. 2

C-decision

The above lemma gives a lower bound on the number of rounds required for at
least one correct process to decide (local decision). The global decision lower bound
from Theorem 1 specifies the number of rounds required for all correct processes to
decide. It is natural to investigate the number of rounds required when we consider
an intermediate time complexity metric for the runs.

For every c in [1, n], we say that a run r of an agreement algorithm c-decides in round
k, and we write (r, dc) = k, if at least c correct processes decide by round k and less
than c correct processes decide before round k. Using this notation, in a run with f
crashes, the local decision is 1-decision, and the global decision is (n− f)-decision.

In the following lemma we state that any WA algorithm in SMt has a run in SMf

(i.e., a run with at most f crashes) in which at most one correct process decides
in round f or in a lower round. In other words, the number of rounds needed for
c-decision, when c ≥ 2, is f + 1. (Following this terminology, Lemma 10 states that
the number of rounds needed for a 1-decision is f , and Theorem 1 states that the
number of rounds needed for a (n− f) decision is f + 1.)

4.1. Consensus 33

Lemma 11 ∀t ∈ [1, n−1], ∀f ∈ [0, t], ∀c ∈ [2, n−f], (SMt, SMf , WA, dc) ≥ f +1.

Proof: It is sufficient to show that (SM t, SM f , WA, d2) ≥ f + 1. Suppose by
contradiction that there is a WA algorithm A in SMt and an integer f in [0, t] such
that, in every run of A with at most f crashes, there are at least two correct processes
which decide by round f .

It follows from Lemma 6 that, there are two runs of A in SMt such that their round f
configurations, y and y′, satisfy the following: (1) at most f processes have crashed
in each configuration, (2) the configurations differ at exactly one process, say pi, and
(3) val(y) = 0 and val(y′) = 1.

From our initial assumption about algorithm A, it follows that (1) in y, there are
two alive processes which have decided 0, and (2) in y′, there are two alive processes
which have decided 1. As y and y′ differ at exactly one process and there are two
alive processes in y′ that have decided 1, it follows that, in y, there is an alive process,
say pj , which has decided 1. Thus, pj is correct and decides 1 in r(y). However,
every correct process in r(y) decides val(y) = 0; a contradiction. 2

Remarks. Lemma 11 is a generalization of the lower bound of Theorem 1: in a run
with at most f crashes, global decision is (n− f)-decision.

It is important to notice the special case f = t = n − 1. The f + 1 round lower
bound of Theorem 1 does not hold when f = t = n− 1: in this case, we can design
a consensus algorithm that globally decides in f = t = n−1 rounds. At first glance,
Lemma 11 seems to hold for f = t = n − 1, and that would imply that a global
decision requires f + 1 in this case. However, this observation is flawed because,
when f = t = n− 1, the allowed set of values for c (in Lemma 11) is [2, n− f] = ∅.

Incompatibility

It is easy to design a consensus algorithm that matches either the early local decision
lower bound of Lemma 10 or the early global decision lower bound of Theorem 1.
In the following lemma, we show that, perhaps surprisingly, no consensus algorithm
can match both the early local decision and the early global decision lower bounds,
even for two consecutive values of f .

Lemma 12 ∀t ∈ [1, n − 2], ∀f ∈ [0, t − 1], there is no WA algorithm in SMt that
satisfies the following two conditions:

(a) in every run with at most f crashes, every correct process decides by round
f + 1, and

(b) in every run with at most f +1 crashes, some correct process decides by round
f + 1.

34 Chapter 4. Synchronous Model

(Remarks: Condition (a) is for matching the global decision lower bound for f
crashes, and condition (b) is for matching the local decision lower bound for f + 1
crashes. Note that, we do not consider the case f = t, because when f = t, (a)
implies (b), as there is no run in SMt with t + 1 crashes.)

Proof: Suppose by contradiction that there is a WA algorithm A and an integer f
in [0, t− 1] such that (a) by round f + 1 of every run with at most f crashes, every
correct process decides, and (b) by round f + 1 of every run with at most f + 1
crashes, some correct process decides.

It follows from Lemma 6 that, at the end of round f , there are two configurations
y0 and y1 such that (a) at most f processes have crashed in each configuration,
(b) the configurations differ at exactly one process, say pi, and (c) val(y0) = 0 and
val(y1) = 1.

Consider run r(y0). Obviously, r(y0) is a run with at most f crashes, and from our
initial assumption about A, every correct process decides val(y0) = 0 at the end of
round f +1. Similarly, in run r(y1), every correct process decides val(y1) = 1 at the
end of round f + 1. There are two cases to consider.

Case 1. (See Figure 4.1.) Process pi is alive in y0 and y1. Consider the extension
of y0 to a run r′(y0) such that pi crashes at the beginning of round f + 1, and no
process crashes thereafter. (Recall that f ≤ t− 1.) Notice that r′(y0) is a run with
at most f + 1 crashes and pi is a faulty process in r′(y0). Thus, from our initial
assumption about A, it follows that there is a correct process pj (6= pi) in r′(y0)
which decides some value v ∈ {0, 1} at round f + 1. (Notice that, since pj 6= pi, pj

cannot decide before round f + 1: as y0 and y1 differ only at pi, if pj decides by
round f , then pj decides identical values in y0 and y1.)

Similarly, consider the extension of y1 to a run r′(y1) such that pi crashes at the
beginning of round f +1, and no process crashes thereafter. Notice that, at the end
of round f + 1, pj cannot distinguish r′(y1) from r′(y0) because pj does not receive
any message from pi in round f + 1 of both runs. Therefore, as in r′(y0), pj decides
v at the end of round f + 1 in r′(y1).

Consider runs r′(y1−v) and r(y1−v). Since f ≤ n − 3, in run r′(y1−v) there is a
correct process pl which is distinct from pi and pj . Obviously, pl is also correct in
r(y1−v), and hence, pl decides val(y1−v) = 1−v at the end of round f +1 in r(y1−v).

Now we construct a run r′′ by extending configuration y1−v: process pi crashes in
round f + 1 such that, in round f + 1, pl receives a message from pi but pj does not
receive any message from pi. No process distinct from pi crashes in round f + 1 or
in a higher round. Obviously, pj and pl are correct in r′′. At the end of round f + 1
in run r′′, pj cannot distinguish r′′ from r′(y1−v) because pj does not receive any
message from pi in round f + 1 in both runs. Therefore, pj decides v at the end of

4.1. Consensus 35

r(y0)

pi

Config y0

pl

pj

0

0

r(y1)

Config y1

1

1

v

Config y0 Config y1

pi

pl

pj

pi

pl

pj

pi

pl

pj

r’(y0) r’(y1)

v

pj

r’’

pi

Config y1-v

pl

pj

1-v

v

Figure 4.1: Round f + 1 of Case 1, Lemma 12

36 Chapter 4. Synchronous Model

0

0

1

1

r’

0

1

pi

pl

pj

pi

pl

pj

pi

pl

pj

pl pj

Config y0 Config y1

Config y1

r(y0) r(y1)

Figure 4.2: Round f + 1 of Case 2, Lemma 12

round f + 1 in r′′. However, since pl receives a message from pi in round f + 1, at
the end of round f + 1, pl cannot distinguish r′′ from r(y1−v), and therefore, pl de-
cides 1−v at the end of round f +1; a contradiction with agreement property of WA.

Case 2. (See Figure 4.2.) Process pi has crashed in either y0 or y1. Without loss
of generality, we can assume that pi has crashed in y0, and hence, pi is alive in
y1. (Recall that pi has different states in the two configurations.) As f processes,
including pi, have crashed in y0, and pi has not crashed in y1, so f − 1 processes
have crashes in y1. Since f ≤ n− 3 and at most f − 1 processes have crashed in y1,
so there are at least two correct process pj and pl (both distinct from pi) in r(y1).
Consider the run r′ which extends y1 such that process pi crashes in round f + 1
and the only alive process that does not receive round f + 1 message from pi, is
pl, and no process crashes after round f + 1. Obviously pj and pl are correct in r′.
At the end of round f + 1, pl cannot distinguish r(y0) from r′ because pl does not
receive the round f + 1 message from pi in both runs. Thus, pl decides 0 at the
end of round f + 1 in r′. At the end of round f + 1, pj cannot distinguish r(y1)

4.2. Uniform consensus 37

from r′ because both runs extend y1 and pj receives round f + 1 message from pi in
both runs. Thus, pj decides 1 at the end of round f + 1 in r′; a contradiction with
agreement property of WA. 2

4.2 Uniform consensus

In this section, we give two lower bounds for weak binary uniform agreement (UA)
in the synchronous model. Since any uniform consensus (UC) and non-blocking
atomic commit (NBAC) algorithm also solves UA, the lower bounds immediately
apply to UC and NBAC.

Local decision

The following lemma says that any UA algorithm in SMt has a run in SMf (i.e., a
run with at most f crashes) in which every correct process decides in round f + 1
or in a higher round.

Lemma 13 ∀t ∈ [1, n− 1], ∀f ∈ [0, t− 1], (SMt, SMf , UA, ld) ≥ f + 1.

Proof: Suppose by contradiction that there is a UA algorithm A in SMt and an
integer f in [0, t − 1] such that, in every run of A with at most f crashes, some
correct process decides by round f .

It follows from Lemma 6 that, there are two runs of A in SMt such that their round f
configurations, y and y′, satisfy the following: (1) at most f processes have crashed
in each configuration, (2) the configurations differ at exactly one process, say pi, and
(3) val(y) = 0 and val(y′) = 1.

From our initial assumption about algorithm A, it follows that there is an alive
process q1 in y which has already decided. (Otherwise, since every correct process
in r(y) is an alive process in y, r(y) is a run with at most f crashes in which no
correct process decides by round f .) Furthermore, q1 has decided val(y) = 0 in
r(y) (and hence, in y) because q1 is a correct process in r(y). Similarly, in y′, there
is an alive process q2 which has decided val(y′) = 1. There are two cases to consider.

(1) q1 6= pi: As y and y′ are identical at all processes different from pi, so in y′,
q1 is alive and has decided 0. Thus, in r(y′), q1 is a correct process and decides 0.
However, in r(y′), every correct process decides val(y′) = 1; a contradiction.

(2) q1 = pi: We distinguish two subcases:

38 Chapter 4. Synchronous Model

- q2 = pi: Thus pi = q1 = q2, and hence, pi is alive in y and y′. Consider a run
r1 which extends y and in which pi crashes at the beginning of round f +1 and
no process crashes thereafter. (Recall that f ≤ t− 1.) As pi has decided 0 in
y, it follows from the uniform agreement property that, every correct process
decides 0 in r1. Since t < n, there is at least one correct process, say pl in
r1. Now consider a run r2 which extends y′ and in which pi crashes at the
beginning of round f + 1 and no process crashes thereafter. Notice that no
correct process can distinguish r1 from r2: at the end of round f , no alive
process that is distinct from pi can distinguish y from y′, and pi crashes before
sending any message in round f + 1. Thus every correct process decides the
same value in r1 and r2, in particular pl decides 0 in r2. However, pi = q2

decides 1 in r2; a contradiction with uniform agreement.

- q2 6= pi: As y and and y′ differ only at pi, q2 6= pi implies that, q2 has the
same state in y and y′. Thus, in y, q2 is alive and has decided 1. In any run
which extends y, pi = q1 has decided 0 and q2 has decided 1; a contradiction
with uniform agreement.

2

C-decision

In the following lemma, we show that any UA algorithm in SMt has a run in SMf

(i.e., a run with at most f crashes) in which at most one correct process decides in
round f + 1 or in a lower round. In other words, the number of rounds needed for
c-decision, when c ≥ 2, is f + 2. (Following this terminology, Lemma 13 states that
the number of rounds needed for 1-decision is f + 1, and Theorem 3 states that the
number of rounds needed for n− f decision is f + 2.)

Lemma 14 ∀t ∈ [3, n − 1], ∀f ∈ [0, t − 3], ∀c ∈ [2, n − f], (SMt, SMf , UA, dc)
≥ f + 2.

Proof: It is sufficient to show that (SM t, SM f , UA, d2) ≥ f + 2. Suppose by
contradiction that there is a UA algorithm A in SMt and an integer f in [0, t − 3]
such that, in every run of A with at most f crashes, at least two correct processes
decide by round f + 1.

It follows from Lemma 6 that, there are two runs of A in SMt such that their round f
configurations, y and y′, satisfy the following: (1) at most f processes have crashed
in each configuration, (2) the configurations differ at exactly one process, say pi, and
(3) val(y) = 0 and val(y′) = 1. Let z and z′ denote the configurations at the end of
round f + 1 of r(y) and r(y′), respectively.

4.2. Uniform consensus 39

r(y)

pi

Config y

q1

q3

0

r(y’)

Config y’

1

pl

R1

Config y

0

R2

Config y’

1

Config z Config z’

pl

pi

q1

q3

pl

pi

q1

q3

pl

pi

q1

q3

pl

q1, q3 q1, q3

Figure 4.3: Round f + 1 of Case 1, Lemma 14

From our initial assumption about algorithm A, it follows that, in z, there are two
alive processes q1 and q2 which have decided val(y) = 0. (Otherwise, if at most
one alive process has decided in z, then at most one correct process has decided by
round f + 1 in r(y), a run with at most f crashes; a contradiction.) Similarly, in z′,
there are two alive processes q3 and q4 which have decided val(y′) = 1. Since q1 and
q2 are distinct, at least one of them is distinct from pi, say q1. Similarly, without
loss of generality we may assume that q3 is distinct from pi.

Thus, we have (1) a round f +1 configuration z and a process q1 such that, at most
f processes have crashed in z, and q1 is alive and has decided 0 in z, (2) a round
f +1 configuration z′ and a process q3 such that, at most f processes have crashed in
z′, and q3 is alive and has decided 1 in z′, and (3) process pi is distinct from both q1

and q3. (Processes q1 and q3 might not be distinct.) There are two cases to consider.

40 Chapter 4. Synchronous Model

Case 1. (See Figure 4.3.) Process pi is alive in y and y′. Consider the following two
runs of A:

R1 is a run such that (1) the round f configuration is y, (2) pi crashes in round
f + 1 such that only q1 and q3 receive the message from pi, (3) q1 and q3 crash at
the beginning of round f + 2, and (4) no process distinct from pi, q1, and q3 crashes
after round f . Notice that q1 cannot distinguish the round f + 1 configuration of
R1 from z, and therefore, decides 0 at the end of round f + 1 in R1. By uniform
agreement, every correct process decides 0. Since t ≤ n − 1, there is at least one
correct process in R1, say pl.

R2 is a run such that (1) the round f configuration is y′, (2) pi crashes in round
f + 1 such that only q1 and q3 receive the message from pi, (3) q1 and q3 crash at
the beginning of round f + 2, and (4) no process distinct from pi, q1, and q3 crashes
after round f . Notice that q3 cannot distinguish the round f + 1 configuration of
R2 from z′, and therefore, decides 1 at the end of round f + 1 in R2. However, pl

cannot distinguish R1 from R2: at the end of round f +1, the two runs are different
only at pi, q1, and q3, and none of the three processes send messages after round
f +1 in both runs. Thus (as in R1) pl decides 0 in R2; a contradiction with uniform
agreement.

Case 2. (See Figure 4.4.) Process pi has crashed in either y or y′. (Process pi has
not crashed in both y and y′ because pi has different states in y and y′.) Without
loss of generality, we can assume that pi has crashed in y, and hence, pi is alive in
y′. Consider the following two runs of A:

R12 is a run such that (1) the round f configuration is y (and hence, pi has crashed
before round f + 1), (2) no process crashes in round f + 1, (3) q1 and q3 crash at
the beginning of round f + 2, and (4) no process distinct from pi, q1 and q3 crashes
after round f . Observe that the round f +1 configuration of R12 is z, and hence, q1

decides 0 at the end of round f +1 in R12. Due to uniform agreement, every correct
process decides 0 in R12. Since t ≤ n − 1, there is at least one correct process in
R12, say pl.

R21 is a run such that (1) the round f configuration is y′, (2) pi crashes in round
f +1 such that only q1 and q3 receive the message from pi, (3) q1 and q3 crash at the
beginning of round f +2, and (4) no process distinct from pi, q1 and q3 crashes after
round f . Notice that q3 cannot distinguish the round f + 1 configuration of R21
from z′ because it receives the round f + 1 message from pi in both runs. Thus (as
in z′) q3 decides 1 at the end of round f + 1 in R21. However, pl cannot distinguish
R12 from R21: at the end of round f + 1, the two runs are different only at pi, q1

and q3, and none of them send messages after round f + 1 in both runs. Thus (as
in R12), pl decides 0 in R21; a contradiction with uniform agreement. 2

Remark. Since in a run with at most f crashes, the global decision is (n − f)-
decision, Lemma 14 generalizes Theorem 3. However, the values of f and t, for which

4.3. NBAC and IC 41

r(y)

pi

Config y

q1

q3

0

r(y’)

Config y’

1

pl

R12

Config y

0

R21

Config y’

1

Config z Config z’

pl

pi

q1

q3

pl

pi

q1

q3

pl

pi

q1

q3

pl

q1, q3 q1, q3

Figure 4.4: Round f + 1 of Case 2, Lemma 14

Lemma 14 is valid are slightly different from Theorem 3, e.g., unlike Theorem 3,
Lemma 14 does not consider the case where f = t − 2, as well as, the case where
t = 2.

4.3 Non-Blocking Atomic Commit and Interactive Con-
sistency

Non-blocking atomic commit

Recall that the lower bounds presented in Section 4.2 hold for both UC and NBAC.
In the following, we show that for NBAC, the local decision lower bound in the
failure-free case (f = 0) can be shifted to 2. This result does not hold for UC. In

42 Chapter 4. Synchronous Model

1 1

R3

pi

pl

pj

pl

Config C1 Config C1

Config C0

R1 R2

pi

1

1

1 pi

pl

pj

1

1

1

pi

pl

pj

1

0

1

Figure 4.5: Round 1, Lemma 15

Section 4.4.4, we exhibit a UC algorithm that locally decides in 1 round in failure-free
runs.

Lemma 15 ∀t ∈ [2, n− 1], (SMt, SM0, NBAC, ld) ≥ 2.

Proof: (See Figure 4.5.) Suppose by contradiction that there is a NBAC algorithm
A in SMt such that, in every failure-free run, some correct process decides in round
1. Let C1 be the initial configuration in which all processes propose 1. Consider the
failure-free run R1 starting from C1; i.e., R1 = r(C1). Suppose that, in R1, pi is
the process that decides in round 1. It follows from the abort validity property of
NBAC that pi decides 1 in R1.

Consider another run R2 such that every process proposes 1. Some process pj (6= pi)
crashes in round 1 and only pi receives round 1 message from pj . Process pi crashes
at the beginning of round 2, and no process crashes thereafter. At the end of round
1, pi cannot distinguish R1 from R2. Thus, pi decides 1 in round 1 of R2. From
uniform agreement, every correct process decides 1. There is at least one correct
process in R2, say pl, because t ≤ n− 1.

4.3. NBAC and IC 43

Let C0 be the initial configuration in which pj proposes 0 and all other processes
propose 1. Consider a run R3 starting from C0 with the same failure pattern as R2;
i.e., pj crashes in round 1 and only pi receives round 1 message from pj , pi crashes
at the beginning of round 2, and no process crashes thereafter. No process distinct
from pi and pj can distinguish R2 from R3: at the end of round 1, only pi receives
a round 1 message from pj , but pi crashes before sending any message in round 2.
Therefore, as in R2, every process distinct from pi and pj , decides 1, in particular pl.
But from the commit validity property of NBAC, it follows that, no process should
decide 1 in R3 because some process (pj) has proposed 0; a contradiction. 2

Interactive consistency

In RM , or any of its submodels (e.g., in SM or EM), any interactive consistency
(IC) algorithm can be easily transformed to a NBAC algorithm as follows. Let
V 1 denote the ordered n-tuple in which every component is 1. Suppose we have
an IC algorithm with IC-propose() primitive. We implement the NBAC-propose()
primitive of the NBAC specification as follows:

• When a process NBAC-proposes v ∈ {0, 1}, then it IC-proposes v.

• If a process IC-decides V 1, then it NBAC-decides 1; if the process IC-decides
a vector different from V 1, then it NBAC-decides 0.

Uniform agreement and termination properties of NBAC follow directly from the
corresponding properties of IC. Consider the remaining two properties of NBAC.

1. Commit validity: If some process NBAC decides 1 then it has IC-decided V 1,
and hence, from the IC validity property, every process has IC-proposed and NBAC-
proposed 1, thus ensuring NBAC commit validity.

2. Abort validity: If some process NBAC decides 0 then it has IC-decided an n-
tuple that is different from V 1, and hence, from the IC validity property, either
some process is faulty, or some process has IC-proposed a value different from 1.
The NBAC abort validity immediately follows.

Observe that the transformation by itself does not require any additional communi-
cation. Thus, the time-complexity lower bounds of Lemmas 13, 14 and 15 on NBAC,
also apply to IC.

44 Chapter 4. Synchronous Model

4.4 A matching algorithm

One of the first early deciding agreement algorithm was presented in [LF82]. Inspired
by that algorithm, [CBS04] showed NC and UC algorithms that match the global
decision lower bounds. (The NC algorithm in [CBS04], also matches the global
halting lower bound.) However, we knew of no UC algorithm that matches the local
decision lower bounds.

In this section, we present an IC algorithm that simultaneously matches the local
decision, global decision, and global halting lower bounds for most values of f and
t. (We do not match the lower bound in some boundary cases when the values of f ,
t and n are close to each other.) From our IC algorithm, we then derive matching
algorithms for UC and NBAC.

For ease of presentation, in all algorithms presented in this thesis, we assume the
following: at the end of round k, after generating the message for round k + 1,
a process pi makes n copies of that message, and sets the tags (sender, recp, and
halted) in each copy, to generate an appropriate round k + 1 message to be sent to
each process.

4.4.1 IC algorithm overview

Our IC algorithm Aic (Figure 4.6) in SMt is inspired by the NC algorithm of [CBS04].
The algorithm runs for at most t + 1 rounds. Process pi maintains two primary
variables: (1) an ordered n-tuple esti, component j of which contains the proposal
value of pj , provided pi has learnt that value (either directly from pj or relayed by
some other process), and ⊥ otherwise, and (2) a set of processes halti that pi knows
to have either crashed or halted.

In each round, the processes exchange estimate (est) messages containing their est
values, and compute new values for est and halt. If halt set at a process does not
change in round k then (1) if est does not change in round k as well, then the
process decides on its est in round k, otherwise, (2) the process decides on its est in
round k + 1. Before halting, a process sends a special decision (dec) message to all
processes, so that the processes can distinguish a halt from a crash.

Roughly speaking, if the halt set at a process pi does not change in some round k
then, at the end of round k, no alive process has seen more proposal values than
pi. Thus, pi can decide on esti at the end of round k, but pi has to ensure that all
other processes also see its current est. So pi sends its est to all processes in round
k + 1 and then decides. However, if the est of pi does not change in round k, then
pi has already sent that est to all processes in round k; so pi can decide at the end
of round k.

4.4. A matching algorithm 45

at process pi:

1: initialize()
2: in round k {rounds 1, ..., t + 1}
3: send round k messages
4: receive messages
5: compute()

6: procedure initialize()
7: Ordered n-tuple esti and newesti: element i initialized to propi and other elements to ⊥
8: Set halti ← newhalti ← ∅; Boolean lastRoundi ← false; round 1 msg ← (k, est, esti)
9: for 1 ≤ l ≤ t + 1 do Multiset Sl

i ← ∅

10: procedure compute()
11: halti ← newhalti; esti ← newesti

12: Sk
i ← {estj | (k, est, estj) was received}

13: if lastRoundi then
14: if deci = ⊥ then deci ← esti {decision}
15: halt
16: if received any (k,dec, estj) then
17: newesti ← estj ; lastRoundi ← true
18: else
19: newhalti ← Π\sender(Sk

i) {processes from which pi did not receive any message}
20: for 1 ≤ j ≤ n do
21: if there is any est′ ∈ Sk

i s.t. est′[j] 6= ⊥ then newesti[j]← est′[j] else newesti[j]← ⊥
22: if newhalti = halti then
23: if esti = newesti then deci ← esti {decision}
24: lastRoundi ← true
25: if k = t + 1 then
26: if deci = ⊥ then deci ← newesti {decision}
27: halt
28: if lastRoundi then round k + 1 msg ← (k + 1,dec, newesti)
29: else round k + 1 msg ← (k + 1, est, newesti)

Figure 4.6: Interactive consistency algorithm Aic

4.4.2 Correctness

In the following, if pi completes any round k, then for any variable vari, vark
i denotes

the value of that variable at the end of round k; var0
i denotes the value of the variable

at the end the initialization subround in round 1. For 1 ≤ k ≤ t+1, faultyk denotes
the set of processes which have crashed by round k, and faulty0 = ∅. For any pair
of ordered n-tuples d and d′, we say that (1) d = d′ if for all j ∈ [1, n], d[j] = d′[j],
(2) d � d′ if for all j ∈ [1, n], either d[j] = ⊥ or d[j] = d′[j], and (3) d � d′ if d � d′

is false.

First, we make the following simple observations which we use frequently in the
correctness proofs: (Observation O1) for est value at any process and any j ∈
[1, n], est[j] is either the proposal value of pj or ⊥, (Observation O2) if pj does
not decide by round k and pj receives an est message from some process pl in round

46 Chapter 4. Synchronous Model

k, then newestk−1
l � newestkj . (From the loopback property of the model, it follows

that pj receives its own round k message, and therefore, newestk−1
j � newestkj .)

Every process decides on some est value; thus, validity immediately follows from
Observation O1. Termination follows from the simple observations that no process
halts without deciding and no process completes round t+1 without halting (lines 25
to 27). Thus we only detail the proof of uniform agreement. We start with some
general lemmas about the algorithm.

Lemma 16 If for some k ∈ [1, t], no process decides by round k, then the following
holds for any process pi that completes round k. If lastRoundk

i = true, then any
process pj that completes round k has newestkj � newestki .

Proof: We prove the lemma by induction on round number k ∈ [1, t].

Base case k = 1. Suppose lastRoundk
i = true and no process decides in round

1. Then pi has either executed line 17 or line 24 of round 1. Observe that pi

executes line 17 only if some process sends a dec message to pi. Since lastRound is
initialized to false and the processes send a dec messages only when lastRound =
true, no process sends a dec message in round 1. Thus pi has executed line 24. So
newhalt1i = halt1i = ∅, and hence, newest1i contains proposal values of all processes.
Thus, any process pj which completes round 1 has newest1j � newest1i .

Induction Hypothesis. If no process decides by round k then the following holds for
any process pi that completes round k. If lastRoundk

i = true, then any process pj

that completes round k, has newestkj � newestki .

Induction Step. Suppose by contradiction that (1) no process decides by round
k+1, (2) there is a process pi that completes round k+1 such that lastRoundk+1

i =
true and newestk+1

i = d′, and (3) another process pj completes round k + 1 with
newestk+1

j = d such that d � d′. Process pi has either executed line 17 or line 24. If
pi executed line 17, then pi has received message (k + 1, dec, d′) from some process
pl. To send a dec message in round k + 1, pl must have set lastRoundl to true in
round k. Thus, from the induction hypothesis, every process that completes round
k has newestk � d′. Since d � d′, process pj receives a round k + 1 message from
some process with a n-tuple d′′ such that d′′ � d′; a contradiction because, for all
processes which complete round k, newestk � d′. Hence, pi executed line 24, and
haltk+1

i = newhaltk+1
i . Since pj completes round k + 1, pi received the round k + 1

message from pj containing newestkj , and hence, newestkj � newestk+1
i = d′. As

newestk+1
j = d � d′, it follows that pj received (k + 1, ∗, d′′) from some process

pm such that d′′ � d′, and pi did not receive (k + 1, ∗, d′′) from pm (otherwise,

4.4. A matching algorithm 47

from Observation O2, d′′ � newestk+1
i = d′). Thus pm ∈ newhaltk+1

i . However, as
pm completed round k, pm /∈ newhaltki = haltk+1

i . Thus, haltk+1
i 6= newhaltk+1

i ; a
contradiction. 2

Lemma 17 If a process pi has haltki = newhaltki in some round k ∈ [1, t], then pi

does not complete round k + 1 without halting.

Proof: If pi has haltki = newhaltki then pi sets lastRoundi to true in round k, and
from lines 13 and 15, pi does not complete round k + 1 without halting. 2

Lemma 18 If no correct process halts by some round k − 1 ∈ [1, t], and if there is
a process pi such that, for every round number k′ ∈ [1, k], haltk

′
i 6= newhaltk

′
i , then

|faultyk| ≥ k.

Proof: Suppose that there is a round k such that no correct process halts by
round k − 1 and there exists a process pi such that, for every round number k′ ∈
[1, k], haltk

′
i 6= newhaltk

′
i . Clearly, for all k′ ∈ [1, k], haltk

′
i = newhaltk

′−1
i ⊆

newhaltk
′

i . As newhaltk
′−1

i = haltk
′

i 6= newhaltk
′

i , |newhaltk
′−1

i | + 1 ≤ |newhaltk
′

i |.
Thus |newhaltki | ≥ k. Any process in newhaltki has either halted by round k − 1 or
crashed by round k. Since no correct process halts by round k− 1, every process in
newhaltki is faulty, and hence, |faultyk| ≥ k. 2

Lemma 19 If no correct process halts by round k + 1 ∈ [1, t], then |faultyk| ≥ k.

Proof: The proof is trivial for k + 1 = 1. So we consider the case k + 1 ∈ [2, t].
Suppose that no correct process halts by round k + 1.

Consider any correct process pi. Since pi does not halt by round k+1, it follows from
Lemma 17 that for every k′ ∈ [1, k], haltk

′
i 6= newhaltk

′
i . Since no correct process

halts by round k − 1, applying Lemma 18, we have |faultyk| ≥ k. 2

Lemma 20 If every process that decides, decides in line 23 of round t+1 or line 26
of round t + 1, then |faultyt| ≥ t.

Proof: Suppose that every process that decides, decides in line 23 of round t + 1
or line 26 of round t + 1. Consider any correct process pi. Since pi does not decide
in line 14 of round t + 1, lastRoundt

i = false. Thus newhaltti 6= haltti (from lines 22
and 24). Furthermore, as pi does not halt by round t, for every k ∈ [1, t − 1],
newhaltki 6= haltki . Thus for every k ∈ [1, t], newhaltki 6= haltki . Observing that no
process halts by round t− 1 and applying Lemma 18, we have |faultyt| ≥ t. 2

48 Chapter 4. Synchronous Model

Lemma 21 (Uniform Agreement) No two processes decide differently.

Proof: If no process decides then the lemma trivially holds. Suppose some process
decides. Consider the lowest round number k in which some process decides. Let pi

be a process that decides in round k, say on some n-tuple d. We divide the proof
into two parts: (a) k ≤ t + 1 and pi does not decide in line 26 of round t + 1, and
(b) k = t + 1 and pi decides in line 26 of round t + 1.

(a) k ≤ t + 1 and pi does not decide in line 26 of round t + 1: Process pi decides
either in (1) line 14 or (2) line 23 of round k. In both cases, we show the following:
no process can decide a n-tuple different from d in round k, and any process that
completes round k without deciding, does so with newestk = d. This immediately
implies uniform agreement. (Note that, even if k = t + 1, and another process pj

decides in line 26 of round k, pj decides on newestkj = d.)

• Process pi decides in line 14 of round k: Notice that k > 1 because no process
can decide at line 14 in round 1 (as lastRound0 = false). Since pi decides in
line 14, lastRoundk−1

i = true and pi sends a dec message in round k. We
claim that every dec message sent in round k is (k, dec, d). Suppose that
another process pj sends a (k, dec, d1) message. Then lastRoundk−1

j = true.
Since no process decides by round k − 1, applying Lemma 16 twice we have
d1 = newestk−1

j � newestk−1
i = d and d = newestk−1

i � newestk−1
j = d1, i.e.,

d1 = d. As pi completes round k, every process receives at least one (k, dec,
d) message, and either decides d in line 14 or adopts d as newest in line 17.

• Process pi decides in line 23 of round k: We claim that no process decides a
value different from d in round k. Clearly, pi does not receive any dec message
in round k (otherwise, pi does not execute line 23). Suppose some process pj

decides d1 in round k. If process pj decides in line 14, then pj sends dec
message in round k, and pi receives that message (as pj executes the receive
subround in round k, so none of its round k messages are lost); a contradiction.
Suppose pj decides in line 23. From the predicate at line 23, if follows that
pi sent (k, est, d) in round k and pj sent (k, est, d1) in round k. Since pi

receives round k message from pj and vice versa, d1 � d and d � d1, i.e.,
d = d1. If pj decides in line 26, then it decides on the newest value adopted
in round t + 1. We show below that every process that updates its newest in
round k, updates it to d.

We now show that any process that completes round k without deciding at
line 14 or line 23, does so with newest = d. Suppose by contradiction that
some process pj completes round k with newest = d2 6= d and without deciding
in line 14 or 23. Process pj updates its variable newest in line 17 or line 21.
Suppose pj updates its newest in line 17. Then pj has received a dec message
from some process pm. Since pi decides at line 23, it does not receive any dec

4.4. A matching algorithm 49

message in round k. Thus pm ∈ newhaltki . Since pm completes round k − 1,
pm /∈ newhaltk−1

i = haltki (if k = 1 then obviously pm /∈ haltki = ∅.). Hence,
the predicate at line 22 evaluates to false at pi, and pi cannot decide in line 23;
a contradiction. Thus, pj updates its newest in line 21. Since pi completes
round k by deciding d and evaluates the condition in line 23 to true, pi sends a
(k, est, d) in round k. Thus pj receives (k, est, d) from pi, and hence, d � d2.
As d2 6= d, it follows that d2 � d. Consequently, there is a process pm such
that pj receives d3 � d from pm, but pi does not receive any message from pm

in round k. Thus, pm ∈ newhaltki . However, pm completes round k − 1 and
hence, pm /∈ newhaltk−1

i = haltki (if k = 1 then obviously pm /∈ haltki = ∅).
Hence, the predicate at line 22 evaluates to false at pi, and pi cannot decide
in line 23; a contradiction.

(b) k = t + 1 and pi decides in line 26 of round k = t + 1: From the definition
of k, every process which decides, decides in round t + 1. We have shown above
that, if any process decides in line 14 or line 23 of round t + 1, then every process
which decides in round t + 1, decides the same value. Therefore, we need to only
consider the case where every process which decides, decides at line 26 of round t+1.
From Lemma 20, we have |faultyt| ≥ t. Since at most t processes may crash in a
run, |faultyt| = t, and hence, every process which enters round t + 1, is a correct
process. Consequently, every process which enters round t+1, receives the same set
of messages in round t + 1. Observe that no process sends dec message in round
t + 1 (otherwise, that process decides in line 14 of round t + 1 or line 23 of round t;
a contradiction). Thus every process which enters round t + 1, updates newest to
the same value in line 21, and decides on identical values in line 26. 2

4.4.3 Time-complexity

We now discuss the time complexity properties of Aic. In the following lemma, we
show that, in runs with f ≥ 1 crashes, the algorithm achieves a local decision in
f + 1 rounds and a global decision in f + 2 rounds. However, when f = 0, the
local decision takes the same number of rounds as the global decision (2 rounds) —
recall that, we showed in Section 4.3 that IC algorithms require 2 rounds for a local
decision when f = 0. (In Section 4.4.4, we describe a UC algorithm that achieves
local decision in 1 round when f = 0.)

We say that a process pi learns index l ∈ [1, n]\{i} in round k if newestk−1
i [l] = ⊥

and newestki [l] 6= ⊥. (In other words, pi learns about the proposal value of pl in
round k.) We say that pi learns index i in round 0. We also say that pi learns index
l from pj in round k if newestk−1

i [l] = ⊥ and pi receives a round k message from
pj containing an est such that est[l] 6= ⊥. On the other hand, if pj sends an est
such that est[l] 6= ⊥ the we say that pj propagates index l in round k. (Note that
there may be more than one process from which a process learns the same index in

50 Chapter 4. Synchronous Model

a round.) Clearly, if pi propagates l in round k, then pi learns l in a lower round.

Lemma 22 In any run with at most f faulty processes, the following properties
hold:
(a) if f ∈ [1, t], then there is a correct process that decides by round f + 1.
(b) if f ∈ [0, t− 2], then any process that halts, halts by round f + 2.
(c) Any process that halts, halts by round t + 1.

Proof: (a) For f = t, the proof is trivial because every correct process decides by
round t + 1. Consider a run in which at most f ∈ [1, t − 1] processes crash, and
suppose, by contradiction that no correct process decides by round f + 1. Thus, no
correct process halts by round f +1 ≤ t. It follows from Lemma 19 that |faultyf | ≥
f . Since at most f processes fail in the run, |faultyf | = f and every process which
enters round f + 1 is correct. Furthermore, since no correct process halts by round
f , Lemma 19 implies that |faultyf−1| ≥ f − 1. Since |faultyf | = f , at most one
process crashes in round f (Observation O3).

Let S be the set of processes that enter round f + 1. Since every process in S is
correct, all of them complete round f + 1. We establish a contradiction by showing
that some process in S decides in line 23 of round f + 1. We demonstrate this fact
indirectly by showing the following four claims for processes in S in round f + 1:
(1) every process has lastRound = false in line 13, (2) no process receives a dec
message in round f + 1, (3) every process evaluates the predicate at line 22 to true,
and (4) some process evaluates the predicate at line 23 to true.

Claim 1. If lastRound = true at a process in line 13 of round f +1 then that process
halts in round f + 1. This immediately leads to a contradiction because we know
that every process in S is correct, and no correct process halts by round f + 1.

Claim 2. Suppose by contradiction that some process pi ∈ S receives a dec message
from some process pj in round f + 1. Since every process which enters round f + 1
is correct, pj is a correct process, and hence, pj decides in line 14 of round f + 1 or
line 23 of round f ; a contradiction. Thus no process in S receives a dec message in
round f + 1.

Claim 3. Suppose by contradiction that some process pi ∈ S evaluates the pred-
icate at line 22 to false; i.e., haltf+1

i 6= newhaltf+1
i . Since pi does not halt by

round f + 1, from Lemma 17 we have, haltki 6= newhaltki for every k in [1, f]. Thus
haltki 6= newhaltki for every k in [1, f + 1]. As no correct process halts by round
f + 1, from Lemma 18 it follows that |faultyf+1| ≥ f + 1; a contradiction.

Claim 4. (See Figure 4.7.) Suppose by contradiction that every process in S evalu-

4.4. A matching algorithm 51

py’

round f

px’

py

px

pi

L2

L1
L2

L1

propagating index L
L

round f+1

Figure 4.7: Claim 4, Lemma 22(a)

ates the predicate at line 23 to false. It follows that, in round f + 1, every process
in S learns an index. (Recall that every process that enters round f + 1 is correct
and is in set S.)

Consider a process pi ∈ S which learns index l1 in round f + 1 from some process
px. Suppose px learns index l2 in round f + 1 from process py. Since pi learns from
px, pi 6= px. Similarly, px 6= py. (Note that pi and py may not be distinct.) Since px

propagates l1 and learns l2 in the same round, we have l1 6= l2.

Since px is a correct process, px learns l1 in round f (otherwise, if px learned l1 in
a round lower than f , px would have propagated l1 to pi by round f). Similarly,
py learns l2 in round f . Consider the process p′x from which px learns l1 in round
f . Process p′x must have crashed in round f , otherwise, on receiving the round f
message from p′x, pi would have learned l1 in round f . Similarly, the process p′y from
which py learns l2 in round f must have crashed in round f , otherwise, px would
have learned l2 from p′y in round f . We claim that p′x and p′y are distinct processes.
Otherwise, if p′x = p′y, then p′x propagates both l1 and l2 in round f , and when
px receives a message from p′x in round f , px learns both l1 and l2 in round f ; a
contradiction. (Recall that we assumed that px learns l2 in round f + 1.)

We thus have two processes p′x and p′y that crash in round f . However, from Obser-
vation O3, we know that at most one process crashes in round f ; a contradiction.

(b) Consider a run where at most f ∈ [0, t − 2] processes crash, and suppose by
contradiction that a process pi completes round f + 2 without halting. Observe
that, if any process pj halts at round k ≤ f + 1 then pj sends a dec message in

52 Chapter 4. Synchronous Model

round k. Since pj completes round k, pi receives the dec message from pj , sets
lastRound to true in round k, and halts in round k + 1 ≤ f + 2. Thus no process
halts by f + 1. As pi does not halt by round f + 2, so for every k ∈ [1, f + 1],
we have newhaltki 6= haltki . Applying Lemma 18 we have |faultyf+1| ≥ f + 1; a
contradiction.

(c) Obvious from the algorithm. 2

4.4.4 NBAC, UC and NC algorithms

In Section 4.3, we showed how to transform any IC algorithm to a NBAC algorithm,
without any additional communication between processes. An equally straight-
forward transformation generates a UC algorithm from an IC algorithm: on UC-
propose(v), a process invokes IC-propose(v), and if a process IC-decides an n-tuple
d, then it UC-decides d[l] where l is the lowest index such that d[l] 6= ⊥.

Our IC algorithm Aic does not locally decide in round 1 in a failure-free run (f = 0).
Therefore, to match the early local decision lower bound for UC when f = 0, we
modify the UC algorithm obtained from Aic by adding the following: p1 UC-decides
on its proposal value v1 in the computation subround of round 1. To see why
this modification does not violate the agreement property of UC, notice that, if p1

executes the receive subround of round 1, then none of its round 1 messages are lost.
Therefore, every process which completes round 1 has newest[1] = v1. Subsequently,
at all processes, newest[1] and est[1] is always v1. Thus no process can UC-decide
a value different from v1.

Now consider NC. We showed in Section 1.2 that there is a NC algorithm that
matches the local decision lower bound. As we mentioned earlier, [CBS04] gives an
algorithm that matches the global decision and the global halting bounds for NC.
Recall that it follows from Lemma 12 that no single NC algorithm can match both
the early local decision and early global decision lower bounds.

4.5 Summary of results in the synchronous model

Combining our lower bound results with algorithm Aic, the derived NBAC and UC
algorithms, and the trivial NC algorithm sketched in Section 1.2, we get the following
tight bounds.

Theorem 23 (Local decision tight bound for consensus.)
∀t ∈ [1, n− 1], ∀f ∈ [0, t], (SMt, SMf , NC, ld) = f .

Proof: Follows from Lemma 10, and the NC algorithm sketched in Section 1.2. 2

4.5. Summary of the results 53

Theorem 24 (Local decision tight bound for uniform consensus.)
∀t ∈ [1, n− 1], ∀f ∈ [0, t− 1], (SMt, SMf , UC, ld) = f + 1.

Proof: Follows from Lemma 13, and the UC algorithm derived from Aic in Sec-
tion 4.4.4. 2

Theorem 25 (Local decision tight bounds for non-blocking atomic commit and in-
teractive consistency.)
(a) ∀t ∈ [1, n− 1], ∀f ∈ [1, t− 1], ∀P ∈ {NBAC, IC}, (SMt, SMf , P, ld) = f + 1.
(b) ∀t ∈ [1, n− 1], ∀P ∈ {NBAC, IC}, (SMt, SM0, P, ld) = 2.

Proof: Lower bound for part (a) follows from Lemma 13. Lower bound for part (b)
follows from Lemma 15. The matching algorithms are the IC algorithm Aic presented
in Section 4.4, and the NBAC algorithm derived from Aic in Section 4.4.4. 2

Theorem 26 (For c ≥ 2, c-decision tight bounds for uniform consensus, non-
blocking atomic commit and interactive consistency.)
∀t ∈ [3, n− 1], ∀f ∈ [0, t− 3], ∀c ∈ [2, n− f], ∀P ∈ {UC, NBAC, IC},
(SMt, SMf , P, dc) = f + 2.

Proof: Note that algorithm Aic globally decides by round f + 2 in runs with at
most f crashes, and therefore, for all c ∈ [2, n− f], c-decides by round f + 2 in runs
with at most f crashes. Thus the theorem follows from Lemma 14, algorithm Aic,
and the NBAC and UC consensus algorithms derived from Aic. 2

54 Chapter 4. Synchronous Model

Chapter 5

Tight Bounds in the Eventually
Synchronous Model
Part A — Synchronous Runs

In this chapter and in Chapter 6, we investigate bounds for uniform consensus (UC)
in the eventually synchronous model (EMt). We do not consider the bounds for non-
blocking atomic commit (NBAC) because the problem is impossible to solve in the
eventually synchronous model when processes may crash (Lemma 7). In Section 4.3
we showed that any interactive consistency (IC) algorithm can be transformed to
solve non-blocking atomic commit without any additional communication. Thus, in-
teractive consistency is also impossible to solve in the eventually synchronous model
when processes may crash. Furthermore, in this model, any algorithm that solves
consensus (NC) also solves uniform consensus (Lemma 8). Thus in the eventually
synchronous model, we only investigate lower bounds for uniform consensus. To
strengthen our lower bounds, in all subsequent lower bound proofs, we only consider
binary uniform consensus, i.e., we fix V = {0, 1}.

In this chapter, we focus on synchronous runs of the eventually synchronous model,
namely, runs that are also runs of the synchronous model (SMt) (in other words,
runs with GSR = 1). As SMt is a submodel of EMt, lower bounds for local decision
and global decision in SMt also hold in synchronous runs of EMt, namely, the early
local decision lower bound is f + 1 and the early global decision lower bound is
f + 2. However, we knew of no matching algorithms for these bounds. The only
exception is the failure-free case (f = 0): the global decision tight bound is 2 rounds
in failure-free synchronous runs of EMt [KR03, Sch97, MR99].

55

56 Chapter 5. Eventually Synchronous Model (Part A)

5.1 Local decision lower bound

In following lemma, we state that, for most values of f , the early local decision
lower bound in synchronous runs can be improved to be the same as the early global
decision lower bound, namely, f + 2. In other words, every UC algorithm in EMt

has a run in SMf (i.e., a synchronous run with at most f crashes) in which every
correct process decides in round f + 2 or in a higher round. (Note that, as t and n
are integers, t < n/2 is equivalent to t ≤ (n− 1)/2.)

Lemma 27 ∀t ∈ [1, (n− 1)/2], ∀f ∈ [0, t− 3], (EMt, SMf , UC, ld) ≥ f + 2.

Remarks. We exclude the following two cases. (1) t = 0: in this case, processes can
decide after exchanging proposal values in the very first round in synchronous runs
(e.g., decide always on the proposal value of p1). (2) t ≥ n/2: in this case, from
Lemma 9, we know that there is no UC algorithm in EM t.

Proof: Suppose by contradiction that there is a UC algorithm A in EMt and an
integer f in [0, t − 3] such that, in every synchronous run of A with at most f
crashes some correct process decides by round f + 1. Since SMt is a submodel of
EMt, algorithm A is a UC algorithm in SMt as well. If follows from Lemma 6 that,
there are two runs of A in SMt such that their round f configurations, y and y′,
satisfy the following: (1) at most f processes have crashed in each configuration,
(2) the configurations differ at exactly one process, say pi, and (3) val(y) = 0 and
val(y′) = 1.

Let z and z′ denote the configurations at the end of round f + 1 of r(y) and r(y′),
respectively. Runs r(y) and r(y′) are runs of A in SMt, and so, synchronous runs
of A in EMt. As r(y) and r(y′) each have at most f crashes, it follows from our
assumption on A that, some correct process decides by round f + 1 in each run.
Thus, there is at least one alive process in z, say q1, that has decided 0. Similarly,
there is at least one alive process in z′, say q3, that has decided 1. There are three
cases to consider.

Case 1. pi /∈ {q1, q3}. This case is exactly the same as the case in the proof of
Lemma 14. We can derive a contradiction by constructing the same runs R1, R2,
R12, and R21 in SMt. (These are valid runs of A in EMt because SMt is a submodel
of EMt.)

Case 2. (See Figure 5.1.) pi ∈ {q1, q3} and pi is alive in both y and y′.

Remark: To see why we cannot reuse the proof of Lemma 14 in this case,
observe that, if pi = q1 then run R1 (in the proof of Lemma 14) is not a valid
run of A in SMt: in SMt, pi cannot decide in the computation subround of

5.1. Local decision lower bound 57

r(y)

pi=q1

Config y

q3

0

r(y’)

Config y’Config z Config z’

pl

pl

pi=q1

q3
1

pl

R3

pi=q1

Config y

q3

pl
v

R4

pi=q1

Config y

q3

0

pl
v

R5

pi=q1

Config y’

q3
1

pl
v

pl

pl

q1, q3q1, q3

Figure 5.1: Rounds f + 1 and K1 of Case 2, Lemma 27

58 Chapter 5. Eventually Synchronous Model (Part A)

round f + 1 while some of its round f + 1 messages are lost. Similarly, if
pi = q3 then run R2 is not a run in SMt. Hence, in this case, we construct
some runs of A in EMt, that are not in SMt (i.e., non-synchronous runs), to
derive a contradiction.

Without loss of generality we can assume that pi = q1. (Note that the proof holds
even if pi = q1 = q3.) Consider the following three runs (R3 is a synchronous run,
whereas R4 and R5 are non-synchronous runs):

R3 is a run such that (1) the round f configuration is y, (2) pi crashes at the be-
ginning of round f + 1, (3) if q3 6= pi then q3 crashes at the beginning of round
f + 2, (4) no process distinct from pi and q3 crashes in round f + 1 or a in higher
round, and (5) no message sent in round f + 1 or a in higher round is lost. Since
t ≤ (n − 1)/2 ≤ n − 1, there is at least one correct process in R3, say pl. Suppose
pl decides v ∈ {0, 1} in some round K1 ≥ f + 1. (To see why pl cannot decide
before round f + 1 in R3, notice that the state of pl at the end of round f is the
same in the three runs r(y), r(y′) and R3, because pl 6= pi. If pl decides v before
round f+1 in R3 then it also decides v in r(y) and r(y′). However, val(y) 6= val(y′).)

R4 is a run such that (1) the round f configuration is y, (2) pi and q3 crash at the
beginning of round f + 2, and only pi and q3 receive the round f + 1 message from
pi (all other round f + 1 messages from pi are lost — as R4 is a non-synchronous
run, messages may be lost in round f + 1 even if the sender does not crash in that
round), (3) no process distinct from pi and q3 crashes in round f + 1 or in a higher
round, and (4) the only messages lost in round f + 1 are the messages from pi to
Π\{pi, q3}, and no message is lost in a higher round. Notice that pi cannot distin-
guish the configuration at the end of round f + 1 in R4 from z, and thus, pi decides
0 at the end of round f + 1 in R4 (because q1 = pi decides 0 in z). However, pl

cannot distinguish round K1 configuration of R4 from that of R3 because (a) at the
end of round f , the two runs are different only at pi, (b) all round f + 1 messages
sent by pi to Π\{pi, q3} are lost, and (c) pi and q3 do not send messages after round
f + 1. Thus (as in R3) pl decides v in round K1.

R5 extends y′ in the same way as R4 extends y. Namely, R5 is a run such that
(1) the round f configuration is y′, (2) pi and q3 crash at the beginning of round
f + 2, and only pi and q3 receive the round f + 1 message from pi (all other round
f + 1 messages from pi are lost), (3) no process distinct from pi and q3 crashes in
round f + 1 or in a higher round, and (4) the only messages lost in round f + 1 are
the messages from pi to Π\{pi, q3}, and no message is lost in a higher round. Notice
that q3 cannot distinguish the configuration at the end of round f + 1 in R5 from
z′ (because in both configurations, q3 has received the round f + 1 message from
pi), and thus, q3 decides 1 at the end of round f + 1 in R5. However, pl cannot

5.1. Local decision lower bound 59

r(y)

pi=q1

Config y

q3

0

r(y’)

Config y’Config z Config z’

pi=q1

q3
1

R6

pi=q1

Config y

q3

pi=q1 q3

0

1

Figure 5.2: Round f + 1 of Case 3, Lemma 27

distinguish round K1 configuration of R5 from that of R3 because, (a) at the end
of round f the two runs are different only at pi, (b) all round f +1 messages sent by
pi to Π\{pi, q3} are lost, and (c) pi and q3 do not send messages after round f + 1.
Thus (as in R3) pl decides v in round K1.

Clearly, either R4 or R5 violates uniform agreement: pl decides v in both runs,
however, pi decides 0 in R4 and q3 decides 1 in R5.

Case 3. (See Figure 5.2.) pi ∈ {q1, q3} and pi has crashed in either y or y′. (Process
pi has not crashed in both y and y′ because pi has different states in y and y′.)
Notice that the case pi = q1 = q3 is not possible because, in that case, pi is alive in
both z and z′, and hence in y and y′. We show the contradiction for the case when
pi = q1 6= q3. (The contradiction for pi = q3 6= q1 is symmetric.)

Since, pi = q1, pi is alive in z, and hence, alive in y. Thus pi has crashed in y′.
Consider the following non-synchronous run:

R6 is a run such that (1) the round f configuration is y, (2) in round f + 1, only pi

receives the round f + 1 message from itself (all other messages sent by pi in round
f +1 are lost), (3) pi crashes at the beginning of round f +2, (4) no process distinct
from pi crashes in round f + 1 or in a higher round, and (5) the only messages lost

60 Chapter 5. Eventually Synchronous Model (Part A)

in round f +1 are the messages from pi to Π\{pi}, and no message is lost in a higher
round. Process pi cannot distinguish the configuration at the end of round f + 1
in R6 from z, and therefore, decides 0 (because q1 = pi decides 0 in z). However,
q3 does not receive the round f + 1 message from pi in R6, and hence, q3 cannot
distinguish the configuration at the end of round f +1 in R6 from z′. (Observe that,
in z′, q3 does not receive the round f + 1 message from pi because pi has crashed in
y′.) Consequently, q3 decides 1 in R6; a contradiction with uniform agreement. 2

Remark. A closer look at the proof of lemma 27 reveals that the non-synchronous
runs we construct (R4, R5, and R6) require only a small amount of non-synchrony
in the model. The three runs are valid in a weakened synchronous model where the
following holds: even if some message from process pi is lost in round f + 1, then
pi might complete round f + 1. (Recall that, in the synchronous model, if some
messages from pi is lost in round f + 1, then pi has necessarily crashed before the
receive subround of round f +1.) It is easy to see that such runs are also valid in the
synchronous send-omission model [Had83, PR04] as well as in an asynchronous round
based model enriched with a Perfect failure detector [CT96]. Thus the f + 2 early
local decision lower bound in synchronous runs also extends to these two models.

5.2 Global decision lower bound

In this section we show that the early global decision lower bound for synchronous
runs of any UC algorithm in EM t is f + 2. We first show the bound for f = t
(worst-case), and then derive the bound for the remaining values of f .

The following lemma says that every UC algorithm in EM t has a run in SM t in
which some correct process decides in round t + 2 or in a higher round.

Lemma 28 ∀t ∈ [1, (n− 1)/2], (EMt, SMt, UC, gd) ≥ t + 2.

Proof: Suppose by contradiction that there is a UC algorithm A in EMt such that,
in every synchronous run of A with t crashes every correct process decides by round
t + 1. Clearly, algorithm A solves UC in SMt. It follows from Lemma 6 that, there
are two runs of A in SMt such that their round t − 1 configurations, y and y′,
satisfy the following: (1) at most t− 1 processes have crashed in each configuration,
(2) the configurations differ at exactly one process, say pi, and (3) val(y) = 0 and
val(y′) = 1.

Let z and z′ denote the configurations at the end of round t of r(y) and r(y′),
respectively. Clearly, r(z) = r(y), and therefore, val(z) = val(y) = 0, and similarly,
val(z′) = 1. For notational convenience, let us rename (a) pi as q1, (b) for all

5.2. Global decision lower bound 61

j ∈ [1, i− 1], pj as qj+1, and (c) for all j ∈ [i + 1, n], pj as qj . Thus y and y′ differ
only at q1.

There are two cases to consider: (1) q1 is alive in both y and y′ and (2) q1 has
crashed in either y or y′. (Note that q1 has not crashed in both y and y′ because q1

has different states in the two configurations.)

Case 1. Process q1 is alive in both y and y′. Consider a series of round t configura-
tions zj (j ∈ [0, n]): (1) z0 = z, and (2) for all j ∈ [1, n], zj is identical to z0 except
that q1 crashes in round t such that, in round t, the messages from q1 to processes in
{q1, ..., qj} are lost (and no other message is lost). Note that val(z0) = val(z) = 0.
We claim the following:

Claim 28.1 For all j ∈ [1, n], if val(zj−1) = 0 then val(zj) = 0.

Claim 28.1, immediately implies that val(zn) = 0. (We give the proof of Claim 28.1
later.) Similarly, we construct another series of round t configurations z′j (j ∈ [0, n]):
(1) z′0 = z′, and (2) for j ∈ [1, n], z′j is identical to z′0 except that q1 crashes in round
t such that, in round t, the messages from q1 to processes in {q1, ..., qj} are lost (and
no other message is lost). Note that val(z′0) = val(z′) = 1. We claim the following:

Claim 28.2 For all j ∈ [1, n], if val(z′j−1) = 1 then val(z′j) = 1.

Claim 28.2, immediately implies that val(z′n) = 1. Now we observe that configura-
tions zn and z′n are extensions of y and y′, respectively, and in both zn and z′n, no
process receives a round t message from q1. Since y and y′ differ only at q1, no alive
process can distinguish zn from z′n. (As we assume n ≥ 3 and t < n/2, we have
n − t > n/2 > 1, and hence, there is a process which is alive in both zn and z′n.)
Thus, val(zn) = val(z′n); a contradiction.

Case 2. Process q1 has crashed in either y or y′ Without loss of generality we can
assume that q1 has crashed in y′. As in Case 1, we can construct a series of round
t configurations zj , for j ∈ [0, n] (we can do so because q1 is alive in y), and then
show that val(zn) = 0. Recall that val(z′) = 1.

We now observe that in zn, no process receives any round t message from q1. Fur-
thermore, since q1 has crashed in y′, it follows that, in z′, no process receives any
round t message from q1. As zn and z′ are extensions of y and y′, respectively, and
y and y′ differ only at q1, so no correct process can distinguish zn from z′. Thus,
val(zn) = val(z′); a contradiction.

62 Chapter 5. Eventually Synchronous Model (Part A)

r(z0)

q1

Config y

qc

Config z0

q1 qc

0

Config w0

0

r(z1)

q1

Config y

qc

Config z1 Config w1

1

r(wa)

q1

Config y

qc

Config z0

0

Config wa

1

Figure 5.3: Rounds t and t + 1 of Case 1, Claim 28.1

We now give a proof of Claim 28.1. We omit the proof of Claim 28.2, which is
similar. (We note that, in this proof, all runs constructed above are synchronous,
but to prove Claim 28.1, we use some non-synchronous runs.)

Proof of Claim 28.1 Suppose by contradiction that for some j ∈ [1, n], val(zj−1) =
0, and val(zj) = 1. Configurations zj−1 and zj differ only in the state of process qj .
There are two cases to consider: (1) j = 1 and (2) j > 1.

Case 1. j = 1. (See Figure 5.3.) Thus we have, val(z0) = 0 and val(z1) = 1. The
round t configurations z0 and z1 are identical at all processes except at q1: q1 is alive
in z0 but has crashed in z1. As no process has crashed in round t of z0, and at most
t− 1 processes have crashed in the first t− 1 rounds of z0 (i.e., in configuration y),
so a total of at most t− 1 processes have crashed in z0.

Let w0 and w1 be round t + 1 configurations of r(z0) and r(z1), respectively. Recall
that, it follows from our assumptions that n − t > 1, and hence, there is a process
qc that is alive in z1, and hence, correct in r(z1). As every process that is alive in z1

is also alive in z0, it follows that qc is correct in r(z0). As q1 has crashed in z1 but
qc is alive in z1, it follows that qc 6= q1.

5.2. Global decision lower bound 63

As r(z0) and r(z1) are runs of algorithm A in SMt, they are synchronous runs of A
in EMt. Therefore, from our assumption on A, correct processes decide by round
t+1 in r(z0) and r(z1), i.e., correct processes have decided in configurations w0 and
w1. Thus, qc decides val(z0) = 0 in w0, and val(z1) = 1 in w1. On the other hand,
q1 decides val(z0) = 0 in w0, and q1 has crashed in w1.

Now consider a round t + 1 configuration wa that is a non-synchronous extension of
z0 in which (a) all round t + 1 messages from q1 to other processes are lost, (b) q1

does not crash in round t + 1 and receives the same messages that it receives in
round t+1 of w0. We note that (1) q1 cannot distinguish round wa from w0 because
q1 receives the same set of messages in round t+1 of both configurations, and (2) qc

cannot distinguish wa from w1 because qc does not receive round t+1 message from
q1 in both runs. Thus, in wa, q1 decides 0 and qc decides 1. Any run which extends
wa violates uniform agreement.

Case 2. j > 1. (See Figure 5.4.) Thus we have, val(zj−1) = 0 and val(zj) = 1.
The round t configurations zj−1 and zj are identical at all processes except qj : qj

receives round t message from q1 in zj−1, and does not receive such a message in zj .
(Note that, qj is distinct from q1 because j > 1.)

In the following, we construct five runs; the first two are synchronous and the re-
maining three are non-synchronous. Consider the first two synchronous runs s0 and
s1 in which qj decides different values.

s0: This run is the same as r(zj−1). All correct processes decide val(zj−1) = 0 by
round t + 1.

s1: This run is the same as r(zj). All correct processes decide val(zj) = 1 by
round t + 1.

We now construct three non-synchronous runs a2, a0, and a1. In the constructions,
we maintain the additional property that, in each round of each run, every process
that completes that round, receives at least n − t messages of that round. It is
important to notice that, in the following three runs, we do not crash more than t
processes in each run: after round t− 1, only qj crashes in each run.

a2: This non-synchronous run is an extension of configuration y. The next two
rounds are constructed as follows:

• round t: No process crashes in this round. Unlike s0, q1 does not crash in
round t of this configuration. But, every process distinct from q1, receives
the same set of messages as in round t of s0. (In other words, messages
from q1 to processes in {q2, ..., qj−1} are lost.) Process q1 receives messages
from all processes that complete round t.

64 Chapter 5. Eventually Synchronous Model (Part A)

s1 = r(zj)s0 = r(zj-1)

a2

a1a0

Config y Config zj-1 Config y Config zj

Config y

Config y Config y

0

0

0

0

1

1

1

1

q1

qj

q1

qj

q1

qj

q1

qj

q1

qj
0 1

qj qj

Π\{qj}

Π\{qj} Π\{qj}

Figure 5.4: Rounds t and t + 1 of Case 2, Claim 28.1

5.2. Global decision lower bound 65

• rounds higher than t: Process qj crashes at the beginning of round t + 1.
No other process crashes and no message is lost in round t + 1 or in a
higher round. From the termination property, there is a round k′ ≥ t + 1
such that a2 reaches a global decision at k′.

Observations: (1) At the end of round t, only q1 can distinguish a2 from s0.
(2) At most t−1 processes have crashed in the first t rounds of a2: to see why,
notice that no process crashes in round t of a2, the round t− 1 configuration
of a2 is y, and at most t− 1 processes have crashed in y.

a0: This non-synchronous run is constructed as follows:

• first t rounds: The first t rounds a0 are identical to those of a2.

• rounds higher than t: Unlike in a2, qj does not crash in round t + 1.
However, in round t + 1, the messages from qj to all other processes are
lost, and the message from q1 to qj is lost. Also in round t+1, qj receives
messages from all processes that complete round t, except q1. Process qj

crashes at the beginning of round t + 2. In round t + 2 and in higher
rounds, no other process crashes and no message is lost.

We claim that qj cannot distinguish a0 from s0 at the end of round t + 1.
Notice that the first t − 1 rounds of s0, a2, and a0 are identical (round t − 1
configurations of all three runs are y). At the end of round t, a2 and a0 are
identical, and only q1 can distinguish a2 from s0. Thus, at the end of round t,
only q1 can distinguish a0 from s0. Now consider the messages received by qj

in round t+1 of a0 and s0. Process qj does not receive any message from q1 in
round t + 1 (q1 crashes before sending such a message in s0, and the message
is lost in a0). As no process distinct from q1 can distinguish a0 from s0 at the
end of round t, so qj receives identical sets of messages in round t + 1 of both
a0 and s0. Thus qj cannot distinguish a0 from s0 at the end of round t + 1,
and hence, decides 0 at the end of round t + 1.

a1: This non-synchronous run is constructed as follows:

• first t− 1 rounds: The first t− 1 rounds of a1 are identical to those of s1

(i.e., configuration y).

• round t: No process crashes in this round. Unlike s1, q1 does not crash
in round t of a1, but every process distinct from q1, receives the same
set of messages as in round t of s1. (In other words, messages from q1

to processes in {q2, ..., qj} are lost.) Process q1 receives messages from all
processes that complete round t.

• rounds higher than t: In round t + 1, the messages from qj to all other
processes are lost, and the message from q1 to qj is lost. Also in round
t+1, qj receives messages from all processes that complete round t, except

66 Chapter 5. Eventually Synchronous Model (Part A)

q1. Process qj crashes at the beginning of round t+2. In round t+2 and
in higher rounds, no other process crashes and no message is lost.

We make the following two claims.

• Process qj cannot distinguish a1 from s1 at the end of round t + 1. Notice
that, at the end of round t, only process q1 can distinguish a1 from s1, and in
round t + 1, qj does not receive a message from q1. Thus, in round t + 1, qj

receives identical sets of messages in a1 and s1. Thus qj cannot distinguish a1

from s1 at the end of round t + 1, and hence, decides 1 at the end of round
t + 1.

• At the end of round k′, the processes distinct from qj cannot distinguish a2, a0,
and a1. (Round k′ is defined in the description of run a2.) To see why, observe
that the first t − 1 rounds of the three runs are identical (i.e., configuration
y). At the end of round t, the runs a2, a0 and a1 differ only at process qj :
round t message from q1 to qj is received in a2 and a0, but lost in a1. After
round t, no process distinct from qj receives a message from qj because (1) qj

crashes at the beginning of round t + 1 in a2, and (2) in a0 and a1, all round
t + 1 messages send from qj to other processes are lost, and qj crashes at the
beginning of round t + 2. Thus, the processes that are distinct from qj cannot
distinguish the three runs at the end of round k′. As a2 globally decides in
round k′, so a1 and a0 also globally decide by round k′. We also note that the
three runs have the same set of correct processes — round t− 1 configuration
of the three runs are identical, and only qj crashes after round t−1 in all three
runs. Thus, there is a process which is correct in all three runs and decides
the same value in these runs.

Clearly, either a0 or a1 violates uniform agreement because qj decides 0 in a0

and 1 in a1; a contradiction.

2

We now state our lower bound on the number of rounds required for a global decision
in synchronous runs of the eventually synchronous model.

Lemma 29 ∀t ∈ [1, (n− 1)/2], ∀f ∈ [0, t], (EMt, SMf , UC, gd) ≥ f + 2.

Proof: Suppose by contradiction that there is a UC algorithm A in EMt and an
integer f in [0, t] such that, in every run of A in SMf , all correct processes decide
by round f + 1. There are three cases to consider:

Case 1. t ∈ [1, (n − 1)/2], f ∈ [1, t]. As EMf is a submodel of EMt, algorithm A
also solves UC in EMf . As f ∈ [1, (n− 1)/2], we can replace t by f in Lemma 28.

5.2. Global decision lower bound 67

r(y)

pi

Config y

0

r(y’)

pi

pj 0

pi

Config y’

1

pj 1

pi

Config y

0

pj

pi

Config y’

1

pj

pi

pj

R31 R32

Figure 5.5: Round 1 of Case 3, Lemma 29

It follows that, there is a run of A in SMf in which some correct process decides in
round f + 2 or in a higher round; a contradiction.

Case 2. t ∈ [2, (n − 1)/2], f = 0: As SMt is a submodel of EMt, algorithm A also
solves UC in SMt. Thus, from Theorem 3, there is run of A in SM0, in which some
correct process decides in round 2 or in a higher round; a contradiction.

Case 3. t = 1, f = 0: Thus algorithm A is a UC algorithm in EM1 such that,
in every failure-free synchronous run of A all correct processes decides by round 1.
Clearly, algorithm A solves UC in SM1. It follows from Lemma 6 that, there are two
runs of A in SM1 such that their round 0 configurations (i.e., initial configurations),
y and y′, satisfy the following: (1) no process has crashed in each configuration,
(2) the configurations differ at exactly one process, say pi, and (3) val(y) = 0 and
val(y′) = 1. Obviously, pi is alive in both initial configurations y and y′.

Runs r(y) and r(y′) are failure-free runs of A in SM1, and hence, failure-free syn-
chronous runs of A in EM1. From our assumption of A it follows that, by round
1, all processes decides val(y) = 0 and val(y′) = 1, in r(y) and r(y′), respectively.
Consider the following two non-synchronous runs R31 and R32. (See Figure 5.5.)

68 Chapter 5. Eventually Synchronous Model (Part A)

R31 is a non-synchronous run whose (1) round 0 configuration is y, (2) in round 1,
all messages sent by pi to processes distinct from pi are lost, and no other message
is lost, (3) pi crashes at the beginning of round 2, and (4) no process distinct from
pi crashes, and no message is lost in round 2 or a higher round. Process pi cannot
distinguish round 1 configuration of R31 from that of r(y), and therefore, pi decides
val(y) = 0 in round 1 of R31.

R32 is a non-synchronous run whose (1) round 0 configuration is y′, (2) in round 1,
all messages sent by pi to processes distinct from pi are lost, and no other message
is lost, (3) pi crashes at the beginning of round 2, and (4) no process distinct from
pi crashes, and no message is lost in round 2 or a higher round. Process pi cannot
distinguish round 1 configuration of R32 from that of r(y′), and therefore, pi decides
val(y′) = 1 in round 1 of R32.

Observe that, correct processes cannot distinguish R32 from R31, because (1) the
round 0 configurations of the two runs differ only at pi, and (2) no process distinct
from pi, ever receives a message from pi. Thus, correct processes decide the same
value in both runs. (Note that, there is at least one process pj that is correct in both
runs because t ≤ n − 1.) Either, R31 or R32 violates uniform agreement, because
pi decides different values in the two runs. 2

5.3 A matching algorithm

In this section, we present a UC algorithm Aem1 in EMt that matches the lower
bounds of Lemma 29, i.e., the f + 2 rounds early global decision lower bound in
synchronous runs. UC algorithms in EM that match the early global decision bound
for f = 0 appeared in [Sch97, MR99], but tight bound when f > 0 was unknown.
Note that, since the early local decision lower bound is also f + 2 (for f ∈ [0, t− 3],
Lemma 27), Aem1 also matches that bound. Algorithm Aem1 assumes that t < n/2,
as dictated by Lemma 9.

5.3.1 Overview

Algorithm Aem1 (Figure 5.6) is inspired by the interactive consistency algorithm
presented in Section 4.4, modified for exchanging and tracking false suspicions. The
algorithm progresses in sessions, where each session is composed of t + 2 rounds. A
run globally decides within f +2 rounds in the first “synchronous” session, provided
at most f processes crash in the run. In each round of a session, the processes
exchange their estimate of the decision value and the associated timestamp, and
roughly speaking, adopt the estimate received with the maximum timestamp. (We

5.3. A matching algorithm 69

at process pi:

1: initialize()
2: in round k {rounds 1, 2, ...}
3: send round k messages
4: receive messages
5: compute()

6: procedure initialize()
7: esti ← propi; tsi ← −i; Halti ← ∅; statei ← sync1; msgSeti ← ∅; λi ← 1
8: commitTsi ← 0; commitEsti ← ⊥; round 1 msg ← (1, esti, tsi, statei, Halti)

9: procedure compute()
10: if deci 6= ⊥ then
11: if received any (k, est′, ts′, decide, ∗) then
12: esti ← est′; tsi ← ts′; deci ← esti; statei ← decide {decision DEC-1}
13: else
14: if statei ∈ {sync1, sync2} then
15: Halti ← Halti ∪ {HALT-1}

{pj | (pi received(k, ∗, ∗, nsync, ∗) from pj) or {HALT-2}
(pi received(k, ∗, ∗, ∗, Haltj) from pj s.t. pi ∈ Haltj) or {HALT-3}
(pi did not receive any round k message from pj)} {HALT-4}

16: msgSeti ← {m | m is a round k message received from pj /∈ Halti}
17: tsi ← Max{ts | (k, ∗, ts, ∗, ∗) ∈ msgSeti}
18: esti ← any est s.t. (k, est, tsi, ∗, ∗) ∈ msgSeti
19: if (|Halti| ≤ t) and (state = sync2 for every message in msgSeti) then
20: deci ← esti; statei ← decide {decision DEC-2}
21: else if (|Halti| ≤ λi − 1) and (λi < t + 2) then
22: statei ← sync2; commitTsi ← k; commitEsti ← esti {commit}
23: else if |Halti| ≤ t then
24: statei ← sync1
25: else {|Halti| > t}
26: statei ← nsync
27: {at the end of a session, update tsi and esti, and reset Halti and statei}
28: if (λi = t + 2) and (deci 6= ⊥) then
29: if committed in this session then {tsi ← commitTsi; esti ← commitEsti}
30: Halti ← ∅; statei ← sync1
31: {generate the message for the next round}
32: if λi = t + 2 then λi ← 1 else λi ← λi + 1 {step λi varies from 1 to t + 2}
33: round k + 1 msg ← (k + 1, esti, tsi, statei, Halti)

Figure 5.6: Uniform consensus algorithm Aem1

70 Chapter 5. Eventually Synchronous Model (Part A)

later discuss why we introduce the timestamps. At present, let us assume that the
timestamp of an estimate does not change inside a session.) In this respect, a session
of Aem1 is similar to the IC algorithm presented in Section 4.4: if the model was
SMt, then a process pi could simply monitor the set of processes from which pi did
not receive any message (set Halti), and then, pi could decide on its own estimate
when Halti did not change for a round. Intuitively, pi could do so because in SMt,
Halti is a superset of the set of processes that crashed in earlier rounds, and a subset
of the set of processes that crashes by the current round. Hence, if Halti did not
change for a round, then pi would have the estimate with the maximum timestamp
among all alive processes.

However, in EMt, even if process pi does not receive a message from some process
pj , pj may be alive, and could continue sending messages in subsequent rounds.
Thus, even if Halti does not change in a round, pi might not have the estimate with
the maximum timestamp among all alive processes. Therefore, in Aem1, in addition
to the estimate value, the processes also exchange the Halt sets to detect whether
a session is synchronous. Furthermore, to enforce early decision, pi maintains and
exchanges the variable statei which says whether pi considers the session to be
synchronous (statei = sync1), or pi considers the session to be synchronous and
there is possibility of decision in the next round (statei = sync2), or whether pi

considers the session to be non-synchronous (statei = nsync).

Early deciding algorithms that tolerate arbitrary periods of asynchrony [Sch97,
MR99, HR99, GR04] typically require the processes to receive at least n − t mes-
sages in a round, whereas in our model EMt any number of messages may be lost
before GSR. To tolerate the scenario in which a process decides upon receiving n− t
messages in some round but another process does not receive any message up to
that round, we use the timestamping scheme from [DLS88]. In Aem1, on selecting
an estimate value that may be decided in the next round (i.e., in the round where
state is updated to sync2), the processes timestamp the selected estimate to the
current round number. Informally, this ensures that when a process decides upon
receiving n − t messages with state = sync2, the decided value has the highest
timestamp in the system, and it is present at n − t processes. Subsequently, when
another process adopts an estimate with the maximum timestamp, it adopts the
decided value.

5.3.2 Description

The algorithm progresses in sessions, where a session sn consists of t + 2 rounds
from ((sn − 1) ∗ (t + 2)) + 1 to sn ∗ (t + 2). We call the kth round in a session sn
(i.e., round ((sn − 1) ∗ (t + 2)) + k) as step k of session sn. We say that a session
sn in run r is synchronous if the session starts in round GSR(r) or in a higher
round; i.e.,(sn−1)∗ (t+2))+1 ≥ GSR(r). Every process pi maintains the following
variables:

5.3. A matching algorithm 71

1. tsi is the timestamp, esti is the estimate of the possible decision value, and λi

is the current step number at pi;

2. statei reflects pi’s view on how much progress is made towards achieving
a decision in the current session: (1) if statei is updated to nsync then
pi considers the session to be non-synchronous, (2) if statei is updated to
sync1 then pi considers the session to be synchronous but pi cannot decide
in the next round, (3) if statei is updated to sync2 then pi considers the
session to be synchronous with the possibility of a decision in the next round,
(4) and upon decision, pi updates statei to decide;

3. Halti is the set of processes pj such that, in the current step or a lower step of
the current session, at least one of the following occurred: pi received state =
nsync from pj , pi did not receive a message from pj , or pj did not receive a
message from pi;

4. msgSeti is the set of messages received by pi in the current step from processes
that are not in Halti.

5. When pi sets its state to sync2, we say that pi commits. When pi commits,
commitTsi and commitEsti are set to the current round number and the current
estimate of pi, respectively.

The algorithm can be very briefly described as follows. In each step of a session,
the processes evaluate if the run is synchronous or non-synchronous based on their
Halt set. If the session turns out to be non-synchronous, then the processes do
not decide in that session. Otherwise, in each step of that session, the processes
exchange timestamp and estimate, and adopt the maximum timestamp seen, and
the corresponding estimate. Consider any process pi. If in some step, pi observes
that Halti is sufficiently small in size, then pi commits; i.e., sets it state to sync2,
and updates commitTsi and commitEsti. A process decides upon receiving n − t
message with state = sync2. Before moving to a new session, if pi has committed
in the current session, then pi adopts the commitTsi and commitEsti as its new
timestamp and estimate, respectively. It also sets Halti and state to ∅ and sync1,
respectively, so as to start the synchrony evaluation of the next session afresh.

We now discuss the algorithm in more details. The variables are initialized as fol-
lows. Variables statei and Halti are initialized to sync1 and ∅ respectively, and
are reset to their initial values at the beginning of each session. Variable esti is
initialized to the proposal value, and tsi is initialized to −i (to ensure that no ini-
tial timestamp has two different estimates associated with it). In each round, the
processes exchange state, est, ts, and Halt variables, update their own variables
depending upon the messages received, and possibly decide. In step λ of a session,
pi updates its variables as follows.

72 Chapter 5. Eventually Synchronous Model (Part A)

1. If pi receives a decide message, then pi decides on the decision value received
(and we say that pi decides at dec-1 in step λ.)

2. If statei is sync1 or sync2 then:

• pi updates Halti to include all processes that are already in Halti (called con-
dition halt-1), and any process pj such that: (1) pi has received an nsync mes-
sage from pj in step λ (condition halt-2), (2) pi received a message from pj

with pi ∈ Haltj in step λ (condition halt-3), or (3) pi has not received any
message from pj in step λ (condition halt-4).

• pi includes in msgSeti every message received in step λ whose sender is not in
Halti. Then pi updates tsi to the maximum timestamp among messages in
msgSeti, and updates esti to any est contained in a message with the maximum
timestamp. (We do not care about non-determinism here because, as we will
show later, messages with same timestamp have same estimate.)

• if Halti is of at most size t, and all messages in msgSeti contains state =
sync2, then pi decides on its estimate (and we say that pi decides at dec-2 in
step λ).

• Depending on the size h of the set Halti, pi updates statei as follows: if h
is lower than the current step number, then statei is set to sync2, else if h
is at most t then statei is set to sync1, otherwise, statei is set to nsync.
If pi sets statei to sync2, then pi also updates commitEsti to the current
estimate, and commitTsi to the current round number, and we say that pi

commits in step λ. (It is important to note that commitTsi is updated to the
current round number, and not to the current step number.)

3. At the end of a session; i.e., when λ = t + 2, Halti and statei are reset to their
initial values, and if pi has committed in the current session, then tsi and esti are
updated to commitTsi and commitEsti, respectively.

Observe that, inside a session, no new timestamp is attached to an estimate: times-
tamp and estimate are always adopted as a pair by a process. Only at the end of a
session, a process may attach a new timestamp to an estimate, provided the process
has committed in that session. The heart of the algorithm is ensuring that no two
different estimates are committed in the same step, and any estimate committed
in a step has the highest timestamp in that step. This, in turn, ensures that no
timestamp is associated with two different estimates. As a process decides at dec-2
in step λ only when it receives n − t messages from processes that commit in step
λ−1, it follows that the decision value has the highest timestamp at the end of step
λ− 1, and it is present at a majority of processes. Since in each step, the processes

5.3. A matching algorithm 73

select estimates with highest timestamp, any estimate value selected in a later step
is the decision value.

5.3.3 Correctness

The validity property of the algorithm follows from the following three simple obser-
vations: (1) the est value of a process is initialized to its proposal value, (2) the est
value of a process at the beginning of round k ≥ 2 is the est value of some process at
the beginning of round k− 1, and (3) every process decides on the est value of some
process. In the rest of the section, we prove the uniform agreement property of the
algorithm. We defer the proof of termination property to the next subsection, where
we prove termination along with the time-complexity property of the algorithm.

For any given session, we consider the following notations. For any variable vali at
process pi, we denote by vali[λ] (λ ≥ 1) the value of the variable vali immediately
before line 27 in the compute procedure of step λ; vali[0] denotes the value of vali
immediately before sending messages in step 1. For ease of presentation, we abuse
the notation slightly and say that the lines 29 and 30 (which are actually executed
in step t + 2) are outside step t + 2. We say that these two lines are executed at the
end of a session.

We assume that there is a symbol undefined that is distinct from any possible value of
the variables in the algorithm. If pi crashes before completing step λ, then vali[λ] is
undefined ; if pi crashes before sending messages in step 1, then vali[0] is undefined.
For a process pl that has not decided by step λ, let senderMSl[λ] be the set of
processes that have sent the messages that are in msgSetl[λ].

We now present some lemmas that help us to prove the uniform agreement property.

Lemma 30 Consider any session. If a process pl completes step λ with statel[λ] ∈
{sync1, sync2} then senderMSl[k] = Π−Haltl[k].

Proof: If pl completes round λ with statel[λ] ∈ {sync1, sync2} then it updates
msgSet in step λ. The lemma follows from the condition halt-4 and the way msgSetl
is updated. 2

Lemma 31 Consider any session sn. For any process pl that completes step λ,
pl /∈ Haltl[λ].

Proof: Suppose by contradiction that there is a step λ in session sn in which pl ∈
Haltl[λ]. Consider the lowest such step λ′. (λ′ cannot be 0 because Haltl[0] = ∅.)
Thus, pl ∈ Haltl[λ′] and pl /∈ Haltl[λ′ − 1], and therefore, pl updated Haltl in step
λ′. Thus, one of the four conditions, halt-1 to halt-4, holds for pl in step λ′. As

74 Chapter 5. Eventually Synchronous Model (Part A)

pl /∈ Haltl[λ′ − 1], so conditions halt-1 and halt-3 cannot be true. If pl sends a
nsync message to itself in step λ′, then its state is nsync at the end of step
λ′− 1, and hence, pl does not update Haltl in step λ′ (thus, condition halt-2 cannot
be true). Recall that, from the loopback property of EMt, no process completes a
round k without receiving any round k message from itself (thus, condition halt-4
cannot be true); a contradiction. 2

Lemma 32 The timestamp of a process may decrease in a round only if it decides
at dec-1 in that round.

Proof: From the algorithm, once a process decides, its timestamp does not change
(i.e., it does not update its timestamp). Suppose by contradiction that there is a
round in which the timestamp of a process decreases and the process does not decide
at dec-1 in that round. Consider any process pl that does not decides at dec-1 in
some round k, and tsl[k − 1] > tsl[k]. There are two cases to consider:

1. Process pl updates tsl to the maximum timestamp in msgSetl in round k.
Then, from Lemma 30 and Lemma 31, msgSetl[k] contains a message from
itself, and hence, the maximum timestamp in msgSetl[k] is at least tsl[k − 1].
Thus, tsl[k − 1] ≤ tsl[k], a contradiction.

2. Round k is the last round of a session, say sn, pl commits in session sn,
and updates tsl to commitTsl at the end of the session. Note that, in a
step of a session, if a process updates its timestamp, then it updates it to
a timestamp received in some message in that step. Thus, in a step of any
session, timestamp at any process is not higher than the highest timestamp
at the beginning of the session. The timestamps at the beginning of a session,
are round numbers from lower sessions. Thus, in a step of any session, the
timestamp of a process is always some round number from a lower session.
Now notice that, if pl commits in session sn, then commitTsl is set to a round
number of the current session, and therefore, higher than any timestamp in a
step of session sn. Thus, tsl increases when it is updated to commitTsl at the
end of session sn; a contradiction.

2

Lemma 33 (Elimination) Consider any step λ′ of any session sn. If there are two
processes px and py such that statex[λ′] ∈ {sync1,sync2} and statey[λ′] = sync2
then tsy[λ′] ≥ tsx[λ′].

Proof: Suppose by contradiction that,

5.3. A matching algorithm 75

Assumption A1: statex[λ′] ∈ {sync1,sync2}, statey[λ′] = sync2, tsx[λ′] =
d, tsy[λ′] = c, and tsy[λ′] < tsx[λ′]; i.e., c < d. (Note that, as statey[λ′] =
sync2, it follows that py commits in step λ′. From the condition for commit-
ting, we have λ′ < t + 2.)

We prove Claim 33.1 to Claim 33.7 based on assumption A1. Claim 33.4 contradicts
Claim 33.7, thus proving Lemma 33 by contradiction. 2

We first define the following sets for λ ∈ [1, λ′]:

• D[λ] = {pi|tsi[λ] ≥ d} (The set of processes that complete step λ with ts ≥ d.)

• crashed[λ] = the set of processes that crashed before completing step λ.

• NSYN [λ] = {pi|statei[k] = nsync or statei[k] = decide}.

• Z[λ] = D[λ] ∪ crashed[λ] ∪ NSYN [λ].

Additionally, we define D[0] to be the set of processes that start step 1 with ts at
least d, crashed[0] to be the set of processes which crash before sending any message
in step 1, NSYN [0] to be the set of processes that have decided in a lower session,
and Z[0] = D[0] ∪ crashed[0] ∪NSYN[0]. We make the following observation:

Observation A2: |D[0]| ≥ 1, and hence, |Z[0]| ≥ 1. Otherwise, if every
process starts step 1 with a timestamp less than d, then tsx[λ′] < d (contradicts
A1).

Claim 33.1: (1) ∀λ ∈ [0, λ′ − 1], (crashed[λ]∪NSYN [λ]) ⊆ (crashed[λ +
1]∪NSYN [λ + 1]).
(2) ∀λ ∈ [1, λ′], if pi /∈ (crashed[λ]∪NSYN [λ]) then pi sends messages with
state ∈ {sync1, sync2} in step λ, and in all steps lower than λ, of this session.

Proof: (1) Suppose by contradiction that there is a process pi such that
pi ∈ crashed[λ]∪NSYN [λ] and pi /∈ crashed[λ + 1]∪NSYN [λ + 1]. Since a
crashed process does not recover, crashed[λ] ⊆ crashed[λ + 1], and hence,
pi /∈ crashed[λ + 1]∪NSYN [λ + 1] implies that pi /∈ crashed[λ]. Thus,
pi ∈ crashed[λ] ∪ NSYN [λ] implies that pi ∈ NSYN [λ], i.e., pi completes step λ
with state = nsync or state = decide. If pi completes step λ with state =
nsync, then it cannot changes its state back to sync1 or sync2 in this session. If pi

completes step λ with state = decide, then its state does not change thereafter.
Thus, pi ∈ NSYN [λ] implies pi ∈ NSYN [λ + 1]; a contradiction.

76 Chapter 5. Eventually Synchronous Model (Part A)

(2) If pi /∈ (crashed[λ]∪NSYN [λ]) then, from Claim 33.1.1, it follows that
pi /∈ (crashed[λ1] ∪ NSYN[λ1]) for all λ1 ∈ [0, λ]; i.e., pi completes every step
lower than or equal to λ with state 6= nsync and state 6= decide. Thus
pi has sent messages with state ∈ {sync1, sync2} in step k and in all lower steps. 2

Claim 33.2: ∀λ ∈ [0, λ′ − 1], Z[λ] ⊆ Z[λ + 1].

Proof: Suppose by contradiction that there is a process pi and some λ ∈ [0, λ′ − 1]
such that pi ∈ Z[λ] and pi /∈ Z[λ+1]. Since pi /∈ Z[λ+1], then pi /∈ crashed[λ+1]∪
NSYN[λ + 1]. Applying Claim 33.1.1, we get pi /∈ crashed[λ] ∪ NSYN[λ]. However,
pi ∈ Z[λ] = D[λ] ∪ crashed[λ] ∪ NSYN[λ], and hence, pi ∈ D[λ]. Thus in round
λ + 1, pi sends a message with ts ≥ d.

As pi /∈ crashed[λ + 1] ∪ NSYN[λ + 1], pi updates its ts in round λ + 1. From
Lemma 30 and Lemma 31, the round λ + 1 message from pi is in msgSeti[λ + 1],
and hence, the timestamp evaluated by pi in round λ + 1 is at least d. Thus,
pi ∈ D[λ + 1] ⊆ Z[λ + 1]; a contradiction. 2

Claim 33.3: ∀λ ∈ [0, λ′ − 1],∀pi /∈ Z[λ + 1], Z[λ] ⊆ Halti[λ + 1].

Proof: Consider a process pj ∈ Z[λ] and a process pi /∈ Z[λ + 1]. In step
λ + 1, msgSeti[λ + 1] either contains a message from pj or does not contain any
message from pj . In the second case, Lemma 30 implies that pj ∈ Halti[λ + 1],
and we are done. Consider the case where msgSeti[λ + 1] contains a message
m from pj . Then from the way msgSet is updated, m has state /∈ {nsync,
decide}; i.e., pj /∈ NSYN[λ]. Furthermore, pj sent a message in step k + 1, and so,
pj /∈ crashed[λ]. Thus pj /∈ crashed[λ] ∪ NSYN[λ], but we have assumed pj ∈ Z[λ].
So, pj ∈ D[λ], and hence, m contains ts ≥ d. Since m ∈ msgSeti[λ+1], in step k+1,
pi evaluates tsi to a value at least d. Thus pi ∈ D[λ+1] ⊆ Z[λ+1]; a contradiction. 2

Claim 33.4: |Z[λ′ − 1]| ≤ λ′ − 1.

Proof: Suppose by contradiction that |Z[λ′− 1]| > λ′− 1. From Assumption A1, it
follows that py /∈ Z[λ′]. Therefore, from Claim 33.3, Z[λ′ − 1] ⊆ Halty[λ′]. Hence,
|Halty[λ′]| > λ′− 1. However, statey[λ′] = sync2 implies that |Halty[λ′]| ≤ λ′− 1
(from the condition for commit); a contradiction. 2

Claim 33.5: px ∈ Z[λ′] and px /∈ Z[λ′ − 2].

Proof: As estx[λ′] = d, so px ∈ D[λ′] ⊆ Z[λ′].

5.3. A matching algorithm 77

For the second part of the claim, suppose by contradiction that px ∈ Z[λ′ − 2].
Then, from Claim 33.3, for every process pi ∈ Π − Z[λ′ − 1], px ∈ Halti[λ′ − 1].
Therefore, in step λ′, for any message m sent by a process in Π − Z[λ′ − 1], we
have px ∈ m.Halt (where, m.Halt denotes the Halt field of m). If px receives m
in step λ′, then it includes the sender of m in Haltx (because of condition halt-3).
Moreover, if pi does not receive m in step λ′, then pi includes the sender of m
in Haltx (because of condition halt-4). Thus Π − Z[λ′ − 1] ⊆ Haltx[λ′]. Using,
Claim 33.4, |Haltx[λ′]| ≥ |Π − Z[λ′ − 1]| ≥ n − (λ′ − 1). Applying λ′ < t + 2
(from Assumption A1) and t < n/2, we have |Haltx[λ′]| ≥ n − t > t. However,
|Haltx[λ′]| > t implies that statex[λ′] = nsync; a contradiction. 2

Claim 33.6: (1) ∀λ ∈ [0, λ′ − 3], Z[λ] ⊂ Z[λ + 1]. (Z[λ] is a proper subset of
Z[λ + 1].)
(2) |Z[λ′ − 2]| ≥ λ′ − 1.

Proof: (1) From Claim 33.2, Z[λ] ⊆ Z[λ + 1] (λ ∈ [0, λ′ − 1]). Suppose by contra-
diction that there is some g ∈ [0, λ′ − 3] such that Z[g] = Z[g + 1]. We first show
the following result by induction on the step number λ:

Result 33.6.1: ∀λ ∈ [g + 1, λ′ − 1], D[λ] − (NSYN[λ] ∪ crashed[λ]) ⊇ D[λ + 1] −
(NSYN[λ + 1] ∪ crashed[λ + 1]).

Base Case (k = g + 1): D[g + 1] − (NSYN[g + 1] ∪ crashed[g + 1]) ⊇ D[g + 2] −
(NSYN[g + 2]∪ crashed[g + 2]). Suppose by contradiction that there is a process pi

such that pi ∈ D[g + 2]− (NSYN[g + 2] ∪ crashed[g + 2]) (Assumption A3), and
pi /∈ D[g + 1]− (NSYN[g + 1] ∪ crashed[g + 1]) (Assumption A4).

Assumption A3 implies that pi /∈ NSYN[g + 2] ∪ crashed[g + 2]. Applying Claim
33.1.1, we have pi /∈ NSYN[g + 1] ∪ crashed[g + 1], and therefore, from Assumption
A4, it follows that pi /∈ D[g+1]. Thus pi completes step g+1 with ts < d, state 6=
nsync, and state 6= decide (i.e., with state∈ {sync1, sync2}). Furthermore,
Assumption A3 implies that pi completes step g + 2 with ts ≥ d, state 6= nsync,
and state 6= decide (i.e., with state∈ {sync1, sync2}). So, msgSeti[g + 2]
contains a message with ts ≥ d from some process pj , i.e., pj ∈ senderMSi[g + 2]
(Observation A5). As pj sends a message with ts ≥ d in step g +2, it follows that
pj ∈ D[g + 1] ⊆ Z[g + 1].

As pi /∈ NSYN[g + 1] ∪ crashed[g + 1] and pi /∈ D[g + 1], so from the definition of
Z[g+1] we have pi /∈ Z[g+1]. Claim 33.3 implies that Z[g] ⊆ Halti[g+1]. Recall that
we assumed Z[g] = Z[g + 1] and, from condition halt-1, Halti[g + 1] ⊆ Halti[g + 2].
Therefore, Z[g + 1] ⊆ Halti[g + 2]. Thus pj ∈ D[g + 1] ⊆ Z[g + 1] implies that
pj ∈ Halti[g + 2]. From Observation A5, pj ∈ senderMSi[g + 2] ∩Halti[g + 2].

78 Chapter 5. Eventually Synchronous Model (Part A)

As pi /∈ NSYN[g + 2] ∪ crashed[g + 2], so pi completed step g + 2 with state =
sync1 or state = sync2. Then, from Lemma 30, it follows that, senderMSi[g +
2]∩Halti[g+2] = ∅. However, pj ∈ senderMSi[g+2]∩Halti[g+2]; a contradiction.

Induction Hypothesis: ∀λ ∈ [g + 1, ρ], D[λ]− (NSYN[λ] ∪ crashed[λ]) ⊇ D[λ + 1]−
(NSYN[λ + 1] ∪ crashed[λ + 1]).

Induction Step (λ = ρ + 1): D[ρ + 1]− (NSYN[ρ + 1]∪ crashed[ρ + 1]) ⊇ D[ρ + 2]−
(NSYN[ρ + 2]∪ crashed[ρ + 2]). Suppose by contradiction that there is a process pi

such that pi ∈ D[ρ + 2] − (NSYN[ρ + 2] ∪ crashed[ρ + 2]) (Assumption A6) and
pi /∈ D[ρ + 1]− (NSYN[ρ + 1] ∪ crashed[ρ + 1]) (Assumption A7).

Similar to the base case, applying Assumptions A6, A7, and Claim 33.1, gives us
pi /∈ NSYN[ρ+2]∪crashed[ρ+2], pi /∈ NSYN[ρ+1]∪crashed[ρ+1], and pi /∈ D[ρ+1].
Thus pi /∈ Z[ρ+1]. Since g+1 < ρ+1, from Claim 33.2, we have Z[g+1] ⊆ Z[ρ+1],
and therefore, pi /∈ Z[g + 1].

Applying Claim 33.3 on pi /∈ Z[g + 1] implies that Z[g] ⊆ Halti[g + 1].

Recall that we assumed Z[g] = Z[g + 1], and from condition halt-1 and the ob-
servation that g + 1 < ρ + 2, Halti[g + 1] ⊆ Halti[ρ + 2]. Therefore, Z[g + 1] ⊆
Halti[ρ + 2] (Observation A8).

From the induction hypothesis, we have (D[g+1]−(NSYN[g+1]∪crashed[g+1])) ⊇
(D[ρ + 1] − (NSYN[ρ + 1] ∪ crashed[ρ + 1])). From the definition of Z[g + 1],
D[g + 1] − (NSYN[g + 1] ∪ crashed[g + 1]) ⊆ D[g + 1] ⊆ Z[g + 1], and therefore,
D[ρ + 1]− (NSY N [ρ + 1] ∪ crashed[ρ + 1]) ⊆ Z[g + 1]. Applying Observation A8,
we have (D[ρ + 1]− (NSYN[ρ + 1] ∪ crashed[ρ + 1])) ⊆ Halti[ρ + 2] (Observation
A9).

As pi /∈ Z[ρ+1], pi completes step ρ+1 with ts < d, state 6= nsync and state 6=
decide. Furthermore, Assumption A6 implies that pi completes step ρ + 2 with
ts ≥ d, state 6= nsync and state 6= decide. Therefore, msgSeti[ρ+2] contains a
message with ts ≥ d from some process pj , i.e., pj ∈ senderMSi[ρ+2] (Observation
A10). As pj sends a message with ts ≥ d in step ρ + 2, pj ∈ D[ρ + 1] ⊆ Z[ρ + 1].

As the step ρ+2 message of pj is in msgSeti[ρ+2], so from condition halt-2 it follows
that the message sent by pj had state 6= nsync. Moreover, if pi receives a message
with state = decide, then it decides at dec-1. Therefore the message sent by pj

in step ρ + 2 had state 6= decide. It follows that pj /∈ NSYN[ρ + 1]. As pj sends
a message in step ρ + 2, pj /∈ crashed[ρ + 1]. Therefore, pj ∈ D[ρ + 1]− (NSYN[ρ +
1] ∪ crashed[ρ + 1]). From Observation A9 it follows that pj ∈ Halti[ρ + 2]. From
Observation A10, pj ∈ senderMSi[ρ + 2] ∩Halti[ρ + 2].

As pi /∈ NSYN[ρ + 2] ∪ crashed[ρ + 2] (from Assumption A6), so pi completed
step ρ + 2 with state = sync1 or state = sync2. Lemma 30 implies that

5.3. A matching algorithm 79

senderMSi[ρ+2]∩Halti[ρ+2] = ∅. However, pj ∈ senderMSi[ρ+2]∩Halti[ρ+2];
a contradiction. (End of the proof of Result 33.6.1.)

From the above Result 33.6.1, we have D[λ′ − 2] − (NSY N [λ′ − 2] ∪
crashed[λ′ − 2]) ⊇ D[λ′] − (NSY N [λ′] ∪ crashed[λ′]). From Assump-
tion A1, px ∈ D[λ′] − (NSY N [λ′] ∪ crashed[λ′])). From Claim 33.5, we
have px /∈ Z[λ′ − 2] ⊇ (D[λ′ − 2] − (NSY N [λ′ − 2] ∪ crashed[λ′ − 2]).
In other words, px is in D[λ′] − (NSY N [λ′] ∪ crashed[λ′]) but not in
D[λ′ − 2]− (NSY N [λ′ − 2] ∪ crashed[λ′ − 2]); a contradiction.

(2) Part (1) of this claim implies that, for every λ ∈ [0, λ′−3], |Z[λ+1]|−|Z[λ]| ≥ 1.
From Observation A2, |Z[0]| ≥ 1. Therefore, |Z[λ′ − 2]| ≥ λ′ − 1. 2

Claim 33.7: |Z[λ′ − 1]| > λ′ − 1.

Proof: Suppose by contradiction that |Z[λ′−1]| ≤ λ′−1. Since Z[λ′−2] ⊆ Z[λ′−1]
(Claim 33.2) and |Z[λ′−2]| ≥ λ′−1 (Claim 33.6.2), we have |Z[λ′−2]| = |Z[λ′−1]| =
λ′ − 1, and therefore, Z[λ′ − 2] = Z[λ′ − 1] (Assumption A11).

From Claim 33.5, we know that px /∈ Z[λ′ − 2] = Z[λ′ − 1]. Applying Claim 33.3,
we have Z[λ′− 2] ⊆ Haltx[λ′− 1]. As Z[λ′− 2] = Z[λ′− 1] (from Assumption A11),
it follows that Z[λ′ − 1] ⊆ Haltx[λ′ − 1].

Since px /∈ Z[λ′ − 1], px completes step λ′ − 1 with ts < d, state 6= nsync and
state 6= decide. From Assumption A1, we also know that px completes step
λ′ with ts ≥ d, state 6= nsync and state 6= decide. Therefore, msgSetx[λ′]
contains a message, say from process pj , with ts ≥ d, i.e., pj ∈ senderMSx[λ′]. From
the definition of D[λ′ − 1], pj ∈ D[λ′ − 1] ⊆ Z[λ′ − 1]. Recall that we showed that
Z[λ′ − 1] ⊆ Haltx[λ′ − 1], and from condition halt-1, it follows that Haltx[λ′ − 1] ⊆
Haltx[λ′]. Thus Z[λ′ − 1] ⊆ Haltx[λ′], and hence, pj ∈ Haltx[λ′].

From Assumption A1, we know that px completed step λ′ with state = sync1 or
state = sync2. Therefore, Lemma 30 implies that senderMSx[λ′]∩Haltx[λ′] = ∅.
However, pj ∈ senderMSx[λ′] ∩Haltx[λ′]; a contradiction. 2

Tsval. We define the tsval of a message m to be the ordered pair (m.ts, m.est),
where m.ts is the timestamp and m.est is the estimate of message m. We say that
a process sends tsval tv in a step λ, if the process sends a message containing the
same timestamp and estimate as tv, in step λ. For a process pi and step λ ≥ 0 of
some session, we define tsvali[λ] to be the ordered pair (tsi[λ], esti[λ]). An initial
tsval is tsval[0] of some process in the first session.

80 Chapter 5. Eventually Synchronous Model (Part A)

Consistent tsvals and messages. We say that two tsvals are consistent if either
(1) the two tsvals have different timestamp, or (2) the two tsvals have the same
timestamp and the same estimate. We say that two tsvals are inconsistent if they
have the same timestamp but different estimates. Clearly, any two tsvals are either
consistent or inconsistent. Two messages are consistent (inconsistent) if their tsvals
are consistent (resp. inconsistent).

Lemma 34 Consider any session sn. For any process pi that completes some step
λ ≥ 1 with tsvali[λ] = tv, there is a process pj that sent tsval tv in step 1.

Proof: Observe that, if a process completes a step λ, it either retains its own tsval
at the end of step λ− 1, or adopts one from some message m of step λ. Message m,
in turn, contains tsval of some process at the end of step λ − 1, or if λ = 1, m is a
step 1 message. The lemma follows from a trivial backward induction. (Note that,
if a process commits in a session, then the process generates a new tsval at the end
of the session by updating ts and est to commitTs and commitEst, respectively.) 2

Lemma 35 Consider any session sn. If any two step 1 messages of session sn are
consistent, then any two messages of session sn are consistent.

Proof: If a process pi sends a message with some tsval tv in a step λ > 1, then
tsvali[λ − 1] = tv. It follows from Lemma 34 that some process has sent a step 1
message with tsval tv. The lemma follows immediately. 2

Lemma 36 Any two messages sent with negative timestamps are consistent.

Proof: Suppose by contradiction that there is some ts′ < 0 such that two inconsis-
tent messages are sent with timestamp ts′, say with tsvals tv1 and tv2.

Observe that, apart from the initial tsvals of the processes, a process generates a
new tsval only if it commits. (If a process commits in a session, then it generates a
new tsval at the end of that session.) Moreover, if a process commits in a session,
the new tsval generated by the process at the end of the session, has a timestamp
equal to a round number of that session. Therefore, any tsval that is generated by
a process upon committing has a positive timestamp.

As both tv1 and tv2 have timestamp ts′ < 0, it follows that the two tsvals are initial
tsvals. Since every process has a distinct initial timestamp, no two initial tsvals are
inconsistent; a contradiction. 2

Lemma 37 If two messages have the same timestamp, then they have the same
estimate.

5.3. A matching algorithm 81

Proof: The statement of the lemma is equivalent to saying that, any two messages
are consistent. Suppose by contradiction that there are two inconsistent messages.
Consider the lowest timestamp ts′ such that two inconsistent messages were sent
with timestamp ts′. Let tv1 and tv2 be the two different tsvals which were sent with
timestamp ts′. From Lemma 36, we have ts′ > 0.

Consider the lowest round k1 in which some process sent tv1, say process pa. Notice
that round k1 is necessarily step 1 of some session: otherwise, tv1 was either adopted
by pa from a round k1 − 1 message, or pa did not update its tsval in round k1 − 1
(in the second case pa sent tv1 in round k1− 1); both cases contradict the definition
of k1.

If k1 is the step 1 of the first session, then ts′ < 0 because pa initializes its timestamp
to −a; a contradiction. Thus k1 is step 1 of some session sn1+1 ≥ 2, and therefore,
pa generates tv1 at the end of session sn1. It follows that pa commits in a step of
session sn1, and that step corresponds to round ts′.

Using a similar argument, we know that there is another process pb that generates
tv2 at the end of some session sn2, and therefore, pb commits in a step of session
sn2, and that step corresponds to round ts′. As round ts′ corresponds to a step of
both session sn1 and session sn2, we have sn1 = sn2.

Let ts′ be step λ′ of session sn1. Then, pa commits in step λ′ with estimate tv1.est.
So statea[λ′] = sync2 and esta[λ′] = tv1.est. Similarly, stateb[λ′] = sync2 and
estb[λ′] = tv2.est. (Also note that, from the condition for committing, λ′ < t + 2.)

Applying Lemma 33, with px = pa and py = pb, gives tsb[λ′] ≥ tsa[λ′]. Applying
Lemma 33 again, with px = pb and py = pa, gives tsa[λ′] ≥ tsb[λ′]. Thus tsa[λ′] =
tsb[λ′].

Observe that every message sent in step 1 of session sn1 has a timestamp that is
equal to a round number from a session lower than sn1 (or has a timestamp that
is less than 0 if sn1 is the first session). Thus every timestamp sent in step 1 is
lower than ts′ (because ts′ is a round number of session sn1). As ts′ is the lowest
timestamp such that two inconsistent tsvals were sent with that timestamp, any
two tsvals sent in step 1 of sn1 are consistent. Thus, from Lemma 35, in session
sn1, any two messages are consistent. In step λ′ + 1 of sn′, (1) process pa sends
a message with tsval (tsa[λ′], tv1.est), (2) process pb sends a message with tsval
(tsb[λ′], tv2.est), (3) tsa[λ′] = tsb[λ′], and (4) any two messages in session sn1 are
consistent. It follows that tv1.est = tv2.est; a contradiction. 2

Lemma 38 Any pair of sync2 message sent in the same round have the same
timestamp and the same estimate.

Proof: Consider two processes pa and pb that send sync2 messages in some round
k′, say step λ′ of session sn′. As every step 1 message is a sync1 message, λ′ >

82 Chapter 5. Eventually Synchronous Model (Part A)

1. Applying Lemma 33, with px = pa and py = pb, gives tsb[λ′ − 1] ≥ tsa[λ′ −
1]. Applying Lemma 33, with px = pb and py = pa, gives tsa[λ′ − 1] ≥ tsb[λ′ −
1]. Thus tsa[λ′ − 1] = tsb[λ′ − 1]. Thus the two sync2 messages have the same
timestamp. Applying Lemma 37, it follows that the two sync2 messages have the
same estimate. 2

Consider any session sn′. For any step λ > 0 of sn′, let hts[λ] = Max{tsi[λ]|
statei[λ] ∈ {sync1, sync2}}. hts[0] is the maximum ts at the beginning of session
sn′ over all processes that enter session sn′.

Lemma 39 Consider any session sn. For λ ∈ [0, t + 1], hts[λ] ≥ hts[λ + 1].

Proof: Suppose by contradiction that there is a process pi that completes step λ+1
of session sn with statei[λ+1] ∈ {sync1, sync2}, and with timestamp higher than
hts[λ]. Then, pi has updated its timestamp in step λ + 1, and so, msgSeti[λ + 1]
contains a message m with a timestamp higher than hts[λ]. From conditions halt-2,
m has state 6= nsync. Also, m has state 6= decide, otherwise, pi decides at dec-
1 on receiving m. Thus, at the end of step λ, the sender of m has state ∈ {sync1,
sync2} and a timestamp higher than hts[λ]; a contradiction. 2

Lemma 40 (Uniform agreement) No two processes decide differently.

Proof: If no process ever decides then the lemma is trivially true. Suppose some
process decides in a run. Consider the lowest round in which some process decides,
say k′. Let round k′ be step λ′ of session sn′. Let pc be a process that decides in
round k′, say on value x. Note that, if pc decides at dec-1 in round k′, then some
process has sent a decide message in round k′, and therefore, some process has
decided in a round lower than k′; a contradiction. Therefore, pc decides at dec-2 in
round k′.

Consider the set msgSetc[λ′] and senderMSc[λ′]. From the condition for decid-
ing at dec-2 it follows that, msgSetc[λ′] has at least n − t messages, and all those
messages have state = sync2. From Lemma 30 and Lemma 31, we know that
pc ∈ senderMSc[λ′]. From Lemma 38, we know that all messages in msgSetc[λ′]
have the same estimate and the same timestamp. Since pc decides on one of the
estimates in msgSetc[λ′] (namely, the one sent by itself), all messages in msgSetc[λ′]
have estimate x. Let ts′ be the timestamp of the messages in msgSetc[λ′]. It follows
from Lemma 33 that every process that completes step λ′ − 1 either has ts ≤ ts′

or state = nsync (we call this Observation B1). (No process has state =
decide at the end of step λ′− 1 because no process decides before step λ′.) Let us
denote senderMSc[λ′] by Sc. Note that, as msgSetc[λ′] has at least n− t messages,
so Sc contains at least n− t processes.

5.3. A matching algorithm 83

We prove uniform agreement through two claims. We show that (1) no process can
send a sync2 message with an estimate value different from x in steps higher than
λ′ − 1 in session sn′ and (2) no process can send a sync2 message with an estimate
value different from x in any step of a session higher than sn′. The two claims imply
uniform agreement (i.e., no process decides a value different from x) because: (1) no
process decides before step λ′ of session sn′, (2) if a process decides y at dec-2 in
some round then it sends a sync2 message with estimate y in that round, and (3) if
a process decides y at dec-1 in some round, then some process has decided y at dec-2
of a lower round. We now show the two claims.

Claim 40.1. No process can send a sync2 message with an estimate value different
from x in steps higher than λ′ − 1 of session sn′. From Lemma 38, any message
sent in step λ′ has the same estimate value as that of the messages contained in
msgSetc[λ′], i.e., an estimate value x. Therefore, we consider sync2 messages in
steps λ such that λ ≥ λ′ + 1.

Consider any process pj that sends a sync2 message in a step λ ≥ λ′ + 1. By
definition of hts[λ−1], hts[λ−1] ≥ tsj [λ−1]. From Lemma 39, hts[λ′−1] ≥ hts[λ−1].
Moreover, from observation B1, hts[λ′ − 1] = ts′. Therefore, tsj [λ− 1] ≤ ts′.

As process pj sends a sync2 message in step λ, so there is at least n − t messages
in msgSetj [λ− 1], and therefore, msgSetj [λ− 1] contains at least one message from
some process pl in Sc (because Sc contains at least n− t processes).

As pl ∈ Sc, it follows from the definition of ts′, tsl[λ′ − 1] = ts′. From Lemma 32,
tsl[λ − 2] ≥ tsl[λ′ − 1] (because λ − 2 ≥ λ′ − 1 and if pl decides by round λ − 2
then pj decides in round λ− 1 upon receiving the message from pl), and therefore,
tsl[λ−2] ≥ ts′. It follows that the step λ−1 message from pl has timestamp at least
ts′. Since msgSetj [λ − 1] contains the step λ − 1 message from pl, the timestamp
evaluated by pj in step λ− 1 is at least ts′; i.e., tsj [λ− 1] ≥ ts′. As we have already
shown tsj [λ−1] ≤ ts′, it follows that, tsj [λ−1] = ts′. Thus, the step λ message from
pj contains timestamp ts′, and from Lemma 37, that message contains estimate x.

Observation B2. (Recall that round k′ is the step λ′ of session sn′.) From
Claim 40.1, at the end of session sn′, every process that updates its timestamp
to commitTs either (1) has commitTs ≥ k′ − 1 and commitEst = x (and
therefore, goes to the next session with timestamp at least k′− 1 and estimate
x), or (2) has commitTs < k′−1 (and therefore, goes to the next session with
timestamp less than k′ − 1). Furthermore, at the end of session sn′, every
process in Sc is either crashed, has decided, or updates its ts to commitTs ≥
k′ − 1 (because the processes in Sc update their commitTs to k′ − 1 in step
λ′−1 of sn′). Thus any process in Sc that enters session sn′+1 has timestamp
at least k′ − 1 and estimate x.

84 Chapter 5. Eventually Synchronous Model (Part A)

Claim 40.2. No process can send a sync2 message with an estimate value different
from x in any step of a session higher than sn′. We prove this part by induction on
session numbers.

Base Case. Session number sn′ + 1. Note that, in step 1 of any session, no process
sends a message with state = sync2. Consider any process pj that sends a sync1
or sync2 message in step 2 of sn′ + 1. Process pj must have completed step 1 with
state ∈ {sync1, sync2}. Thus, msgSetj [1] contains at least n − t messages, and
hence, contains at least one message from a process in Sc. The message in msgSetj [1]
from a process in Sc contains a timestamp at least k′−1 (from Observation B2). Thus
the maximum timestamp in msgSetj [1] is at least k′ − 1, and therefore, (again from
Observation B2) the estimate contained in the message with maximum timestamp
(in msgSetj [1]) is x. Thus, estj [1] = x and tsj [1] ≥ k′− 1, and hence, every message
sent in step 2 with state ∈ {sync1, sync2} has est = x. It follows that, no sync1
or sync2 message, with an estimate different from x, can be sent in a step higher
than 1 of session sn′ + 1.

Induction Hypothesis. For every session sn such that sn′ + 1 ≤ sn ≤ sn′′, every
sync2 message sent in session sn contains estimate x.

Observation B3. At the end of session sn′′, any tsval that has a timestamp
at least k′− 1, has been generated by a process that has committed in session
sn ≥ sn′ (because k′ − 1 is a round of session sn′). From observation B2
we know that, at the end of session sn′, every process with a timestamp at
least k′ − 1 has estimate x. For every sn such that sn′ + 1 ≤ sn ≤ sn′′, any
process that commits in a step λ of session sn, sends a sync2 message m in
step λ + 1. From the induction hypothesis, m contains estimate x. Thus any
process that commits in session sn, commits with estimate x. Thus, at the end
of session sn′′, any process that has a timestamp at least k′ − 1, has estimate
x. Furthermore, from Lemma 32 and observation B2, at the end of session
sn′′, every process in Sc is either crashed, has decided, or has timestamp at
least k′ − 1.

Induction step. Every sync2 message sent in session sn′′ + 1 contains estimate x.
Consider session sn′′ + 1. Note that, in step 1 of any session, no process sends a
message with state = sync2. Consider any process pj that sends a sync1 or
sync2 message in step 2 of sn′′ + 1. Process pj must have completed step 1 with
state ∈ {sync1, sync2}. Thus, msgSetj [1] contains at least n − t messages, and
hence, contains at least one message from a process in Sc. The message in msgSetj [1]
from a process in Sc contains a timestamp at least k′−1 (from Observation B3). Thus
the maximum timestamp in msgSetj [1] is at least k′ − 1, and therefore, (again from
Observation B3) the estimate contained in the message with maximum timestamp

5.3. A matching algorithm 85

in msgSetj [1] is x. Thus, estj [1] = x and tsj [1] ≥ k′ − 1, and hence, every message
sent in step 2 with state ∈ {sync1, sync2} has est = x. It follows that, no sync1
or sync2 message, with an estimate different from x, can be sent in a step higher
than 1 of session sn′′ + 1. 2

5.3.4 Time-complexity

We now discuss the termination and the time-complexity properties of the algorithm.
Fix any run r, and consider the lowest synchronous session sn, i.e., the first session
that starts at round GSR(r) or at a higher round. Let f ∈ [0, t] be the number of
processes that crash in run r.

Lemma 41 Consider any process pi that completes step λ ∈ [1, t+2] of session sn.
Every process in Halti[λ] has crashed by step λ.

Proof: For any step l ∈ [0, λ] in sn, let H[l] be the union of all Haltj [l] such that
Haltj [l] 6= undefined. The following claim immediately implies the lemma: every
process in H[l] has crashed by step l.

We prove the claim by induction on the step number l. For l = 0, the claim is trivially
true, because the processes update Halt to ∅ at the beginning of every session, and
so, H[0] = ∅ (base case). Suppose that the claim is true for all l ∈ [0, l′ − 1]: every
process in H[l] has crashed by step l (induction hypothesis). Consider the set H[l′]
(induction step). If H[l′]−H[l′ − 1] = ∅ then the induction step is trivial. Suppose
by contradiction that there is a process pj ∈ H[l′] −H[l′ − 1] such that pj has not
crashed by step l′. Thus there is a process pa such that pj /∈ Halta[l′ − 1] and
pj ∈ Halta[l′]. Thus pa updates Halta in step l′. Note that, pa has not decided by
step l′ − 1 or at dec-1 in step l′, otherwise, it does not update Halta in step l′.

Consider step l′ at pa. As pj ∈ Halta[l′ − 1], condition halt-1 is false. As pj has not
crashed by step l′, and sn′ is a synchronous session, so pa must have received the
step l′ message m from pj . Thus condition halt-4 is false. Since, pj ∈ Halta[l′], m
contains either (a) state = nsync (condition halt-2) or (b) set Haltj such that
pa ∈ Haltj (condition halt-3). We show both cases to be impossible and thus prove
the induction step by contradiction.

From our induction hypothesis, for every step l < l′, every process in Haltj [l] has
crashed by step l. Since no more than t processes can crash in a run, in rounds
lower than l′, |Haltj | is never higher than t. Thus pj can not update its state to
nsync in rounds lower than l′. Thus the round l′ message from pj does nor contain
state = nsync.

If the round l′ message from pj contains Haltj such that pa ∈ Haltj then pa ∈
Haltj [l′ − 1] ⊆ H[l′ − 1]. However, from our induction hypothesis, every process in

86 Chapter 5. Eventually Synchronous Model (Part A)

H[l′−1] crashes before completing round l′−1, which implies that pa crashes before
completing round l′ − 1; a contradiction. 2

Lemma 42 Every correct process in run r decides by step f + 2 of session sn.

Proof: Suppose by contradiction that there is a correct process pi that does not
decide by step f + 2 of session sn. If some correct process decides before step f + 2,
then by step f +2, every process receives a decide message, and decides. Therefore,
from our assumption, no correct process decides before step f + 2 in r.

Since f processes crash in r, from Lemma 41, |Halt| at a process is never more than
f . As pi does not decide in round f + 2 and |Halti[f + 2]| ≤ f , at least one of the
following is true: (1) statei[f + 1] = nsync, or (2) some process pj sent a message
in round f + 2 with state = sync1. Case 1 implies that |Halti| > t in round
f + 1 or in a lower round; a contradiction. Case 2 implies that pj updates statej

to sync1 in step f + 1, and hence, f + 1 ≤ |Haltj [f + 1]| ≤ t; a contradiction. 2

Lemma 43 (Time-complexity) For every f ∈ [0, t], every correct process decides by
round f + 2 in a run of SMf .

Proof: Consider any run r of the algorithm in SMf (synchronous run with at most
f crashes. Thus the lowest synchronous session is the first session. From Lemma 42,
every correct process decides by step f + 2 of the first session, i.e., by round f + 2,
in run r. 2

Lemma 44 (Termination) Every correct process eventually decides.

Proof: From Lemma 42, every correct process decides in the lowest synchronous
session of a run. 2

5.4 Summary of the results in the eventually synchronous
model

Combining local decision lower bound of Lemma 27, the global decision lower bound
of Lemma 29, and the time-complexity of algorithm Aem1, we get the following tight
bounds in the eventually synchronous model.

Theorem 45 (Local decision bound for uniform consensus.)
∀t ∈ [1, (n− 1)/2], ∀f ∈ [0, t− 3], (EMt, SMf , UC, ld) = f + 2.

5.4. Summary of the results 87

Proof: Follows from Lemma 27, and the algorithm Aem1. 2

Theorem 46 (Global decision bound for uniform consensus.)
∀t ∈ [2, (n− 1)/2], ∀f ∈ [0, t], (EMt, SMf , UC, gd) = f + 2.

Proof: Follows from Lemma 29, and the algorithm Aem1. 2

88 Chapter 5. Eventually Synchronous Model (Part A)

Chapter 6

Tight Bounds in the Eventually
Synchronous Model
(Part B) — Recovering from Asynchrony

In Chapter 5, we investigated how fast we can reach a decision in the eventually syn-
chronous model (EM), when a run is synchronous from the beginning (i.e., GSR = 1)
and there are f failures in the run. In this chapter, we study a complementary ques-
tion: how fast we can reach an agreement once the run becomes synchronous and no
new failures occurs. In Chapter 7 (conclusion), we briefly discuss the general bound
on the number of rounds required to decide once the run becomes synchronous and
there are f failures.

For any run in the eventually synchronous model, we define GFR(r) (Global Failure
stabilization Round) as the unknown round number such that (1) GFR(r) ≥ GSR(r),
and (2) every process that enters round GFR(r) is correct (in other words, every
faulty process crashes in a round lower than GFR(r) or crashes at the beginning
of round GFR(r)). Note that there is always such a round in every run because
faulty processes execute only a finite number of rounds. In this chapter, consid-
ering uniform consensus (UC) algorithms in the eventually synchronous model, we
investigate bounds on the number of rounds required for global decision from round
GFR.

6.1 The lower bound

In this section we give a lower bound on the number of rounds required for a global
decision in EM . Actually, to strengthen our lower bound, we consider a model
which satisfies all the properties of EM as well as the following property: in every
round k, each process that completes round k, has received at least n − t round
k messages. (Note that we consider this additional property for showing the lower

89

90 Chapter 6. Eventually Synchronous Model (Part B)

bound only. In particular, none of our algorithms rely on this property.) As we are
concerned with proving a lower bound, without loss of generality we assume that
the UC algorithms are (1) full-information, and (2) binary, i.e., we fix V = {0, 1}.

We say that round k configuration is failure-free if all processes complete round k in
that configuration or the configuration is an initial configuration. Given a failure-
free round k configuration C of a UC algorithm A, we define rj(C) (j ∈ [1, n]) to be
a run such that (1) C is the round k configuration of rj(C), (2) GFR(rj(C)) is k+1,
and (3) pj does not enter round k + 1 (i.e., pj crashes at the beginning of round
k + 1). Note that the run rj(C) is unambiguously defined by these three conditions
because, (1) as A is a full-information algorithm, C completely defines the run until
round k, and (2) the message exchange pattern is completely defined from round
k + 1. We denote by valj(C) the decision value of correct processes in rj(C). We
say that a configuration C is uniFvalent (uni-failure-valent) if all valj(C) have the
same value; i.e., for any pair of i, j such that i, j ∈ [1, n], vali(C) = valj(C). We
denote this common value by valF (C). A uniFvalent configuration is 1-Fvalent if
valF (C) = 1; 0-Fvalent, otherwise. A configuration that is not uniFvalent is called
biFvalent. In other words, in a biFvalent configuration, there are two processes pi

and pj , such that vali(C) 6= valj(C). (Note that our notion of biFvalency is different
from traditional notion of bivalency, introduced in [FLP85], and used in [AT99] to
prove the t+1 lower bound on consensus. Roughly speaking, if a configuration C is
bivalent, there are two runs starting from C with different decision values, whereas,
if a configuration C is biFValent, there are two processes, crashing each of which
in C, leads to different decision values.) We now show the following lemma that we
use to prove our lower bound.

Lemma 47 Let t ∈ [1, n−1]. Let A be any UC algorithm in EMt. For every k ≥ 0,
there is a failure-free biFvalent round k configuration.

Proof: We prove the lemma by induction on round number k.

Base Case: There is a failure-free biFvalent initial configuration. By definition,
all initial configurations are failure-free. Suppose by contradiction that all initial
configurations are uniFvalent. Let C0 be the initial configuration in which all pro-
cesses propose 0. For j ∈ [1, n], let Cj be an initial configuration in which all
processes pl, where l ∈ [1, j], propose 1 and the rest of the processes propose 0.
Notice that, from UC validity, valF (C0) = 0 and valF (Cn) = 1. We claim that,
for j ∈ [1, n], valF (Cj−1) = valF (Cj). To see why, notice that Cj−1 and Cj dif-
fer only the proposal value of pj , and hence, no process can distinguish rj(Cj−1)
from rj(Cj). So valj(Cj−1) = valj(Cj), and since Cj−1 and Cj are uniFvalent,
valF (Cj−1) = valj(Cj−1) = valj(Cj) = valF (Cj). Our claim immediately implies
that, if valF (C0) = 0 then valF (Cn) = 0; a contradiction.

6.1. The lower bound 91

Induction Hypothesis: There is a failure-free biFvalent round k configuration.

Induction Step: There is a failure-free biFvalent round k +1 configuration. Suppose
by contradiction that all failure-free round k+1 configurations are uniFvalent. From
induction hypothesis, there is a failure-free biFvalent round k configuration C. Thus
there are i, j ∈ [1, n], such that vali(C) = 0 and valj(C) = 1. (In the rest of the
proof, note that in round k + 1 of each configuration we construct, each process
receives at least n− 1 ≥ n− t messages.)

Consider the failure-free round k +1 configuration C0 that extends C by one round,
such that, in round k + 1, all messages sent by pi are lost and no other message is
lost. Consider the runs ri(C) and ri(C0). The round k + 1 configuration of ri(C)
differ from C0 only in the state of process pi. Since pi crashes at the beginning
of of round k + 2 in ri(C0), no correct process can distinguish ri(C) from ri(C0).
Thus, vali(C0) = vali(C) = 0. C0 being a failure-free round k + 1 configuration, is
uniFvalent, and hence, valF (C0) = vali(C0) = 0.

We now consider a series of round k+1 configurations which extend C by one round.
Configuration C l (l ∈ [1, n]) extends C by one round in which (1) no process crashes,
and (2) all messages sent by pi in round k + 1 to processes in Π\{p1, ..., pl} are lost,
and no other message is lost.

Consider configurations C l−1 and C l. The two configurations differ only at pl: pl

does not receive round k + 1 message from pi in C l−1, but receives that message
in C l. Thus no correct process can distinguish run rl(C l−1) from rl(C l). Thus
vall(C l−1) = vall(C l). C l−1 and C l being failure-free round k + 1 configurations,
are uniFvalent, and hence, valF (C l−1) = valF (C l). A simple induction over l, along
with our previous observation that valF (C0) = 0, gives us valF (Cn) = 0. Observe
that configuration Cn extends C by one round such that no process crashes and no
message is lost in round k + 1.

If we replace pi with pj in the above construction, we immediately get that valF (Cn) =
valj(C) = 1; a contradiction. (The intermediate configurations will be different from
the above paragraph, but the final configuration will still be Cn: a configuration that
extends C by one round such that no process crashes and no message is lost in round
k + 1.) 2

Lemma 48 Let t ∈ [1, n − 2]. For any G ≥ 1, every UC algorithm in EMt has a
run r in which GFR(r) = G and some process decides in round GFR(r) + 1 or in a
higher round.

Remark. This lemma can also be shown using a simple modification of the proof
of [KR03]. However, a straightforward modification of the proof of [KR03] would
require t ≥ 2, whereas our proof holds for t ≥ 1.

92 Chapter 6. Eventually Synchronous Model (Part B)

p3

p1

p2 0

0 p3

p1

p2

p3

p1

p2

p3

p1

p2

0 1

1

1

p1,p2

a = r1(C) b = r2(C)

c = r3(C1) d = r3(C2)

p3 p3

Config C Config C

Config C1 Config C2

Figure 6.1: Rounds G and G + 1, Lemma 49

Proof: Suppose by contradiction that there exists a UC algorithm B, and some
round number G, such that for every run r of B in which GFR(r) = G, all correct
processes decide by round G.

Recall from Section 2.4, for any round k configuration C, r(C) denotes a run that
is an extension of C such that, every process that is alive is C is correct in r(C),
and in every round higher than k, no message is lost (i.e., correct processes receive
messages from all correct processes).

Consider a failure-free biFvalent round G − 1 configuration C. (From Lemma 47,
such a configuration exists.) Thus there are i, j ∈ [1, n] such that vali(C) = 0 and
valj(C) = 1. Observe that from our assumption on algorithm B, by the end of round
G, every process distinct from pi decides 0 in ri(C), and every process distinct from
pj decides 1 in rj(C). Also, from our assumption on B, every process decides by the
end of round G in r(C). Let x ∈ {0, 1} be the decision value of processes in r(C).
We show a contradiction assuming x = 1. (The case x = 0 is symmetric.)

Consider a run r(C ′), where C ′ is a failure-free round G configuration that extends C
by one round, such that, in round G, pi receives its own message, all other messages
sent by pi are lost, and no other message is lost. (Note that GFR(r(C ′)) = G + 1.)

6.1. The lower bound 93

Let pc be a process distinct from pi. At the end of round G, pi cannot distinguish
r(C ′) from r(C), and pc cannot distinguish r(C ′) from ri(C). Thus, at the end of
round G in r(C ′), pi decides x = 1 and pc decides 0. Run r(C ′) violates uniform
agreement; a contradiction. 2

Lemma 49 Let n = 3 and t = 1. For any G ≥ 1, every UC algorithm in EMt has
a run r in which GFR(r) = G and some process decides in round GFR(r) + 2 or in
a higher round.

Proof: Suppose by contradiction that there exists a UC algorithm A, and some
round number G, such that for every run r of A in which GFR(r) = G, all correct
processes decide by round G + 1.

Consider a failure-free biFvalent round G − 1 configuration C. (From Lemma 47,
such a configuration exists.) Thus there are i, j ∈ [1, 3] such that vali(C) = 0 and
valj(C) = 1. For convenience of presentation and without loss of generality, we
assume that i = 1 and j = 2.

We consider four runs that extend C. (In each run, note that processes receive at
least n− t = 2 messages in every round — including one from itself.) Rounds G and
G + 1 of these runs are depicted in Figure 6.1. We now describe them in words.

• Run a is r1(C). Thus GFR(a) = G, and from our assumption on A, correct
processes decide val1(C) = 0 in round G + 1.

• Run b is r2(C). Thus GFR(b) = G, and from our assumption on A, correct
processes decide val2(C) = 1 in round G + 1.

• Run c is r3(C1), where round G+1 configuration C1 is constructed as follows.
In round G, the messages from p1 to {p2, p3} are lost, and the message from
p2 to p1 is lost. In round G +1, the messages from p1 to p3, and p3 to {p1, p2}
are lost. Process p3 cannot distinguish round G + 1 configuration of run c
(i.e., configuration C1) from round G + 1 configuration of run a. To see why,
notice that p3 does not receive any message from p1 in round G and G + 1 of
both runs. Furthermore, p2 distinguishes a from c only at the end of round
G + 1, and hence, sends identical messages to p3 in rounds G and G + 1 of
both runs. Therefore, as in run a, p3 decides 0 in round G + 1 in run c. Due
to the uniform agreement property, p1 and p2 eventually decide 0 in run c.

• Run d is r3(C2), where round G+1 configuration C2 is constructed as follows.
In round G, the message from p1 to p2 is lost, and the messages from p2 to
{p1, p3} are lost. In round G + 1, the message from p2 to p3, and from p3 to
{p1, p2} are lost. Notice that p3 cannot distinguish round G + 1 configuration
of d (i.e., configuration C2) from round G+1 configuration of run b. Therefore
p3 decides 1 at the end of round G+1 of run d. Due to the uniform agreement
property, p1 and p2 eventually decide 1 in run d.

94 Chapter 6. Eventually Synchronous Model (Part B)

Now consider runs c and d. At the end of round G, the two runs differ only at
process p3 (because it receives different sets of messages). Process p1 receives the
same set of messages in round G + 1 of runs c and d, and that does not include a
message from p3. Therefore, the state of p1 is the same at the end of round G + 1
in both runs. Similarly, we can show that the state of p2 is the same at the end of
round G + 1 in both runs. Since process p3 does not send any message after round
G + 1 (recall that c is r3(C1) and d is r3(C2)), p1 and p2 can never distinguish run
c from run d. Therefore, p1 (and p2) must decide the same value in c and d: a
contradiction. 2

Lemma 50 Let t ∈ [1, n− 2] and t ≥ n/3. For any G ≥ 1, every UC algorithm in
EMt has a run r in which GFR(r) = G and some process decides at round GFR(r)+2
or at a higher round.

Proof: We prove this lemma by simulating the proof of Lemma 49 over a system
where t ≥ n/3. (Recall that, we always assume n ≥ 3.) Divide the set of processes
Π into 3 sets of processes, P1, P2, and P3, each of size less than or equal to dn

3 e.
(This is always possible because 3(dn

3 e) ≥ n.) Since t ≥ n/3 and t is an integer, it
follows that t ≥ dn

3 e. Therefore, the sets P1, P2, and P3 are each of size less than
or equal to t, and hence, in a given run all the processes in any one of the sets may
crash.

We now construct runs corresponding to the runs in Lemma 49. The relationship be-
tween a run r′ constructed in this simulation to the corresponding run r in Lemma 49
is as follows: (1) if pi proposes x (0 or 1) in r, then every process in Pi proposes
x in r′, (2) if pi crashes without sending any message in some round k of r, then
every process in Pi crashes without sending any message in round k of r′, (3) if pi

crashes in some round k of r, then every process in Pi crashes in round k of r′, (4) if
pi does not crash in r then no process in Pi crashes in r′, and (5) for j ∈ [1, 3], if pi

receives a messages from pj in some round k of r, then every process in Pi receives
a message from every process in Pj in round k of r′. (Note that in r, if pi does not
crash at round k, then it receives a message from itself, and therefore, at round k of
r′, each process in Pi receives a message from every process in Pi.)

Following the above rules, we construct the configuration C ′ corresponding to C and
the four runs a′, b′, c′, and d′, corresponding to runs a, b, c, and d, respectively, to
reach a contradiction. 2

We now state our lower bound on the number of rounds required to globally decide
after GFR.

Theorem 51 Let t ∈ [1, n− 2]. For any G ≥ 1,
(a) every UC algorithm in EMt has a run r in which GFR(r) = G and some process
decides at round GFR(r) + 1 or at a higher round.

6.2. A matching algorithm when t < n/2 95

(b) if t ≥ n/3, then every UC algorithm in EMt has a run r in which GFR(r) = G
and some process decides at round GFR(r) + 2 or at a higher round.

Proof: Immediate from Lemma 48 and Lemma 50. 2

Communication closed rounds and reliable channels. There is an obvious
way in which we can strengthen EM . We remove the restriction of communication
closed rounds and we add reliable channels: a process may receive messages from
any round, and messages from correct processes to correct processes are eventually
received. We now argue why Theorem 51 holds despite this modification. Our
discussion is informal.

A delayed message is a message that is not received in the round in which it is sent.
We claim that in the above proofs we can ignore all delayed messages. Recall that,
we assumed that algorithms are full-information. So on receiving a message from
a process pi in round k, another process pj can simulate reception of all delayed
messages sent by pi to pj in lower rounds. This simulation in EM satisfies the re-
quirements of the modification even if all delayed messages are lost because, starting
from round GSR ≤ GFR every correct process receives messages from all correct
processes. Clearly, the simulation does not provide any additional information to
processes because the algorithms we consider are already full-information. Thus, for
the proof of Theorem 51, we can ignore the delayed messages even in the modified
model.

6.2 A matching algorithm when t < n/2

We now present an algorithm Aem2 that solves UC in EMt when t < n/2. Algorithm
Aem2 matches the lower bound of Theorem 51(b). Recall that, from Lemma 9, there
is no UC algorithm in ESt when t ≥ n/2.

6.2.1 Algorithm description

Algorithm Aem2 is presented in Figure 6.2. In every round, each process pi sends its
four primary variables to all processes: (1) the message type msgTypei initialized to
prepare, (2) an estimate esti of the decision value, initialized to the proposal value
(that is read from propi), (3) the timestamp tsi of the estimate value, initialized to
0, and (4) the leader ldi of the current round, initialized to pn. In the computation
subround, processes update their primary variables depending on the messages re-
ceived in that round, and possibly decide. First we briefly explain the purpose of
these variable at process pi.

96 Chapter 6. Eventually Synchronous Model (Part B)

at process pi

1: initialize()
2: in round k {rounds 1, 2, ...}
3: send round k messages
4: receive messages
5: compute()

6: procedure initialize()
7: esti ← propi; ldi ← pn; tsi ← 0; msgTypei ← prepare; nextLDi ← pn; maxTSi ← 0
8: round 1 message ← (1, msgTypei, esti, tsi, ldi)

9: procedure compute()
10: if deci = ⊥ then
11: nextLDi ← pj where j = Max{w|pi received a round k message from pw}
12: maxTSi ← Max{ts|pi received a message (k, ∗, ∗, ts, ∗) }
13: if received (k, decide, est′, ts′, ∗) then
14: esti ← est′; tsi ← ts′; deci ← esti; msgTypei ← decide {decision}
15: else if received (k, commit, ∗, ∗, ∗) from a majority including itself (pi) and ldi then
16: deci ← esti; msgTypei ← decide {decision}
17: else if (received(k, ∗, ∗, ∗, ldi) from a majority of processes) {COMMIT-1}

and (received (k, ∗, ∗, maxTSi, ldi) from ldi) {COMMIT-2}
and (ldi = nextLDi) then {COMMIT-3}

18: msgTypei ← commit; esti ← est received from ldi; tsi ← k
19: else
20: esti ← any est s.t. received (k, ∗, est, maxTSi, ∗); tsi ← maxTSi; msgTypei ← prepare
21: ldi ← nextLDi

22: round k + 1 message ← (k + 1, msgTypei, esti, tsi, ldi)

Figure 6.2: Uniform consensus algorithm Aem2

Roughly speaking, the message type indicates the level of progress a process has
made towards reaching a decision. In the computation subround of round k, if pi

sees a possibility of decision in the next round then it sends a round k + 1 message
with type commit. We then say that pi commits in round k. If the process decides
or has already decided then it sends a message with type decide in the next round.
Otherwise, the message type is prepare.

In the computation subround of a round k, pi adopts one of the estimate values
received in that round. Process pi also adopts the timestamp received along with
the estimate, except when pi commits in round k, in which case pi updates its
timestamp to k. Thus the timestamp associated with an estimate value x simply
indicates a round number in which some processes has committed while adopting
estimate x.

The leader of pi at round k ≥ 2 is simply the process pj with the highest id such
that, pi received the round k − 1 message from pj . Process pn is the leader at all
processes in round 1. Note that different processes may have different leaders in the
same round. Now we describe the computation subround in more details.

6.2. A matching algorithm when t < n/2 97

Once a process pi decides, it sends a decide message with the decision value in
every round. Otherwise, in round k, pi updates its primary variables in the procedure
compute(), as follows. From the set of messages received, pi first computes its leader
for the next round (nextLDi) and the highest timestamp received (maxTSi). Then
it executes the following four conditional statements. (A statement is executed only
if the conditions in all the previous statements are false.)

• If pi receives a decide message then it decides on the received estimate (by
writing that estimate in deci).

• If pi receives commit messages from a majority of processes, including itself
and its current leader, then pi decides on its own estimate.

• Let ldi be the leader of pi at round k. Consider the following three conditions
on the messages received by pi. (1) commit-1 : received messages from a
majority of processes, that say that ldi is their leader at round k, (2) commit-
2 : received a message from ldi that has the highest timestamp (maxTSi) and
has ldi as the leader, and (3) commit-3 : ldi = nextLDi. If all three conditions
are satisfied, then pi sets its message type (for the message to be send in round
k + 1) to commit, adopts the estimate received from ldi, say x, and sets its
timestamp to the current round number k. We say that pi commits in round
k with estimate x.

• Else, pi adopts the estimate and the timestamp of the message with the highest
timestamp maxTSi, and sets its message type to prepare.

Finally, pi updates its ldi to nextLDi and composes the message for the next round.

6.2.2 Correctness of Aem2

Lemma 52 Until a process decides, its timestamp is non-decreasing with increasing
rounds.

Proof: If a process pi does not decide in round k, then it adopts either k or the
maximum timestamp received in round k, as its new timestamp. From the loopback
property of EMt, we know that pi receives its own message in round k, and hence,
the new timestamp of pi is not lower that its current timestamp. 2

Lemma 53 In every run r, all correct processes decide by round GFR(r) + 2.

Proof: We prove the lemma by contradiction. Assume that some correct process
pj does not decide by round GFR(r) + 2 in run r. If any correct process pi decides

98 Chapter 6. Eventually Synchronous Model (Part B)

by round GFR(r) + 1, then it sends a decide message in round GFR(r) + 2,
and all correct processes receive that message and decide in round GFR(r) + 2;
contradicting our assumption. Therefore, our assumption implies that, no correct
processes decides by round GFR(r) + 1.

Let pl be the correct process with the highest id in r. Since correct processes receive
messages from all correct processes in round GFR(r) and in all higher rounds, it
follows that pl is the leader of all correct processes in round GFR(r) + 1 and in all
higher rounds.

Consider round GFR(r). We claim that, at the end of round GFR(r), no process
has a higher timestamp than pl. Suppose by contradiction that some other process
pj completes round GFR(r) with a higher timestamp than pl; say the timestamp
of pj is k′. There are three cases depending on when pj adopted timestamp k′:
(1) pj adopted timestamp k′ before round GFR(r), (2) pj adopted timestamp k′ on
receiving a message from some process pm in round GFR(r) with timestamp k′, or
(3) pj committed in round GFR(r) and adopted k′ = GFR(r) as its timestamp. In
the first two cases, since only correct processes enter round GFR(r), and correct
processes receive messages from all correct processes in round GFR(r), pl receives
a message with timestamp k′ (from pj in the first case, and from pm in the second
case) and adopts a timestamp not smaller than k′; a contradiction.

Consider the third case. We show that pl commits in round k′ = GFR(r). In
round GFR(r), correct processes receive message from all correct processes, i.e., all
correct processes receive the same set of messages. Therefore, every correct process
evaluates nextLD to pl, and evaluates maxTS to the same timestamp, say ts′. Since
pj commits in round GFR(r), so from condition commit-3, the leader of pj in round
GFR(r) is same as its nextLD; i.e., pl. From condition commit-2 it follows that pj

received a message (GFR(r), ∗, ∗, ts′, pl) from pl. Thus pl is its own leader in round
GFR(r). Thus at pl, condition commit-3 holds. As all correct processes receive
the same set of messages in round GFR(r), and pj and pl have the same leader in
round GFR(r), commit-1 and commit-2 hold also at pl. Thus, pl commits in round
GFR(r), and hence, updates its timestamp to GFR(r) = k′; a contradiction with our
assumption that k′ is higher than the timestamp of pl at the end of round GFR(r).

Thus no process has higher timestamp than pl at the end of round GFR(r). Let ts′′

be the timestamp of pl at the end of round GFR(r). Consider round GFR(r) + 1.
Clearly, pl sends (GFR(r)+1, ∗, ∗, ts′′, pl). Every process on receiving this message
evaluates maxTS to ts′′. At every correct process, pl is the leader, and nextLD is
evaluated to pl. Thus, all three conditions required to commit holds at every correct
process. As no correct process decides by round GFR(r) + 1, every correct process
commits in round GFR(r) + 1. Thus in the next round, every correct process sends
the message (GFR + 2, commit, ∗, ∗, pl). In round GFR(r) + 2, every correct
process receives commit messages from all correct processes, and hence, decides; a
contradiction. 2

6.2. A matching algorithm when t < n/2 99

Lemma 54 For any round k, no two processes commit with different estimates in
round k, and no two processes commit with different newLD in round k.

Proof: Consider two processes pi and pj that commit in round k with estimate esti
and estj , and newLD value newldi and newldj , respectively. Also, in round k, let
ld′i be the leader of pi and ld′j be the leader of and pj . Thus from commit-1, each
of them has received a majority of messages in round k, that contain ld′i and ld′j
as leaders, respectively. As two majorities intersect, ld′i = ld′j . Furthermore, from
commit-3, newldi = ld′i and newldj = ld′j . So, newldi = ld′i = ld′j = newldj .

From the algorithm, pi commits with the estimate sent by ld′i, and pj commits with
the estimate sent by ld′j . As ld′i = ld′j , pi and pj commit with same estimate. 2

Lemma 55 For any round k, all round k messages with msgType = commit have
identical estimate values and identical ld values.

Proof: Immediate from Lemma 54. 2

Lemma 56 If some process sends a message with timestamp ts > 0 and estimate
x then some process commits in round ts with estimate x.

Proof: If a process pi sends a message with timestamp ts then pi sets its timestamp
to ts in some round. Consider the lowest round k in which some process sets its
timestamp to ts, and let process pj be one such process. From the definition of k,
pj cannot receive timestamp ts from another process in round k. Thus pj commits
with timestamp ts in round k, and from the algorithm, k = ts.

Also, from the algorithm, if a process adopts a timestamp from a received message,
it also adopts the associated estimate. Thus no two values are associated with
the same timestamp. It follows that if pi sends a message with timestamp ts and
estimate x and some process pj commits in round ts, then pj commit with estimate
x. 2

Lemma 57 (Uniform Agreement) No two processes decide differently.

Proof: If no process ever decides then the lemma trivially holds. Suppose some
process decides. Let k be the lowest round in which some process decides; say pi

decides in round k. Process pi can decide either (1) by receiving a decide message,
or (2) by receiving a majority of commit messages, that include messages from
itself and its leader. In case 1, some process has sent a decide message in round
k, and hence, that process has decided in a round lower than k, which contradicts
the definition of round k. We now consider case 2.

100 Chapter 6. Eventually Synchronous Model (Part B)

Suppose pi decides x in round k. As pi received a majority of commit messages
in round k, and one of the commit messages contains the decision value (namely,
the commit message from itself), from Lemma 55, it follows that the estimate in
the commit messages is x, and all commit messages have the same leader, say pl.
Thus pi receives (k, commit, x, k − 1, pl) from a majority of processes, and hence,
a majority of processes commit in round k− 1 with estimate x — let us denote this
majority of processes by Sx.

We claim that if any process commits or decides in round k′ ≥ k−1, then it commits
with estimate x or decides x. The claim immediately implies agreement. We prove
the claim by induction on round number k′.

Base Case. k′ = k − 1. As processes in Sx commit x in round k − 1, so from
Lemma 54, no process commits with an estimate different from x in round k − 1.
By definition of k, no process decides in round k − 1.

Induction Hypothesis. If any process commits or decides in any round k1 such that
k − 1 ≤ k1 ≤ k′, then it commits with estimate x or decides x.

Induction Step. If any process commits or decides in round k′ + 1, then it commits
with estimate x or decides x. There are two cases:

1. Some process commits in round k′ + 1. Suppose by contradiction that some
process pj commits with estimate z 6= x in round k′ + 1. Then pj has not
received any decide message in round k′ + 1. Also note that, from condition
commit-2, pj commits on the estimate of the round k′+1 message m′ received
from its leader, and this message has the highest timestamp among all mes-
sages received by pj in round k′ + 1. Let this highest timestamp be tsMax.
Therefore, some process has sent round k′+1 message with timestamp tsMax
and estimate z. From Lemma 56, some process commits in round tsMax with
estimate z.

As the highest timestamp that can be received in round k′+1 is k′, so tsMax ≤
k′. Since pj commits in round k′ + 1, it has received round k′ + 1 messages
from a majority of processes, and hence, received round k′ + 1 message from
at least one process in Sx, say pa. Recall that, every process in Sx commits
in round k − 1 with estimate x. Thus pa has timestamp k − 1 at the end of
round k − 1. As pj has not received any decide message in round k′ + 1, pa

has not decided by round k′. From Lemma 52, the round k′ + 1 message of pa

contains timestamp at least k − 1. Thus tsMax ≥ k − 1.

Thus we have k − 1 ≤ tsMax ≤ k′. By induction hypothesis, every process
that commits in round tsMax commits x 6= z; a contradiction.

6.3. A matching algorithm when t < n/3 101

2. If some process pb decides a value y in round k′ +1, then in that round, either
some process sends a decide message with decision value y or pb sends a
commit message with estimate y. From induction hypothesis, y = x in both
cases.

2

Lemma 58 Algorithm Aem2 solves UC.

Proof: Termination follows from Lemma 53, validity is obvious, and uniform agree-
ment is proved in lemma 57. 2

Theorem 59 There is a UC algorithm in EMt with t < n/2 such that in every run
r, correct processes decide by round GFR(r) + 2.

Proof: Immediately from Lemma 53 and Lemma 58. 2

6.3 A matching algorithm when t < n/3

We now present an algorithm Aem3 that solves UC in ESt when t < n/3. The algo-
rithm matches the lower bound of Theorem 51(a), and is inspired by an algorithm
from [MR01]. Algorithm Aem3 is presented in Figure 6.3. The algorithm is based on
the following simple observation. Suppose t < n/3, and S is a multiset of n elements
where some element v appears n − t times. Then in any multiset containing n − t
elements from S, v appears at least n− 2t times and all other elements appear less
than n− 2t times.

We assume every proposal value has a tag which contains the id of the process
that proposed the value. The proposal values can be ordered based on this tag.
In every round, each process pi sends its three primary variables to all processes:
(1) the message type msgTypei initialized to prepare, (2) an estimate esti of the
decision value, initialized to the proposal value (that is read from propi), and (3) the
timestamp tsi of the estimate value, initialized to 0. In the computation subround,
pi decides if it receives a decide message. If pi receives less than n − t messages
in round k then it does not update its variables in that round. If pi receives at
least n − t messages then it updates its timestamp to the current round number k
and updates other variables as follows. First it arranges all messages received in the
round in ascending order of their sender ids, selects the first n − t messages, and
puts them in set msgSeti. If every message in msgSeti has the same estimate, say

102 Chapter 6. Eventually Synchronous Model (Part B)

at process pi

1: initialize()
2: in round k {rounds 1, 2, ...}
3: send round k messages
4: receive messages
5: compute()

6: procedure initialize()
7: esti ← propi; tsi ← 0; msgTypei ← prepare; maxTSi ← 0; msgSeti ← ∅
8: round 1 message ← (1, msgTypei, esti, tsi)

9: procedure compute()
10: if deci = ⊥ then
11: if received (k, decide, est′, ts′) then
12: esti ← est′; tsi ← ts′; deci ← esti; msgTypei ← decide {decision}
13: else if received at least n− t messages in round k then
14: tsi ← k
15: msgSeti ← set of n− t round k messages received by pi with lowest sender ids
16: maxTSi ← Max{ts| (k, ∗, ∗, ts) ∈ msgSeti}
17: if every message in msgSeti has identical est (say est′) and has ts = k − 1 then
18: deci ← est′; msgTypei ← decide {decision}
19: else if there are at least n−2t messages in msgSeti with identical est (say est′′) then
20: esti ← est′′

21: else
22: esti ← Max {est| (k, ∗, est, maxTSi) ∈ msgSeti}
23: round k + 1 message ← (k + 1, msgTypei, esti, tsi)

Figure 6.3: Uniform consensus algorithm Aem3

est′, and every message in msgSeti has timestamp k − 1, then pi decides est′. If at
least n − 2t messages in msgSeti have the same estimate, say est′′, then pi adopts
est′′. Otherwise, among the estimates received with maximum timestamp, pi adopts
the maximum one. We now sketch the correctness of Aem3.

Lemma 60 In every run r, all correct processes decide by round GFR(r) + 1.

Proof: We prove the lemma by contradiction. Assume that some correct process pj

does not decide by round GFR(r) + 1 in run r. If any correct process pi decides by
round GFR(r), then it sends a decide message in round GFR(r)+1, and all correct
processes receive that message and decide in round GFR(r) + 1; contradicting our
assumption. Therefore, our assumption implies that, no correct processes decides
by round GFR(r).

Consider round GFR(r). Recall that only correct processes enter the round, and
all correct processes receive messages from all correct processes. It follows that
every correct process receives at least n − t messages, and receives the same set of
messages. Since no correct process decides in that round, correct processes update
their timestamp to GFR(r), and compute identical msgSet. Then, either every

6.3. A matching algorithm when t < n/3 103

correct process receives some estimate at least n−2t times and adopts that estimate,
or adopts the maximum estimate with maximum timestamp. In either case, since
processes have identical msgSet, they update their estimates to the same value.
Thus in round GFR(r) + 1, processes receive identical estimate from all correct
processes with timestamp GFR(r), and decide; a contradiction. 2

Lemma 61 (Uniform Agreement) No two processes decide differently.

Proof: If no process ever decides then the lemma trivially holds. Suppose some
process decides. Let k be the lowest round in which some process decides; say pi

decides in round k. Process pi can decide either (1) by receiving a decide message,
or (2) by receiving prepare messages from n− t processes with identical estimate
values and with timestamp k−1. In case 1, some process has sent a decide message
in round k, and hence, that process has decided in a round lower than k, which
contradicts the definition of round k. We now consider case 2.

Suppose pi decides x in round k. Then in round k − 1, at least n − t processes
update their timestamp to k − 1 and their estimate to x. Let this set of at least
n− t processes be Sx.

We claim that if any process updates its estimate or decides in round k′ ≥ k−1, then
it updates it estimate to x or decides x. This claim immediately implies agreement.
We prove the claim by induction on round number k′.

Base Case. k′ = k − 1. From the definition of round k, no process decides in round
k − 1. Suppose some process pj updates its estimate in round k. Then pj has
received at least n − t messages. As t < n/3, at least n − 2t of those messages are
from processes in Sx, and hence, contain estimate x, and less than n− 2t messages
are from processes not in Sx. Thus pj updates its estimate to x.

Induction Hypothesis. If any process updates its estimate or decides in any round
k1 such that k − 1 ≤ k1 ≤ k′, then it updates it estimate to x or decides x.

Induction Step. If any process updates its estimate or decides in round k′ + 1, then
it updates it estimate to x or decides x. Suppose a process decides y in round
k′ + 1. Then either (1) some process has decided y in a lower round and sent a
decide message in round k′ + 1, or (2) at least n − t processes has updated their
estimate to y in round k′. In the first case, from the induction hypothesis and our
assumption that no process decides before round k, it follows that y = x. Consider
the later case. Again from the induction hypothesis it follows that, by the end of
round k′, all processes in Sx has either decided x, retained their estimate x, or has

104 Chapter 6. Eventually Synchronous Model (Part B)

crashed. As there are at least n−t processes in Sx and two sets of size n−t intersect,
we have y = x.

Now suppose some process pj updates its estimate in round k′ + 1. Then pj has
received at least n− t messages in round k′ + 1. As t < n/3, at least n− 2t of those
messages are from processes in Sx, and hence from the induction hypothesis, contain
estimate or decision value x. Also, less than n− 2t messages are from processes not
in Sx, and so, less than n− 2t messages can contain a value different from x. Thus
pj updates its estimate to x. 2

Lemma 62 Algorithm Aem3 solves UC.

Proof: Termination follows from Lemma 60, validity is obvious, and uniform agree-
ment is proved in lemma 61. 2

Theorem 63 There is a UC algorithm in EMt with t < n/3 such that, in every run
r, correct processes decide by round GFR(r) + 1.

Proof: Immediate from Lemma 60 and Lemma 62. 2

Chapter 7

Conclusion

This thesis investigates how fast we can achieve agreement. We focused on a more
fine-grained time-complexity metric (local decision) than what was considered in
the literature, and we looked into optimizing algorithms for subsets of runs that are
considered to be common in practice.

The time-complexity of a local decision is a natural measure in many agreement-
based distributed systems. As pointed out in the introduction, in a replication or
a transaction system, it may be sufficient for a client to receive the decision value
from any process executing the agreement algorithm. Besides, studying local deci-
sion metric helps uncover fundamental differences between problems and between
models that were not apparent with other metrics. For example, in the synchronous
model, uniform consensus and non-blocking atomic commit have the same tight
bound in terms of global decision, but have different bounds when we consider local
decision. Similarly, considering the local decision metric allows us to infer that early
deciding uniform consensus algorithms are faster in the synchronous model than in
synchronous runs of the eventually synchronous model.

Early deciding and early halting agreement algorithms have been extensively stud-
ied in the synchronous model since their introduction in [DRS90]. These algorithms
optimize the subset of runs where there are less crashes than the maximum num-
ber of crashes tolerated by the algorithm. We introduced a natural extension of
this optimization in the eventually synchronous model, namely, optimizing the sub-
set of runs that are synchronous from the very beginning. Although we show that
the synchronous runs of uniform consensus algorithms designed for the eventually
synchronous model are inherently slower than runs of algorithms directly designed
for the synchronous model, this difference is at most one round. (We would like
to however recall that there is a significant resilience-price to be paid: in the syn-
chronous model, uniform consensus can be solved if any number of processes may
fail, whereas, in the eventually synchronous model, we need a majority of correct
processes.)

105

106 Chapter 7. Conclusion

We now outline few open issues and future directions for investigation.

Number of rounds required for a global decision after GSR

Consider the lower bound on the number of rounds required for a global decision from
round GSR. (This bound is different from the one considered in Chapter 6 because
we now consider GSR instead of GFR.) Recall that, before GSR, any message sent
by a process to other processes may be lost. Therefore, it is straightforward to
extend the proof of Lemma 28 and Lemma 29 to show the following:

- For every UC algorithm A in EMt, for every f ≤ t, and any G ≥ 1, there is
a run r of A with at most f crashes in which, GSR(r) = G, and some correct
process decides in round G+f+1 or in a higher round (i.e., at least f+2 rounds
are required for a global decision once the system becomes synchronous).

We claim that algorithm Aem3 from Chapter 6 matches this lower bound when
t < n/3. Consider any run r of Aem3 with at most f crashes. Note that processes
receive n−f ≥ n− t messages in every round starting from round GSR(r). Consider
the f + 1 rounds, GSR(r) to GSR(r) + f . As there are at most f crashes in r, it
follows that, among these f+1 rounds, there is at least one round in which no process
crashes, say round k. Thus, every process that enters round k, completes the round.
It follows that every process that completes round k, has (1) either decided, or
(2) has identical msgSet at the end of the round, and hence, updates its estimate
to the same value, and also updates its timestamp to k. Thus, in round k + 1, the
processes either (1) receive a decide message, or (2) all prepare messages have
the same estimate and timestamp k. The correct processes decide by round k +1 in
both cases.

Thus, GSR + f + 1 is a tight bound when t < n/3. Determining the tight bound
when t ≥ n/3 remains an open problem.

Eventually synchronous model without rounds

This thesis considered round based models EM and SM. A natural extension would
be to investigate a tight bound on the time required to reach a decision in models that
do not impose any such round structure, but still, provide some timing guarantees.

Consider the following model EM ′. Each process pi has a local clock which provides
the real time. In every run r, there is an unknown time GFT(r) (Global Failure
stabilization Time of run r) such that (1) all faulty processes crash before GFT(r),
and (2) any message sent at time GFT(r) or later is delivered within time ∆ of being
sent. (∆ is a known constant.) Also, the local processing time is negligible.

It is easy to simulate EM over EM ′: to simulate round k of EM , the processes
send round k messages at time (k − 1)∆, and upon receiving a round k message

107

m, the reception of m is simulated in EM only if m is received before time k∆.
Thus Aem2 immediately translates to an algorithm in EM ′ that decides within 4∆
of GFT — in the simulation, a round that has the same properties as round GFR in
EM starts by time GFT+ ∆, and then, the algorithm Aem2 globally decides within
three rounds, where each round is of duration ∆.

We obtain a more interesting model, if we relax the requirement on the local clock,
e.g., consider a model where local clocks do not provide real time, but after GFT,
rates of local clocks are same as the rate of real time. In a recent paper [DGL05],
we show that it is possible to achieve a global decision within a large but constant
multiple of ∆ (from time GFT). Determining a tight bound on the time required
for achieving a global decision in this model remains an open problem. In general,
designing efficient algorithms that can tolerate arbitrary periods of asynchrony, but
decide quickly once some weak synchrony guarantees hold, seems to be a challenging
research topic.

108 Chapter 7. Conclusion

Bibliography

[AT99] M. K. Aguilera and S. Toueg. A simple bivalency proof that t-resilient
consensus requires t + 1 rounds. Information Processing Letters, 71(3-
4):155–158, August 1999.

[AW98] H. Attiya and J. Welch. Distributed Computing. Fundamentals, Simu-
lations, and Advanced Topics. McGraw-Hill, 1998.

[BDFG03a] R. Boichat, P. Dutta, S. Frølund, and R. Guerraoui. Deconstruct-
ing Paxos. Distributed Computing Column of ACM SIGACT News,
34(1):47–67, March 2003.

[BDFG03b] R. Boichat, P. Dutta, S. Frølund, and R. Guerraoui. Reconstruct-
ing Paxos. Distributed Computing Column of ACM SIGACT News,
34(2):42–57, June 2003.

[CBF04] B. Charron-Bost and F. Le Fessant. Validity conditions in agreement
problems and time complexity. In Proceedings of 30th Conference on
Current Trends in Theory and Practice of Computer Science (SOFSEM
2004), number 2932 in Lecture Notes in Computer Science, pages 196–
207. Springer-Verlag, January 2004.

[CBS04] B. Charron-Bost and A. Schiper. Uniform consensus harder than con-
sensus. Journal of Algorithms, 51(1):15–37, April 2004.

[CT96] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267, March 1996.

[DDS87] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchrony
needed for distributed consensus. Journal of the ACM, 34(1):77–97,
January 1987.

[DFGP02] P. Dutta, S. Frolund, R. Guerraoui, and B. Pochon. An efficient uni-
versal construction for message-passing systems. In Proceedings of the
16th International Symposium on Distributed Computing (DISC-16),
number 2508 in Lecture Notes in Computer Science, pages 133–147.
Springer-Verlag, October 2002.

109

110 BIBLIOGRAPHY

[DG02a] P. Dutta and R. Guerraoui. Fast indulgent consensus with zero degra-
dation. In Proceedings of the Fourth European Dependable Computing
Conference (EDCC-4), number 2485 in Lecture Notes in Computer
Science, pages 191–208. Springer-Verlag, October 2002.

[DG02b] P. Dutta and R. Guerraoui. The inherent price of indulgence. In
Proceedings of the 21st ACM Symposium on Principles of Distributed
Computing (PODC-21), pages 88–97, July 2002. To appear in Dis-
tributed Computing.

[DGFHR03] C. Delporte-Gallet, H. Fauconnier, J-M. Hélary, and M. Raynal. Early
stopping in global data computation. IEEE Transactions on Parallel
and Distributed Systems, 14(9):909–921, September 2003.

[DGK04] P. Dutta, R. Guerraoui, and I. Keidar. The overhead of consensus
failure recovery. IC Technical Report 200456, École Polytechnique
Fédérale de Lausanne, June 2004.

[DGL05] P. Dutta, R. Guerraoui, and L. Lamport. How fast can eventual syn-
chrony lead to consensus? In The International Conference on De-
pendable Systems and Networks (DSN), to appear, 2005.

[DGLC04] P. Dutta, R. Guerraoui, R. Levy, and A. Chakraborty. How fast can a
distributed atomic read be? In Proceedings of the 23rd ACM Sympo-
sium on Principles of Distributed Computing (PODC-23), pages 236–
245, July 2004.

[DGP03] P. Dutta, R. Guerraoui, and B. Pochon. Tight bounds on early lo-
cal decisions. In Proceedings of the 17th International Symposium on
Distributed Computing (DISC-17), number 2848 in Lecture Notes in
Computer Science, pages 264–278. Springer-Verlag, October 2003.

[DGP04] P. Dutta, R. Guerraoui, and B. Pochon. Fast non-blocking atomic
commit: An inherent tradeoff. Information Processing Letters (IPL),
91(4):195–200, August 2004.

[DGV04] P. Dutta, R. Guerraoui, and M. Vukolić. The complexity of asyn-
chronous Byzantine consensus. IC Technical Report 200499, École
Polytechnique Fédérale de Lausanne, November 2004.

[DLM82] R. A. DeMillo, N. A. Lynch, and M. Merritt. Cryptographic protocols.
In Proceedings of the 14th ACM Symposium on Theory of Computing
(STOC), pages 383–400, May 1982.

[DLS88] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM, 35(2):288–323, April 1988.

BIBLIOGRAPHY 111

[DM90] C. Dwork and Y. Moses. Knowledge and common knowledge in a
byzantine environment: Crash failures. Information and Computation,
88(2):156–186, October 1990.

[DRS90] D. Dolev, R. Reischuk, and H. R. Strong. Early stopping in byzantine
agreement. Journal of the ACM, 37(4):720–741, October 1990.

[DS83] D. Dolev and H. R. Strong. Authenticated algorithms for byzantine
agreement. SIAM Journal on Computing, 12(4):656–666, November
1983.

[FL82] M. J. Fischer and N. A. Lynch. A lower bound for the time to assure
interactive consistency. Information Processing Letters, 14(4):183–186,
June 1982.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, April 1985.

[Gaf98] E. Gafni. Round-by-round fault detectors: Unifying synchrony and
asynchrony. In Proceedings of the 17th ACM Symposium on Principles
of Distributed Computing (PODC-17), pages 143–152, July 1998.

[GR04] R. Guerraoui and M. Raynal. The information structure of indulgent
consensus. IEEE Transactions on Computers, 53(4):453–466, April
2004.

[Gra78] J. Gray. Notes on database operating systems. In Operating systems;
an advanced course, number 60 in Lecture Notes in Computer Science,
pages 393–481. Springer-Verlag, 1978.

[Gue95] R. Guerraoui. Revisiting the relationship between non blocking atomic
commitment and consensus problems. In Proceedings of the 9th Inter-
national Workshop on Distributed Algorithms (WDAG-9), number 791
in Lecture Notes in Computer Science, pages 87–100. Springer-Verlag,
September 1995.

[Gue00] R. Guerraoui. Indulgent algorithms. In Proceedings of the 19th ACM
Symposium on Principles of Distributed Computing (PODC-19), pages
289–298, July 2000.

[Had83] V. Hadzilacos. Byzantine agreement under restricted types of failures
(not telling the truth is different from telling lies). Technical Report
19-83, Aiken Computation Laboratory, Harvard University, 1983.

[Had87] V. Hadzilacos. On the relationship between the atomic commitment
and consensus problems. In Proceedings 9th International Workshop on
Fault-Tolerant Computing, number 448 in Lecture Notes in Computer
Science, pages 201–208. Springer-Verlag, 1987.

112 BIBLIOGRAPHY

[HR99] M. Hurfin and M. Raynal. A simple and fast asynchronous consen-
sus protocol based on a weak failure detector. Distributed Computing,
12(4):209–223, 1999.

[HT93] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related
problems. In S. Mullender, editor, Distributed Systems, ACM Press
Books, chapter 5, pages 97–146. Addison-Wesley, second edition, 1993.

[KR03] I. Keidar and S. Rajsbaum. A simple proof of the uniform consensus
synchronous lower bound. Information Processing Letters, 85(1):47–52,
January 2003. A preliminary version appeared in Distributed Comput-
ing Column of ACM SIGACT News 32(2):45-63, 2001.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

[Lam89] L. Lamport. The part-time parliament. Technical Report 49, Systems
Research Center, Digital Equipment Corp, Palo Alto, September 1989.
A revised version of the paper also appeared in ACM Transaction on
Computer Systems, 16(2):133-169, May 1998.

[LF82] L. Lamport and M. Fischer. Byzantine generals and transaction com-
mit protocols. Technical Report 62, SRI International, April 1982.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The byzantine generals prob-
lem. ACM Transactions on Programming Languages and Systems,
4(3):382–401, July 1982.

[Lyn96] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[Mer85] M. Merritt. Notes on the dolev-strong lower bound for Byzantine agree-
ment. Unpublished manuscript, 1985.

[MR99] A. Mostefaoui and M. Raynal. Solving consensus using Chandra-
Toueg’s unreliable failure detectors: A general quorum-based ap-
proach. In Proceedings of the 13th International Symposium on Dis-
tributed Computing, number 1693 in Lecture Notes in Computer Sci-
ence, pages 49–63. Springer-Verlag, September 1999.

[MR01] A. Mostefaoui and M. Raynal. Leader-based consensus. Parallel Pro-
cessing Letters, 11(1):95–107, March 2001.

[MR02] Y. Moses and S. Rajsbaum. A layered analysis of consensus. SIAM
Journal on Computing, 31(4):989–1021, 2002.

[MT88] Y. Moses and M. R. Tuttle. Programming simultaneous actions using
common knowledge. Algorithmica, 3:121–169, 1988.

BIBLIOGRAPHY 113

[PR04] P. R. Parvédy and M. Raynal. Optimal early stopping uniform con-
sensus in synchronous systems with process omission failures. In Pro-
ceedings of the sixteenth annual ACM symposium on Parallelism in
algorithms and architectures (SPAA), pages 302–310, May 2004.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27(2):228–234, April 1980.

[Ray02] M. Raynal. Consensus in synchronous systems: A concise guided tour.
In 9th Pacific Rim International Symposium on Dependable Comput-
ing (PRDC 2002), pages 221–228. IEEE Computer Society, December
2002.

[Sch90] F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: a tutorial. ACM Computing Surveys, 22(4):299–
319, December 1990.

[Sch97] A. Schiper. Early consensus in an asynchronous system with a weak
failure detector. Distributed Computing, 10(3):149–157, 1997.

[Ske81] D. Skeen. Nonblocking commit protocols. In ACM SIGMOD Interna-
tional Conference on Management of Data, pages 133–142, April 1981.

114 BIBLIOGRAPHY

Curriculum Vitae

I was born in Bokaro, India. After completing my higher secondary education in
Calcutta, I joined the Indian Institute of Technology, Kanpur (IIT Kanpur), where
I obtained a Bachelor of Technology in Electrical Engineering in 1999. In the same
year, I joined the Graduate School in Computer Science at École Polytechnique
Fédérale de Lausanne (EPFL). In 2000, I started my Ph.D. thesis under the super-
vision of Prof. Rachid Guerraoui in the School of Computer and Communication
Sciences.

115

