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Abstract

This paper presents a novel rotation-invariant image retrieval scheme based on a transformation of
the texture information via a steerable pyramid. First, we fit the distribution of the subband coefficients
using a joint alpha-stable sub-Gaussian model to capture their non-Gaussian behavior. Then, we apply
a normalization process in order to Gaussianize the coefficients. As a result, the feature extraction
step consists of estimating the covariances between the normalized pyramid coefficients. The similarity
between two distinct texture images is measured by minimizing a rotation-invariant version of the
Kullback-Leibler Divergence between their corresponding multivariate Gaussian distributions, where the

minimization is performed over a set of rotation angles.

Index Terms

Statistical image retrieval, rotation-invariant Kullback-Leibler Divergence, steerable model, Fractional

Lower-Order Moments, sub-Gaussian distribution.

I. INTRODUCTION

During the last decades, information is being gathered and stored at an impressive rate on large digital
databases. Examples include multimedia databases containing audio, images and video. The search of
large digital multimedia libraries, unlike the search of conventional text-based digital databases, cannot
be realized by simply searching text annotations. Because of the amount of details in multimedia data, it
is difficult to provide automatic annotation without human support. The design of completely automatic
mechanisms that extract meaning from this data and characterize the information content in a compact
and meaningful way is a challenging task.

Content-based Image Retrieval (CBIR) is a set of techniques for retrieving relevant images from a
database on the basis of automatically-derived features, which accurately specify the information content
of each image. We can distinguish two major tasks, namely Feature Extraction (FE) and Similarity
Measurement (SM). In the FE step, a set of features constituting the so-called image signature is generated
after a pre-processing step (image transformation), to accurately represent the content of a given image.
This set has to be much smaller in size than the original image, while capturing as much as possible of
the image information. During the SM step, a distance function is employed which measures how close
each image in the database is to a query image, by comparing their signatures.

Typical low-level image features, such as color [1], shape [2] and texture [3], are commonly used in

CBIR applications. In this work, we focus on the uset@fture informatiorfor image retrieval. Loosely



speaking, the class of images that we commonly &afture imagesncludes images that are spatially
homogeneous and consist of repeated elements, often subject to some randomization in their location,
size, color and orientation. Previously developed texture extraction methods include multi-orientation
filter-banks and spatial Gabor filters [4]. The basic assumption for these approaches is that the energy
distribution in the frequency domain identifies a texture. These retrieval systems use simple norm-based
distances (e.g. Euclidean distance) on the extracted image signatures, as a similarity measure.

In this work, we consider the tasks of FE and SM in a joint statistical framework. Thus, in our approach,
the FE step becomes a Maximum Likelihood (ML) estimator of the model parameters fitting the given
image data, while the SM step employs a statistical measure of similarity, such as the Kullback-Leibler
Divergence (KLD) [5], between probability density functions having different model parameters. In this
setting, optimal retrieval is asymptotically achieved. Using this statistical approach, a simple extension
of the energy-based methods for texture retrieval is to model each texture by the marginal densities of
the transform coefficients. This is motivated by the results of recent physiological research on human
texture perception, which suggest that two homogeneous textures are often difficult to discriminate if
they produce similar marginal distributions of responses from a filter-bank [6].

The development of retrieval models in a transform-domain is based on the observation that often
a linear, invertible transform restructures the image, resulting in a set of transform coefficients whose
structure is simpler to model. Real-world images are characterized by a set of “features”, such as textures,
edges, ridges and lines. For such images, the 2-dimensional (2-D) wavelet transform has been shown to
be a powerful modeling tool, providing a natural arrangement of the wavelet coefficients into multiscale
and oriented subbands representing the horizontal, vertical and diagonal edges [7]. Texture information
is modeled using the first or second order statistics of the coefficients obtained via a Gabor wavelet
transform [8], or an overcomplete wavelet decomposition constituting a tight frame [9].

On the other hand, considering a statistical framework, texture is modeled by joint probability den-
sities of wavelet subband coefficients. Until recently, wavelet coefficients have been modeled either as
independent Gaussian variables or as jointly Gaussian vectors [10]. However, it has been pointed out
that the wavelet transforms of real-world images tend to be sparse, resulting in a large number of small
coefficients and a small number of large coefficients [11]. This property is in conflict with the Gaussian
assumption, giving rise to peaky and heavy-taitemh-Gaussiarmarginal distributions of the wavelet
subband coefficients [11], [12].

Experimental results have proven that generalized Gaussian dens{GD) is a suitable member of

the class of non-Gaussian distributions for modeling the marginal behavior of the wavelet coefficients [11],



[13]. Computationally tractable image retrieval mechanisms based on a combination of overcomplete
wavelet-based texture and color features are described in [14], where the similarity measure between
the GGD models is based on the Bhattacharrya distance. Recently, the GGD models have been also
introduced in a statistical framework for texture retrieval in CBIR applications, by jointly considering the
two problems of FE and SM [15].

In recent work, we showed that successful image processing algorithms can achieve both superior
noise reduction and feature preservation if they take into consideration the actual heavy-tailed behavior
of the signal and noise densities [16], [17]. We demonstrated that successful modeling of subband
decompositions of many texture images is achieved by mearsyrometric alpha-stabl¢S«.S) dis-
tributions [18], [19], which very often provide a better fit of the non-Gaussian heavy-tailed distributions,
than the generalized Gaussian distribution (GGD), thus motivating their use in our CBIR model. After
extracting theSa.S model parameters, we analytically derived the KLD between $ad' distributions.

Our formulation improved the retrieval performance, resulting in a decreased probability error rate for
images with distinct non-Gaussian statistics [20], compared with the GGD model.

However, the majority of current approaches does not take into account the important interdependencies
between different subbands of a given image, which can be employed in order to provide a more accurate
representation of the texture image profile. Huang studied the correlation properties of wavelet transform
coefficients at different subbands and resolution levels, applying these properties on an image coding
scheme based on neural networks [21]. Portilla and Simoncelli developed an algorithm for synthesizing
texture images by setting different constraints on the correlation between the transform coefficients and
their magnitudes [22].

The theory of Markov random fields has enabled a new generation of statistical texture models, in
which the full model is characterized by statistical interactions within local neighborhoods [23]. Recently,

a new framework for statistical signal processing based on wavelet-domain hidden Markov models has
been proposed [24], [25]. It provides an attractive modeling of both the non-Gaussian statistics and the
property of persistence across scales in a wavelet decomposition.

In this paper, we proceed by grouping the wavelet subband coefficients and considering them as samples
of a multivariatesub-Gaussiamandom process, which is characterized by the assodiaetibnal lower-
order statistics Within the framework of sub-Gaussian processes, we use the notamvaifiationinstead
of the second-order covariance, in order to extract possible interdependencies between wavelet coefficients
at different image orientations and scales. The joint sub-Gaussian modeling preserves the heavy-tailed

behavior of the marginal distributions, as well as the strong statistical dependence across orientations and



scales.

A desirable property in a CBIR system is rotation invariance. This is a topic that has been previously
pursued by various researchers. Greensgiaal. [26] and Haley and Manjunath [27], [28] employed
rotation-invariant structural features, using autocorrelation and DFT magnitudes, obtained via multireso-
lution Gabor filtering. Recently, a rotation-invariant image retrieval system based on steerable pyramids
was proposed by Beferull-Lozaret al. [29]. In this system, the correlation matrices between several
basic orientation subbands at each level of a wavelet pyramid are chosen as the energy-based texture
features. Mao and Jain [30] presented a multiresolution simultaneous autoregressive (MR-SAR) model
where a multivariate rotation-invariant SAR (RISAR) model is introduced, which is based on the circular
autoregressive (CAR) model.

A second category of methods achieving rotation invariance includes the implementation of a Hidden
Markov Model (HMM) on the subband coefficients of the transformed image. Do and Vetterli [25] derived
a steerable rotation-invariant statistical model by enhancing a recently introduced technique on wavelet-
domain HMM [24]. Liu and Picard [31] exploited the effectiveness of 2ARB Wold decomposition of
homogeneous random fields, in order to extract features that represent perceptual properties described as
“periodicity”, “directionality” and “randomness”.

The above mentioned rotation-invariant CBIR techniques can be classified in two classes. The first
class includes techniques where the FE step consists of computing rotation-invariant texture features,
while the SM step consists of applying a common similarity function, such as the Euclidean distance and
the KLD. The second class includes techniques where the FE step consists of estimating the parameters
of a so-calledsteerable modeand then applying a rotation-invariant version of a common similarity
function (e.g. KLD), during the SM step.

In this paper, we describe a novel technique belonging to the second class. First, we design a new
steerable model, which is based on the joint sub-Gaussian modeling of the coefficiensdeefable
pyramid incorporating dependence across orientations and scales. Then, we apply a Gaussianization
procedure on the steerable pyramid coefficients, by jointly considering them as samples of a multivariate
sub-Gaussian distribution, viewed as a special case of a Gaussian Scale Mixture (GSM). After the
Gaussianization step, we derive an analytical expression for a rotation-invariant version of the KLD
between multivariate Gaussian densities (including the rotation angle between textures), avoiding the
use of a computationally heavy Monte-Carlo method, usually employed to approximate the KLD in the
non-Gaussian case [25].

Our system has several advantages with respect to the HMM-based methods. First, HMMs require



the use of an Expectation-Maximization (EM) algorithm, which in some cases may not converge, for
the estimation of the model parameters (hidden state variables and statistics of a Gaussian mixture).
On the other hand, our proposed method incorporates dependence across space, orientations and scales,
combined in an efficient way of estimating the multipliers of the multivariate sub-Gaussian model, which

are necessary to perform the Gaussianization. Besides, by exploiting the statistical dependencies between
subbands at adjacent scales, we insert the same first-order Markovian dependence as in HMMs, but in a
simpler way. Also, for the heavy-tailed modeling, we #&eS distributions, which are often better than

GGDs.

The rest of the paper is organized as follows: in section II, we briefly review the probabilistic setting
for a CBIR problem. In section Ill, we justify the choice of the multivariate sub-Gaussian model for the
joint modeling of the wavelet coefficients. In section IV, we develop a rotation-invariant CBIR system by
applying a Gaussianization procedure on the coefficients of a steerable pyramid. In section V, we apply
our scheme to a set of textures and evaluate the retrieval performance. Finally, in section VI, we provide

conclusions and directions for future research.

II. STATISTICAL CBIR

Let F denote the feature space afd = {#1,...,Zn|Z; € F, i =1,...,N} be a set ofN
independent feature vectors associated to a query. Als§,def{1, ..., K} be the set of class indicators
associated with the image classes in the database. Denote the probability density function (PDF) of the
query feature vector space by(z) and the PDF of class € S by p;(Z). The design of a retrieval
system in a probabilistic framework, consists of finding an appropriate gnagF — S. These maps
constitute the set of similarity functions.

The goal of a probabilistic CBIR system is th@nimization of the probability of retrieval errothat
is, the probabilityP(g()?) # s). Hence, if we provide the system with a set of feature vecdmrawn
from classs, we want to minimize the probability that the system will return images from a gl(a?§$
different froms. It can be shown [32] that the optimal similarity function, that is, the one minimizing

P(g()?) # s), is the Bayes or maximum a-posteriory (MAP) classifier
g"(X) = argmax P(s = i| X)
= argmax p(X|s = i)P(s = i), @)

wherep()?\s = i) is the likelihood for thei-th class andP(s = i) its prior probability. Under the



assumption that all classes are a-priori equally likely, the MAP classifier reduces to the ML classifier:

9" (X) = argmaxp(X|s = 1)

N
iid. 1 S .
= argmax - E 1 log p(Z|s = 1) . 2
]:

When the numbelV of feature vectors is large, application of the Weak Law of Large Numbers [33] to
(2) results in the following equation:
(fﬁ) a4z
pi(7)
D(pqllp:)

where D(p,||p;) denotes the&ullback-Leibler divergencer relative entropybetween the two densities,
Pq(-) @andp;(-).

The problem of retrieving the top/ images similar to a given query image, can be formulated as a

3)

multiple hypothesis problenThe query imagé, is represented by a feature data Sét= {z1,...,2N},
obtained after a transformation step, and each image in the datdpése; 1,...,C), is assigned with a
hypothesisH;. Therefore, the problem of retrieving the tdp images consists of selecting thé images
in the database that are closer in terms of best hypotheses to thel dztthe given query image.

Under the assumption that all hypotheses are a-priori equally likely, the optimum rule resulting in the
minimum probability of retrieval error, is to select the hypotheses with the highest likelihoods among

the C'. Thus, the topM matches correspond to the hypothesesH;, , H; , H;,, for which

A computationally efficient implementation of this setting is to adogtasametricapproach. Then,
each conditional PDFy(X|H;) is modeled by a member of a family of PDFs, denotedpb¥ ; 6;),
where@; is a set of model parameters to be specified. In this framework, the extracted signature for the
image I; is the estimated model parameté;, computed in the FE step. Then, implementation of (3)
gives the optimal rule for retrieving the tajd similar images to the given query imadg
1. Compute the KLDs between the query dengify ; 0,) and the density(X; 0;) associated with
imagel; in the databaseyi =1,...,C:

p(x;0,)
p(x; 6;)

2. Retrieve theM images corresponding to the smallest values of the KLD.

D(p(X;6,)|lp(X;6:)) = / p(; 6,) log dz . (4)



The KLD in (4) can be computed using consistent estimaégrand 6;, for the model parameters. The

ML estimator is a consistent estimator [5] and for the query image it gives:

~

0,=arg mgxlogp()f; 0) . (5)

We can also apply ahain rule[33], in order to combine the KLDs from multiple data sets. This rule
states that the KLD between two joint PDRs,X,Y) and ¢(X,Y), where X, Y are assumed to be

independent data sets, is given by

D(p(X.Y)|a(X,Y)) = D(p(X)||a(X)) + D(p(Y)lla(Y)). (6)

Ill. STATISTICAL MODELING OF WAVELET SUBBAND COEFFICIENTS VIAJOINT SUB-GAUSSIAN

DISTRIBUTIONS

In this section, we introduce the family of multivariate sub-Gaussian distributions justifying this choice

in terms of an accurate approximation of the marginal and joint densities of the transform coefficients.

A. The family of multivariate sub-Gaussian distributions

We first give the definition for the family of univariate symmetric alpha-stableS) distributions,
before introducing the family of multivariate sub-Gaussian distributions. &8 distribution is best

defined by its characteristic function [34]:

P(t) = exp(2t — v |t|*), (7)

where « is the characteristic exponentaking valuesd < o« < 2, § (—oo < § < o0) is the location
parameter and~y (y > 0) is the dispersionof the distribution. The characteristic exponent is a shape
parameter, which controls the “thickness” of the tails of the density function. The smaller, ttiee
heavier the tails of the&8a.S density function. The dispersion parameter determines the spread of the
distribution around its location parameter, similar to the variance of the Gaussi&a.SAdistribution
is calledstandardif 6 = 0 and~ = 1. The notationX ~ f,(v, §) means that the random variahle
follows a Sa.S distribution with parameters, ~, §.

In general, no closed-form expressions exist for m&stS density and distribution functions. Two
important special cases ¢faS densities with closed-form expressions are the Gaussia& ) and
the Cauchy ¢ = 1). Unlike the Gaussian density which has exponential tails, stable densities have tails

following an algebraic rate of decay’(X > x) ~ Cz™%, as x — oo, Where(C' is a constant depending



on the model parameters), hence random variables followin§ distributions with smalkx values are
highly impulsive.

An important characteristic of non-Gaussidn.S distributions is the non-existence of second-order
moments. Instead, all moments of orgdess tham do exist and are called tHeractional Lower Order
Moments(FLOM’s). In particular, the FLOM’s of a&Sa.S random variableX ~ f, (v, 6 = 0), are given
by [18]:

E{|X[P} = (C(p,a)-7)", 0<p<a, (8)

where
, 2UTR)r(-8)  ra-p
R ) B T ©

The SaS model parameter$a,y) can be estimated using the consistent Maximum Likelihood (ML)
method described by Nolan [35], which gives reliable estimates and provides the tightest possible
confidence intervals.

Extending theS«.S model to heavy-tailed random vectors leads torthétivariate sub-Gaussia§a.S
distributiont [18].

Definition 1 Any vectorX distributed asX = A'/2 G, whereA is a positive-stable random variable
and G = (G1,Gao,...,G,) is a zero-mean Gaussian random vector, independent, afith covariance

matrix R, is called a sub-GaussiaS«.S random vector (inR™) with underlying Gaussian vectdr.

A multivariate sub-Gaussian distribution, with underlying covariance ma&rixs often denoted by
a-SGR). In this work, the transform coefficients at different subbands are tied up in vectors and are
assumed to be samples of @85G (R) distribution, which can be viewed as a variance mixture of Gaussian
processes [36].

It is important to note that covariances do not exist for the familySefS random variables, due
to the lack of finite variance. Instead, we measure correlation between transform coefficients using a
guantity calledcovariation [18], which plays an analogous role féta.S random variables to the one
played by covariance for Gaussian random variablesX.endY" be jointly S«.S random variables with

1 < a < 2, zero location parameters and dispersiorsand vy respectively. Then, for all < p < a,

!In the following, instead of saying sub-GaussiéinS variable / vector / distribution, we simply use the term sub-Gaussian
variable / vector / distribution.



the covariation ofX with Y is given by
E{XYy<r-1>} _
E Y p PYY’
{IY[r}
where for any real number anda > 0 we use the notation

(X, Y]a = (10)

z%, z>0

The covariation coefficientf X with Y, is defined by

[X,Y]e  E{XYy<r-l>}
MYl E{Y]}
Note the asymmetric nature of the covariation and the covariation coefficient, as opposed to the usual

AXy (11)

second-order moments.
Consider the sub-Gaussian random vecfor= A'/2 G, whereG = (G1, Gy, ..., G,) the underlying
Gaussian vector with covariance matRxThen, the covariations between the componenﬂﬁ,dei, Xjla

i,j =1,...,n, are given by [18]:

(x=2)

Cij = [Xi, Xjla = 275 [R]ij [R]jj2 . (12)

Note thatc;; = c;; only if [R];; = [R];;. During the FE step, it is necessary to estimate the covariations
from the transform coefficients of the images. In the next section, we describe how this estimation is

performed.

B. Estimation of covariations

By applying (8) onY we have

_(B(Y PN
y = T o) (13)

Let the vectors{X', X2, ..., XN} constitute a set ofV independent realizations of anSGR)
distribution, whereX* = (X% X% ... X¥), k=1,...,N. Now, observe that we can find an estimation
of [X,Y], by multiplying an estimated value ofyy and the ML estimation ofyy-. The value of\xy
is estimated via th&ractional Lower Order Moment (FLOM) Estimat¢87], which is very simple and
computationally efficient, in addition to being unbiased and consistent. For two jdiatly random
variablesX,Y with « > 1, and a set ofndependenbbservationy X, Y1),...,(Xy,Y,), the FLOM

estimator is defined as follows:

S XY sign(h)
> YilP

(14)
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Thus, the covariation estimator between the components of a sub-GaussianXestgiven by:
Soay X XL sign(XF)
N =
Spe | XFIP
where the dispersiony, can be estimated using the ML estimator, described in [35].

FLOM _

V%, (15)

We define thecovariation matrixC, the matrix having as elements the covariations. Then, the estimated

covariation matrixC, is the matrix with elementiC ];; = ¢/;*°™. Once these covariations are estimated

from the data, we can estimate the eleméRis; of the underlying covariance matriR., using (12):

~

[Rlj; = (2% [Cly),  [Rliy =2%

Qv

(16)

which are consistent and asymptotically normal, that is, the distribution of the above estimators tends to
a normal distribution, as the number of observatidhgends to infinity.

Notice that the estimation of covariations and consequently the estimation of the covariation matrices,
requires the specification of the parameie¥e compute the optimal as a function of the characteristic
exponeniy, by finding the value of) that minimizes the standard deviation of the estimator, for different
values ofa > 1. For this purpose, we studied the influence of the parametar the performance of
the covariation estimator given by (15) via Monte-Carlo simulations.

We generated two redlla.S (1 < o < 2) random variablesX = a U + b0V, Y = axU + bV, where
U andV are independent, standa$d.S random variables anf;, b;, i = 1,2} are real coefficients. The
true covariation ofX with Y is [X, Y], = a1a5*" "> +b1b5*'>. We generatedV = 5000 independent
samples ofU and V' and calculated the covariation estimator by means of (15) for different values of
p in the range(0,2]. We ran K = 1000 Monte-Carlo simulations for different values af € (1, 2].

We randomly selected, without loss of generality, the coefficient values to be equaH®.32, ay =
—2.45, by = —1.7, by = 0.44. Fig. 1 displays the standard deviation of the estimafdf“ (p) as a
function of the parameter and for different values ofv.

Table | shows results on the performance of the estimator. We include the mean of the estimator, the
standard deviation in parentheses and the valyefof which the smallest standard deviation is achieved
by the estimator. We also note that we obtained similar experimental results for different values of the
coefficients{a;, b;, i =1, 2}.

In our proposed CBIR system, we need to estimate the covariations between the components of the sub-
Gaussian vectors, which are special caseS@$% random variables. We repeated the above Monte-Carlo
simulations using two sub-Gaussian random variabtes; A/2Gx,Y = A'/2Gy. By definition, X and

Y can be viewed aS«.S random variables with dispersion, and~y, respectively. We generate a sample
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of a sub-Gaussian random variable by first generating a sarhgi@wn from as,, /((cos %)2/0, 1,0)
distribution and then by generating a sampledrawn from a zero-mean Gaussian distribution with
variance2v?, which is viewed as #>(v, 0, 0) variable (withy = yx or v = 7y depending on whether
the Gaussian part corresponds to the variabl€ or Y, respectively).

Fig. 2 displays the curves representing the standard deviation df Kli&\/ covariation estimator as a
function of p, for two values ofa and 25 pairs of dispersiongyx, vy ), with the dispersions ranging in
the interval(0, 3.5), which corresponds to the dispersions estimated from the wavelet subbands of some
selected images used in our experiments (obtained from the USC, SIPI datalbabey. 7).

For eacha, we observe that all the curves are minimized in a common interval op-theés, and
actually the optimal values fgr are close to each other. We repeated the procedure forl : 0.05 : 2
and for a giverny;, we defined the optimal; as the mean of the optimalvalues of its correspondingp
curves, corresponding to ti¥ pairs of dispersions. In section V, we use the values, shown in Table II,
for the optimalp as a function ofx. This table is used as a lookup table in order to find the optjmnal

for every1 < o < 2 by linearly interpolating these values.

C. Joint sub-Gaussian modeling of wavelet coefficients

In this section, we justify the selection of the family of sub-Gaussian distributions as a statistical
modeling tool for the wavelet coefficients of texture images and, as an example, we show results on
modeling data obtained by applying standard 2-D, orthogonal, discrete wavelet transform (DWT) on real
texture images. Similar results are obtained when using other types of wavelet transforms, such as a
steerable wavelet transform, which is more convenient to achieve rotation invariance.

The 2-D orthogonal DWT expands an image using a certain basis, whose elements are scaled and
translated versions of a single prototype filter. In particular, the DWT decomposes images in dyadic
scales, providing at each resolution level one low-pass subband approximation and three spatially oriented
wavelet subbands. There are interesting properties of the wavelet transform [7] that justify its use in
CBIR systemslLocality (image content is localized in both space and frequemayjtiresolution(image
is decomposed at a nested set of dyadic scales)edge detectiorfwavelet filters operate as local edge
detectors). Because of these properties, the wavelet transforms of real-world images tend to be sparse,
resulting in a large number of small magnitude coefficients and a small number of large magnitude

coefficients. In our modeling, we employ all the subbands except the low-pass residual, since it does

2http:/Isipi.usc.edu/services/database
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not present this sparsity behavior, but an average of the original image. Importantly, this property is
in conflict with the Gaussian assumption, giving rise to peaky and heavy-tadedsaussiarmarginal
distributions of the wavelet subband coefficients, which leads us to use joint sub-Gaussian distributions.

In our proposed retrieval scheme, we proceed by using a statistical model that captures both wavelet
subband marginal distributions and inter-subband correlations. Various experimental results have shown
the importance of the cross-correlation of each subband with other orientations at the same decomposition
level in characterizing the texture information [38].

Our joint modeling is performed by tying up the wavelet coefficients at the same or adjacent spatial
locations, levels and subbands, to form a sub-Gaussian vector. This modeling of the subband coefficients
preserves the heavy-tailed behavior of their marginal distributions. Notice that the components of a sub-
Gaussian vector are highly dependent, as illustrated in [18], and this makes the joint sub-Gaussian model
appropriate for capturing the cross-dependencies between different subbands, since around features, such
as edges and lines, the wavelet coefficients at all subbands are dependent in the sense that they have high
probability of being significant.

Next, we assess the effectiveness af@S density function for the approximation of the empirical
density of the subband coefficients, near the mode and on the tails. In our data modeling, the statistical
fitting proceeds in two steps: first, we assess whether the data deviate from the normal distribution and
we determine if they have heavy tails by employing normal probability plots [39]. Then, we check if
the data is in the stable domain of attraction by estimating the characteristic expodé@sttly from
the data and by providing the related confidence intervals. As a further stability diagnostics, we employ
the amplitude probability density (APD) curvéB(|X| > x)) that give a good indication of whether the
SaS fit matches the data near the mode and on the tails of the distribution.

Fig. 3 compares th&'«.S and GGD fits for a selected subband of a certain image. ClearlyS e
density is superior to the GGD, following more closely both the mode and the tail of the empirical APD,
than the exponentially decaying GGD. Table Il shows the ML estimates of the characteristic exponent
together with the correspondirgy% confidence intervals, for a set o6 textures (real-worldh12 x 512
natural scene images) obtained from the MIT Vision Texture (VisTex) database, decompa@dedsls
using Daubechiesi ('db4’) filters [40]. It can be observed that the confidence intervals depend on the
decomposition level. In particular, they become wider as the level increases since the number of samples
used for estimating th8a.S parameters gets smaller because of the subsampling that takes place between
scales. This table also demonstrates that the coefficients of different subbands and decomposition levels

exhibit various degrees of non-Gaussianity, with valuea @arying betweer.9 (close to Cauchy) and
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2 (close to Gaussian).

IV. ROTATION-INVARIANT CBIR WITH GAUSSIANIZED STEERABLE PYRAMIDS

The property of rotation invariance is very desirable in a texture retrieval system. An important problem
with the standard wavelet transform is that it lacks the translation and rotation invariant properties. This
results in a mismatch of the retrieval process when the image orientation varies. In fact, the wavelet
coefficients of the rotated image will be completely different, in the sense that they will not be simply
rotated versions of the wavelet coefficients of its original version.

A way to overcome this problem is to replace the standard wavelet transform with a steerable pyra-
mid [41], [42], which is a linear multi-scale, multi-orientation image decomposition produced by a set
of orientation filters, generated by a set of basis functions (directional derivative operators). Steerable
pyramids are overcomplete and possess the desired properties of rotation invariance and (approximate)
translation invariance.

In this section, we design a rotation-invariant CBIR technique, which is based on the joint sub-Gaussian
modeling of a steerable pyramid coefficients, incorporating dependence across space, angles and scales.
In particular, we construct a steerable model, relating the fractional lower-order statistics of a rotated
image with that of its original version, and then apply a Gaussianization process on the steerable model
by employing the local statistical behavior of the coefficients, which are grouped into appropriate spatial
neighborhoods. The similarity measurement between two images is performed by deriving a rotation-

invariant similarity function, which effectively performs angular alignment between the images.

A. Steerability of the pyramid subband coefficients

In the case of a database containing images along with rotated versions of them, we are interested in
finding features which are as “steerable” as possible, that is, given the features of an image oriented at
an anglep, we should be able to obtain the features corresponding to the same image rotated at an angle
6, without having to re-extract the features from the rotated irhage

Let ¢!(xz, ¢) represent the value of a transform coefficient at a spatial locatjotk = 1,...,N),
orientation¢ and levell (I =1,...,L). In a steerable pyramid withi basicorientations (subbands), at

each levell, given theJ basic coefficientsX! = [c!(zk, ¢1), ¢ (zk, B2), ..., ¢ (xx, ¢.5)]T, the transform

3Through the next sections, we consider counter-clockwise rotation.
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coefficientc! (x, ¢) for any angleg is given by [29]:

xku Zfz $k7¢l V(Zsa I = 17"'7L (17)

where{ fi(¢), f2(®), ..., f1(¢)} is the set ofJ steering functions.
Let 3! andzle denote the sampled correlation matrices, with elements given by the correlations between
pairs of subbands (at a given decomposition Idyeaif the original imagel and its rotated versiolfy,

respectively. The following proposition [29] establishes the relation beti®‘eand 259.
Proposition 1 ([29]) The matriceszle and X! are related as follows:
= = F(O)='FT(0), (18)

where

[ F(e1—0) falpr—0) - Fi(61—0) |

F(0) = f1(¢2.—9) f2(¢2.—9) fJ(¢2.—9) | (19)

| fi(@s = 0) fads—0) - filds—0) |
Proof: The proof of Proposition 1 follows easily by direct computation and making use of the

properties of the steering functiodg;(0)}. [ |

It can be easily shown that the above proposition holds'ifand =}, are the covariance matrices, with

elements the covariances between pairs of subbands &thhdecomposition level of the imagdsand

Iy, respectively.

In our work, theJ basic angles are taken to be equispaced, which mBk&san orthogonal matrix
for any 0, i.e., F1(0) = F~1(9) (= F(—0)), and thus, in this cas&;’ and X! become orthogonally
equivalent.

Under a joint sub-Gaussian assumption, the coefficients of the J basic orientations (subbands) at a
given level! are modeled as joint sub-Gaussian vecterSGR'), with R! denoting the underlying
covariance matrix corresponding to the subbands attthkevel. In particular, the elements B are the
covariances between the components of the Gaussian(aket R/, denote the underlying covariance
matrix corresponding to théth level subbands of the rotated ima@e Then, it is straightforward to
verify that Proposition 1 holds by replacirig, and ! with R}, and R/, respectively.

The pyramid coefficients at a given subband are assumed to follow a sub-Gaussian marginal distribution.

So, the coefficients corresponding to the basic orientatioat levell can be expressed as:

Cl(xka¢i) = \/chG(xk’gbi)’ L= 17""Ja (20)
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where clc(mk,qﬁi) is the Gaussian part of the-SGR!) vector. From (17), the transform coefficient at

level [, at any anglep is:
J

H(xg, ¢) = Z £i(@) (VA iz, ¢0))

=1
J
= VA fi(d)co(r, di) = VAcg (k. 6). (21)
=1

Notice that (21) shows that the pyramid subband coefficients of a rotated image at ap,carglalso
sub-Gaussian random variables with the same characteristic exponent as that one of the corresponding
subbands of the original (non-rotated) image, and with a Gaussian part which is the rotated version of
the original Gaussian part at the same angld herefore, it can be seen that if one is able to estimate
accurately the multiplies/A, it would be possible to normalize the coefficientéz;, ¢) dividing them
by /A, and work with the Gaussianized coefficienfs(xy, #). This is convenient because, as it will
become clearer later, it is easier to use appropriate and simple (analytical) similarity functions with the
Gaussianized coefficients.

In order to accurately estimate the multipli¢r we consider dependence across orientations, scales and
space, which results in an improved statistical model for natural images. We achieve this by defining an
appropriate neighborhood for each coefficient, which is then modeled as a sub-Gaussian random vector.
This joint sub-Gaussian modeling is followed by a Gaussianization procedure, which results in a steerable
pyramid whose coefficients are jointly Gaussian (Gaussianized steerable pyramid).

There are several reasons that justify the Gaussianization step:

a) the normalized transform domain can be well modeled statistically, using only second-order co-

variances between pairs of subbands,

b) the similarity measurement can be performed using an analytical expression for the KLD between

two multivariate Gaussian distributions, avoiding computationally complex methods, such as the
Monte-Carlo method,

¢) the normalized pyramid allows to perform easily steerability in the feature space.

B. Variance-adaptive local modeling using multivariate sub-Gaussian distributions

The dependencies between the coefficients forming a certain neighborhood, including in general coef-
ficients located at a small spatial region and at different orientations and scales, can be modeled using

a homogeneous random field with a spatially changing variance. This requirement can be realized by
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modulating the vector of coefficients constituting the neighborhood (node of the field) with a hidden

scaling random variable (multiplier), as follows:

X<vaag (22)

whereG is a zero-mean Gaussian random vector dnd positive scalar variable independent(f)f(i
denotes equality in distribution). A vectdr that can be written like this, is said to follow a Gaussian Scale
Mixture (GSM) distribution [43]. Notice that when the multiplier is drawn from aS«a.S distribution,
this is exactly the case of a multivariatesub-Gaussian model.

Two basic assumptions are made in order to reduce the dimensionality of these models: (i) the proba-
bility structure is definedocally. In particular, the probability density of a coefficient when conditioned
on the rest of neighbors, is independent of the coefficients outside the neighborhood, (ii) all such
neighborhoods obey the same distributigpdtial homogenei}y

The construction of a global probabilistic model for images, based on these local descriptions, needs
the specification of aeighborhood structurdor each subband coefficient, and thistribution of the
multipliers which we have already specified that it is a member of the family@$ distributions. We
extract the interdependencies between coefficients at different orientations, levels and spatial positions,
by utilizing their joint a-sub-Gaussian statistics: Lét,i’ denote a generi@-dimensional neighborhood
of the coefficientc! (z, ¢;) at the spatial positiom;, (k = 1,..., K), orientationg; (i = 1,...,.J) and

level I (I =1,...,L). This neighborhood is supposed to be drawn ohaBGR') random vector.

C. Gaussianization of the multivariate sub-Gaussian model

An important property of a GSM model is that the probability density éf-dimensional GSM vector
X is Gaussian when conditioned eh Combining this property with (22), it is clear that the normalized

vector)?/\/Z follows a joint Gaussian distribution. The probability density X¥fconditioned onA is

given by: . .
= exp(—XT(AR)71X/2)
X|A) = 23
From (23), it can be seen that the ML estimator for the multipHeis
S 1o
At = (24)

where the estimator is explicitly written as a function Xfto emphasize the assumption of locality.

This simplifies the computational procedure for the Gaussianization of the steerable pyramid subband
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coefficients, as we assume that the multipliers associated with different neighborhoods are estimated
independently, even though the neighborhoods are overlapping.

In our implementation, we estimate, as explained in section 1lI-B, the underlying covariance matrix
R, corresponding to the basic orientatign at the /th-level, by employing the neighborhoods of all
coefficients (or a subset of them, which is computationally efficient, at the cost of a reduced estimation
accuracy) at the given orientatioﬁti, k=1,...,N). This procedure has the advantage of resulting in a
computationally efficient way to estimate the hidden multipieand normalize the subband coefficients.
Also, our technique avoids the use of a Gaussian Mixture Model (GMM), as in other approaches [25],
which requires complicated Expectation-Maximization algorithms to estimate the multipliers, nested in
a Markovian manner. We must also note that the multipliers in [25] are discrete, whereas in our model
they vary in a continuous fashion.

Summarizing, the steps of our Gaussianization method are:

1. Decompose the given image infolevels and.J orientations per level, via a steerable pyramid.

2. For each decomposition levell =1,..., L:

For each orientation;, : = 1, ..., J, at thel-th level:
i) Estimate the covariance matrR’ using (16).
i) For each coefficient! (zy, ¢;), k =1,...,K:
« Construct the corresponding neighborha®§’.
« Estimate the multiplierd:’(X}:") using (24).
« Compute the normalized coefficiedttx},, ¢;) = cl(xk,gzﬁi)/\/ATk;i :
From (24), it is obvious that the estimation accuracy for the multiplier depends on the accurate estimation

of the underlying covariance matriR>? and the neighborhood structure.

D. Computation of inter-level covariations

The multiplier estimation, as well as the construction of an image signature which we describe later
on, may require the involvement of coefficients or the computation of covariations between subbands at
different levels. Using the standard pyramid decomposition, we move from leeethe next coarser
level (I+1) by subsampling the output of a low-pass filter. As a result, the subbands @tttheth level
are1/4 in size than those of theth level (since we are dealing with images), which is undesired since
the covariation estimation includes summations between vectors of equal length. Subsampling is good

for compression and for saving memory and complexity when performing the decomposition. However,
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subsampling introduces some aliasing [41], which is not good for extracting features. There are two ways
to avoid this:

a) Instead of subsampling the output of the filters, we can upsample the filters and perform the filtering
without subsampling their outputs. In addition to avoiding aliasing, it allows us also to keep the same
number of coefficients across scales, which favors the computation of covariation matrices across scales.
b) Using Fourier domain filtering, simply by multiplying the DFT of the image with the DFT of the
filter and then taking the inverse DFT to obtain the subband coefficients. We follow the frequency-
domain approach since, although both implementations should give approximately the same values, the
frequency-domain implementation is more exact as it does not suffer from the finite-length constraint
that is imposed on the filters for the convolution.

Besides, the estimation of covariation assumes two jointly sub-Gaussian random variables, i.e., with
equal characteristic exponent values. The values,adstimated from the different orientation subbands
using a steerable pyramid without subsampling, are close to each other but not equal. This problem is
overcome by making use of the asymmetry in the definition of the covariation:

« from (15), we observe that the frgeparameter affects the second variable (as an exponent),

« the intuitive idea is to use the estimated characteristic exponentorresponding to the second

variable (subband) in order to estimate the covariation: for instance, in order to egtimatg, we

first estimatex from Y and then assume that follows a distribution with the same, while in order

to estimate]Y, X], we estimatex from X and then assume that also follows a distribution with

that «. This procedure exploits the differences between the subbands, regarding their distribution.
We also use this approach for the estimation of the covariations between subbandsahédecom-

position level.

E. Neighborhood construction

There is a trade-off between the computational complexity and the neighborhood size. This can be
seen from (24), where the estimated stable multiplier depends on the inverse of the underlying covariance
matrix R. The computational complexity increases as the neighborhood iBiecreases, since the
complexity to estimatd® and to calculate its invers® !, depends on its dimensio® (x P). It is clear
that it is not computationally feasible to construct all possible neighborhoods for each subband coefficient
in order to select the optimal neighborhood, because of the large amount of combinations.

In this section, we examine the performance of our Gaussianization procedure with respect to dif-

ferent neighborhoods, taking also into consideration the computational limitations. For this purpose, we
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implement the Gaussianization process using the neighborhoods shown in Table IV.

For a given subband coefficiedt(z;,, ¢;), the formation of some of the above neighborhoods requires
the inclusion of coefficients at the same spatial location of the subbands but at the next coarser scale.
In order to associate coefficients between adjacent levels, we use the frequency-domain implementation
of the steerable pyramid, without subsampling the output of the filters, as described in section IV-D. In
this case, it results in subbands with equal size at all decomposition levels. Then, the coefficient at the
corresponding spatial location of the next coarser subband is siefply (., ¢;).

We tested the performance of our Gaussianization procedure with respect to the neighborhood structure,
by implementing it on a set df, randomly selected textures of siz&2 x 512 from the Brodatz database
with the following code numberst. 1.1.01, 2. 1.1.04, 3. 1.1.08, 4. 1.2.08, 5. 1.5.04, along with their
rotations at30, 60, 90 and 120 degrees. We applied &level pyramid decomposition witl orientations
per level, thus obtaining a total 800 subbands. After the Gaussianization, at each subband, we calculated
the relative entropy AH) between the histogram (witB56 bins) and the Gaussian PDF fitting the

normalized subband coefficients, as a fraction of the histogram entidpy (

AH_ S blew) log (i) @5)
H =573 hiwy) log(h(zk))’

whereh(zy) is the probability density of the centey, of the k-th bin, as estimated from the histogram,

and g(x) is the corresponding value of the fitting Gaussian PDF with parameters estimated from the
normalized coefficients. The best choice for the neighborhood structure corresponds to the smallest
fraction AH/H.

Fig. 4 displays the histogram of the neighborhood indices (cf. Table 1V), foB@besubbands. The
vertical axis is the relative frequency of each neighborhood shape (horizontal axis), whose selection
resulted in the smallest fraction (25) for the above subbands. For the given set of textures, the choice of
the 10-th neighborhood shape results in the best Gaussianization performance for most of the pyramid
subbands.

Notice that for a given coefficient (x, ¢;), this neighborhood contains coefficients from the same
subband only. Thus, the vectdf used in the estimation of the multipliet (cf. (24)), exploits only
intra-subband dependencies. Gaussianization of pyramid subband coefficients at a given orientation and
level is performed by forming the corresponding vectars, containing their5 x 5 neighborhood at
the same orientation and level. Then, by inserting these vectors in (15) and combining with (16) the
underlying covariance matriR, is estimated for this set of neighborhoods. Finally, for each coefficient

at that subband the corresponding multipligr is estimated by substituting its associated vedfprand
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matrix R in (24).

F. Feature Extraction

After the normalization procedure, the marginal and joint statistics of the coefficients at adjacent spatial
positions, orientations and levels are close to the Gaussian distribution. Then, to extract the features, we
simply compute theJ x J covariance matrix at each decomposition level.

Thus, for a given imagé, decomposed il levels, a possible signatut® is given by the set of the
L covariance matrices:

I—89={xt 2 . =k, (26)

whereX! is the covariance matrix of thieth decomposition level. Due to the symmetric property of the
covariance matrix, the total size of the above signature eqsials(S9) = ‘](‘]T“) - L. The signatures9

contains only the across orientation, second-order dependence at a given decomposition level. Because of
the strong dependence across scales and orientations, we may obtain a better (more complete) signature
by considering in addition the across levels dependence as expressed by the covariance matrices between

consecutive levels. In this case, the signature of an imdaigethe following:

[—8¢={x! . . xbtxi-2  sl-h=ly 27
£ I I I I

I+1)

whereElI_’( denotes the (in generabymmetriy covariance matrix corresponding to the subbands at

levels! and (I +1). In particular, the elemerjEs_’(l“)]zj is equal to the covariance of thigh subband
at levell with the j-th subband at the next lower levgH+ 1). The enhanced signatu@ contains more
texture-specific information than the signatu#é at the cost of an increased computational complexity,

since its size equals
J+1 J+1

size(Sg) = 5 5

(L-1).

Notice that, although neighborhodd, which does not include dependencies across levels, was best
for Gaussianization, regarding the design of a retrieval scheme, the dependence across orientations and

levels is very useful in extracting a more accurate profile of the texture information.

G. Similarity Measurement

In recent work [29], a Gaussian assumption for the marginal and joint distributions of the steerable

pyramid coefficients results in a deterministic rotation-invariant similarity measure, between two images



21

I andQ. If we use the signatur8, this measure takes the following form:

D(I,Q) = min Zuzl SLFT(-0)| +
+ Z HEZ]—)H—I o a)zl—>l+1FT )H (28)
where|| - || denotes any of the common matrix norms (however, a good choice is the Frobenius norm,

which gives an indication of the “matrix amplitude”). If the texture information is represented by the
signatureSY, the similarity function is modified by omitting the second sum, which corresponds to
inter-level dependencies.

In our method, we construct and employ a novel statistical rotation-invariant similarity function. After
the Gaussianization procedure has been applied, we model the distribution of each decomposition level
in the case of using¥, as well as the joint distribution between consecutive levels in the case of using
Sg, using a multivariate Gaussian density (MvGD). The similarity between two images is measured by
employing the KLD between MvGDs. Consider the case in which the texture information of each image
is expressed using the signatuﬁ’g, that is, each decomposition level, as well as each pair of adjacent
decomposition levels, is associated with a covariance matrix.

Given two imaged and@, let I', Q' be the set of orientation subbands at tik decomposition level
and I-*1 QL*1 pe the set of orientation subbands at two adjacent lévetsi! + 1, following zero-
mean MvGDs with covariance matric&, ,, and £ ~"*!, 7", respectively. The KLD between

two corresponding levels is given by [5]:
1 _ _
D'Q) = 5 (tr(Bh(BH) ™ = 1) - [Zh(z) ™). (29)
In the same way, the KLD between two corresponding pairs of adjacent levels is given by:
1 ~ 1y —
D(Il,l+1HQz,l+1) =3 (tr(ElI l+1(ElQ z+1) 1 I)—
In B (G 7). (30)

We define the overall KLD between imagésq to be equal to the following sum:

D(I|Q) = ZD (1'1Qh +ZD (I Q. (31)

In our problem, we deal with image databases WhICh may contain rotated versions of a given image.

Notice that from (18), it follows that:

5, = FO)SHFY(0), S5 = F(0)SL 1 F(9), (32)
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whereElQQ is thel-th level covariance matrix anﬁ‘,gl“ is the covariance matrix between levéland
I+ 1, of a rotated version of imag@ at an angled, Q.

Consider! to be the query image ang = Q4 to be a counter-clockwise rotation, by an angleof
the original image? in the database. In a real application, of course, the valug isfunknown. Thus,
the distance between ttigh levels ofI and@ (I' andQ', respectively) is defined as the minimum KLD
between/! andQ" ¢» Where the minimization is over a set of possible rotati®nand thus, it is necessary
to perform an angular alignment by finding the optiménThe notationy)_y means a clockwise rotation
of image. By noticing thatZlQ_g = F(—Q)EIQFT(—O) and substituting (32) into (29), we obtain that
the KLD between théd-th level of an imagel and a clockwise rotation of imag@ by an angled (I*

and Q' ,, respectively), is given by:
D(IIGLy) = 5 [tr (SHET(O)(SL) 'R (6) ~ 1) -
~ In(=HI(=5) 7). (33)
Similarly, we obtain the KLD between two corresponding pairs of adjacent lelglE;~"+1(|Q';"1),

by replacing the covariance matricgs, EZQ with the covariance matrices, !, 2’5’“, respectively.

Finally, the overall KLD betweerd and () is defined as:
_ L ~ L-1 ~
D(I]|Q) = min (Z D(I'QL) + ) D(IH“HQ’_?’“)> : (34)
=1

=1
which results in the following proposition:

Proposition 2 Let Sg(l) and S?(Q) be the signatures corresponding to the normalized coefficients of
the steerable pyramids for two given homogeneous textueesl (), respectively. The rotation-invariant

KLD between the two textures takes the following form:

D =D(I|Q)
L
=1
L-1
i ;tr(ElFHlFT(Q)(Elglﬂ)—lF(@)) _ J(L — %) _

L L-1
- é [Z (S5 (=) )+ 1n<|z?l“<zg’“>—1|>] :
=1 =1
(35)
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Proof: The proof of Proposition 2 follows by direct computation, after the substitution of (33)

in (34). [ |

If we employ the signatur&? instead ofsg, the derivation of the KLD between two distinct textures
I and(Q) is straightforward by implementing the above proposition, omitting the terms which contain the
covariance matrice®; "', 57" and replacing(L — 3) with 5.

Notice that when/ and ) are two rotated versions of the same image, the aégler which the
minimum is achieved in (35) should be close to the exact relative angle betivaed (), that is, the
angle one needs to rotate clockwidn order to getQ. Thus, a way to evaluate the performance of
the above rotation-invariant KLD, is to verify whether the estimated afgles actually close to the
real relative angle between two physically rotated versions of the same image. Besides, it may also be
useful on its own for many practical applications to find out approximately this relative angle. Fig. 5(b)
illustrates this by showing the functioP(7||@Q)(#) given by (35) for theBark texture sample obtained
from the Brodatz database.

It is also important to note that, in our implementation, the steering functions have only odd harmonics,
which oscillate at some finite speed. Thus, the number of local minima of (35), as a functipoasf be
at most equal to twice the number of independent harmonics (which happens to be equal to the number of
basic harmonics). In addition, the distance between any two consecutive local minima is lower bounded
making it possible to search for them in a few non-overlapping angular intervals [44], which is useful in

order to speed up the search for the optimal amgle

V. EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency of our overall CBIR system and compare it with the
performance of the method presented in [25], which can be considered as a representative for the rotation-
invariant texture retrieval schemes based on wavelet-domain HMMs.

In order to evaluate the retrieval effectiveness of our CBIR system and perform the comparison with the
HMM-based method, we apply the same experimental setup as in [25]. In particular, the image database
consists ofl 3, 512 x 512 Brodatz texture images obtained from USC SIPI database (cf. Fig. 7). Each of
them was physically rotated 80, 60 and 120 degrees, before being digitized. Then, the texture image
dataset is formed by taking non-overlappingl28 x 128 subimages each from the original images at
0, 30, 60 and 120 degrees. Thus, the dataset used in the retrieval experiments carfdiimages that
come from13 texture classes. We implemented-devel steerable pyramid decomposition with= 2

basic orientationsg; = 0, ¢ = 7/2, which means that the steering functions are [42]:
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11(0) = cos(0) . f2(0) = f1 (5 —0) = sin(0)

The histogram of the estimated characteristic exponent values f@0ghtextures is shown in Fig. 6.
We observe that onlg8% of the textures exhibit Gaussian statistics.

In the following illustration, the query is anyone of the non-overlappif§ x 128 subimages in the
dataset. The relevant images for each query are defined as thd bthi#limages from the same original
512 x 512 image. The retrieval performance is evaluated in terms of the percentage of relevant images
among the topl5 retrieved images.

We evaluate the performance of the retrieval scheme, which employs the signsfusesd Sg as
the set of extracted features, containing intra- and inter-scale dependencies and the rotation-invariant
KLD as the similarity measure. We compare the performance of this retrieval scheme with that obtained
by minimizing the Frobenius norm of the differences between the corresponding covariance matrices
([29]) after the Gaussianization procedure, as well as with the performance obtained by minimizing
the corresponding Frobenius norm between sample correlation matrices (Gaussian assumption) without
applying the Gaussianization step. Finally, we also perform a comparison between the retrieval efficiency
of our proposed method and that of the HMM-based retrieval scheme ([25]).

Table V shows the performance, in average percentages of retrieving relevant images in the top
matches, of our CBIR system and of the two methods that employ the Frobenius norm during the SM step
and make a Gaussian and non-Gaussian assumption for the marginal and joint statistics of the pyramid
subband coefficients, respectively.

Comparing the average retrieval rates corresponding to the first two methods of the table, we conclude
that the fractional lower-order statistics provide better approximations of the joint statistics between
coefficients at adjacent orientations and scales, than the second order moments. Of course, both methods
employ the covariance matrices between pairs of subbands, but in the first scheme (Non-Gaussianized
& Frobenius) the sample covariances are estimated using the raw subband coefficients without Gaus-
sianization, while in the second schen®¥ ((or Sgg) & Frobenius) the covariances are estimated after
the implementation of the Gaussianization procedure, which exploits lower-order moments, since the
estimation is based on covariations. The comparison between the retrieval rates of the second and third
methods, verifies the fact that a statistical similarity function (KLD) is preferable than a deterministic
one (Frobenius norm), for the same set of extracted features.

Notice that, as we have already mentioned, the efficiency and the computational cost of the Gaussian-
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ization process strongly depend on the choice of the neighborhood shape. In particular, a neighborhood
with a sufficient number of coefficients from different orientations and scales is required to achieve an
increased Gaussianization performance, resulting in an increased computational complexity. However, the
observation of the retrieval rates in Table V reveals that the rotation-invariant KLD still preserves a high
retrieval performance even when the neighborhood size is small and thus the Gaussianization is not so
accurate, in contrast with the performance of the rotation-invariant Frobenius distance, which decreases
in the case of a small neighborhood such as the one corresponding to the neighborhood Fiuies,

in the case of a CBIR system with limited computational power, we can use a small neighborhood at the
cost of a reduced Gaussianization performance, while at the same time maintaining an increased retrieval
efficiency by employing the rotation-invariant KLD instead of the Frobenius distance. Besides, as we note
in the following section, the computational complexity of the two similarity measures is approximately
the same, supporting the choice of the rotation-invariant KLD as the most appropriate function for the
implementation of the SM step.

As shown in Table V, the use of thié-th neighborhood type combined with the enhanced signature
Sg, results in an improved retrieval performance with respect to the other combinations. This is consistent
with the above analysis, since thé-th neighborhood type results in the best Gaussianization performance
for most of the300 constructed subbands and since the enhanced signature contains more texture-specific
information than thesY signature. We can also observe that by choosing @kié neighborhood type, the
average retrieval rate using the rotation-invariant Frobenius norm (28) is very close to the rate correspond-
ing to the rotation-invariant KLD. This is due to the improved Gaussianization performance, compared
with that corresponding to the first neighborhood type, which results in an increased performance of the
Frobenius norm that is best suited for Gaussian distributions. However, the statistical similarity function
(KLD) remains superior than the deterministic Frobenius norm.

Fig. 8 shows the average percentages of correct retrieval rates for each onel dftélxéure classes,
for our CBIR scheme using the enhanced signaﬁgeand the HMM-based method. It is clear that
the proposed method results in a superior retrieval performance for the majority of the texture classes,
compared with the performance of the HMM-based method. Notice that there are three classes (4, 5
and 9) for which the implementation of the HMM-based method gives a higher retrieval rate, than the
rate corresponding to our method. The reason for this behavior is that these three classes are exactly
those with the greatest portion of characteristic exponent values near or equal to 2. This means that the
Gaussian assumption, made by the HMM-based method, is more appropriate in describing the statistical

dependencies between the subband coefficients.
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A. Computational complexity

In the following, we compare the computational complexity of our CBIR method with the one based on
HMMs [25], as well as the method that makes a Gaussian assumption for the distribution of the subband
coefficients and uses the Frobenius norm as the similarity function [29]. For this purposé,tet/
denote the dimension of the original image, which is decomposed vialawel steerable pyramid with
J basic orientationgwithout subsampling when moving from leveb the next coarser levél+ 1) and
P to be equal to the size of the neighborhood used in the Gaussianization process. In addifon, let
denote the number of matrices contained in the selected signature, which varies depending on whether
we exploit only intra-level dependencies or both intra- and inter-level dependencies.

In particular, our method consists of three main steps, namelye Gaussianization procegs) the
Feature Extraction (FE) and:) the Similarity Measurement (SM), while the other two methods consist
only of the FE and SM steps. Regarding our CBIR scheme, the computational cost of the Gaussianization
step is approximately equal .J [(M?/4)(8P? + P+ 1)+ O(P3)+2P? + P], where the constant in the
O(+) notation is in the order o8 or 4 depending on the size of the signature. The cost of the FE step,
which consists of the direct computation of covariance matrices, is roughly eqdal fd2. Finally, the
similarity measurement is performed by minimizing the rotation-invariant version of the KLD presented
in Proposition 2. As it was mentioned in section IV-G, in the case/ 6t 2 orientations, the number
of local minima in (35) is at most equal tb In our implementation, we divided the, =] interval into
4 non-overlapping sub-intervals of equal length. Due to the high smoothness of the function inside the
man operator, with respect t8, we applied the Newton’s method for the minimization of that function
in each interval, using the middle of the interval as an initial choice. The algorithm converged in at most
5 steps in each interval, while the cost of each step is in the ordér@fJ? + J) where the constant
factor is less thant and its value depends on whether we employ the stand#fjl ¢r the enhanced
(Sgg) signature. Thus, the computational complexity of the SM step is quite low, while the main cost of
our method is due to the Gaussianization step.

Regarding the third method (Gaussian assumption & Frobenius norm), the computational complexity
of the FE step is equal to that of our method, since it also consists of the computation of covariances.
Besides, we applied the Newton’s method for the minimization of (28) during the SM step, resulting
in approximately the same number of operations as the KLD. However, as it was mentioned above, the
choice of the KLD favours an increased retrieval performance even when the selected neighborhood does

not result in a good Gaussianization of the subband coefficients.
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Although the computational complexity of the HMM-based method is difficult to be estimated due to
the iterative algorithms it employs, we try to give a rough approximation of it in order to compare with
our method. The FE step of the HMM-based method consists of estim@ting 1) hidden states using
the Expectation Maximization (EM) algorithm ari@l- L - J) eigenvalues corresponding to the covariance
matrices of the Gaussian densities used in the model. Hlesethe number of wavelet tree levels. The
Expectation step of the EM algorithm is more difficult due to the increased interplay between the states.
Besides, for an HMM, the complexity of each iteration of EM is linear in the number of observations, that
is, the subband coefficients, and this linearity may involve a large multiplicative constant depending on
the number of hidden states and the number of iterations required to converge. Thus, it is quite clear that
the complexity of the EM algorithm is at least as much as that of the Gaussianization step in our method,
while the complexity for estimating the covariance matrices and calculating the corresponding eigenvalues
is almost equal to the cost for estimating only the covariance matrices in our method. Finally, since there
is no closed form expression for the KLD between HMMs, the method presented in [25] employed
Monte-Carlo simulations for computing the integral in the KLD, which, for the same dataset of textures,
consists of about 64 iterations. Instead, the smoothness of the rotation-invariant KLD of our CBIR system

guarantees a much lower computational cost during the SM step, as we mentioned above.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we studied the design of a rotation-invariant CBIR system based on a multivariate
sub-GaussianY«.S) modeling of the coefficients of a steerable wavelet decomposition. We exploited
the variance adaptation of the coefficients in small regions at different orientation subbands and levels,
by applying a Gaussianization procedure. Then, the FE step consists of simply estimating second-order
moments between orientation subbands at the same and at adjacent levels. This process takes also into
account the actual heavy-tailed behavior of the coefficients, represented by the fractional lower-order
statistics (covariations) between pairs of subbands. We achieve rotation invariance by constructing an
appropriate rotation-invariant version of the KLD between zero-mean multivariate Gaussian densities.
The experimental results showed an increased average retrieval performance in comparison with the
performance of previous methods based on second-order statistics estimated directly from the original
subband coefficients, without implementing the Gaussianization. We also conclude that a statistical
similarity function, such as KLD, is preferable than the deterministic Frobenius norm.

Future research directions, which could further result in an improved retrieval system with decreased

probability of retrieval error, are the following: first of all, the main assumption throughout the present
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work was the stationary behavior of texture content. That is, we assumed that the distribution of the
subband coefficients, which is closely related with the texture-specific information, is invariable within
each subband. Instead, we could considetoa-stationaryapproach by permitting éocally adapted
distribution, that is, by spatially adapting the characteristic exponent and the dispersion parameters. This
can also be used in segmentation applications, since the different “objects” contained in a picture can be
viewed as local intensity variations.

Regarding the task of similarity measurement between two distinct images, we weighted the contribu-
tion of inter-level dependencies in the same way as the intra-level ones, resulting in an overall similarity
function that is written as a sum of partial distances. We could further improve the power of the similarity
measure by considering some kind of chain rule for the KLD between two images [5].

In section IV, we evaluated the performance of a Gaussianization procedure applied on the subband
coefficients of a steerable pyramid. For this purpose, we preserved the same neighborhood type across
subbands, for every image in the database. Obviously, it is computationally unfeasible to check the
Gaussianization performance for all possible neighborhood formations. However, we expect an improved
Gaussianization performance and consequently better retrieval performance, by performing some reduced

complexity adaptation of the optimal neighborhood type across subbands and images.
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TABLE |

PERFORMANCE OF THE COVARIATION ESTIMATOR

’ a ‘ "M (p) ‘ True [X, Y], ‘

11| -19158 (p=0.56) -1.916
(0.1397)

1.2 -1.8203 (p=0.57) -1.8254
(0.1390)

13| -1755  (p=0.59) -1.7476
(0.1481)

14| -16814 (p=0.66) -1.6821
(0.1234)

15| -1.6201 (p=0.68) -1.6285
(0.1218)

17| -15533  (p=0.76) -1.5561
(0.1062)

19| -15109 (p=0.91) -1.5288
(0.0886)

2 | 15301  (p=2) 1532
(0.0668)

TABLE I

OPTIMAL p PARAMETER AS A FUNCTION OF THE CHARACTERISTIC EXPONEN®.

@ Optimal p @ Optimal p
1 0.52 1.5 0.69
1.05 0.54 1.55 0.71
1.1 0.56 1.6 0.72
1.15 0.57 1.65 0.74
1.2 0.58 1.7 0.76
1.25 0.59 1.75 0.79
1.3 0.61 1.8 0.81
1.35 0.62 1.85 0.84
1.4 0.64 1.9 0.88
1.45 0.66 1.95 0.93
2 0.8
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TABLE 1lI
SaS MODELING OF WAVELET SUBBAND COEFFICIENTS OF TEXTURE IMAGES FROM THI/ISTEX DATABASE, USING
DAUBECHIES' 4 FILTER AND 3 DECOMPOSITION LEVELS ML PARAMETER ESTIMATES AND95% CONFIDENCE INTERVALS

FOR THE CHARACTERISTIC EXPONENTx.

Image Subbands
IMAGE Horizontal Vertical Diagonal
Level 1
Bark.10 1.601+ 0.061 | 1.684+ 0.058 | 1.681+ 0.057
Brick.1 1.614+ 0.056 | 1.577+ 0.056 | 1.896+ 0.031
Buildings.4 | 1.681+ 0.039 | 1.684+ 0.047 | 1.601+ 0.046
Fabric.0 2.0004+ 0.007 | 1.2704+ 0.053 | 1.322+ 0.055
Fabric.10 | 1.229+4 0.057 | 1.367+ 0.058 | 1.175+ 0.054
Flowers.6 1.76+ 0.041 | 1.701+ 0.044 | 1.986+ 0.025
Food.9 1.626+ 0.061 | 1.339+ 0.055 | 1.386+ 0.056
Grass.1 1.8794+ 0.047 | 1.853+ 0.053 | 1.791+ 0.055
Metal.4 1.320+ 0.057 | 1.228+ 0.054 | 1.402+ 0.059
Stone.3 | 1.591+ 0.054 | 1.688+ 0.049 | 1.746+ 0.050
Level 2
Bark.10 1.855+ 0.097 | 1.858+ 0.110 | 1.850+ 0.107
Brick.1 1.311+ 0.105 | 1.539+ 0.103 | 1.850+ 0.101
Buildings.4 | 0.921+ 0.089 | 1.1864+ 0.119 | 1.151+ 0.098
Fabric.0 2.0004+ 0.006 | 1.1714+ 0.099 | 1.349+ 0.114
Fabric.10 | 1.6774+ 0.120 | 1.611+ 0.115| 1.557+ 0.114
Flowers.6 | 1.334+ 0.097 | 1.424+ 0.100 | 1.900+ 0.057
Food.9 1.990+ 7.7e-8| 1.4654+ 0.107 | 1.750+ 0.101
Grass.1 | 1.921+ 0.073 | 1.858+ 0.099 | 1.990+ 0.073
Metal.4 1.680+ 0.121 | 1.505+ 0.119 | 1.690+ 0.119
Stone.3 | 1.869+ 0.083 | 1.509+ 0.103 | 1.658+ 0.117
Level 3
Bark.10 1.723+ 0.225 | 2.000+ 0.162 | 1.792+ 0.248
Brick.1 1.227+ 0.242 | 1.368+ 0.204 | 1.990+ 0.219
Buildings.4 | 1.220+ 0.201 | 2.000+ 0.109 | 1.014+ 0.181
Fabric.0 2.0004 0.097 | 1.4984+ 0.246 | 1.8744+ 0.167
Fabric.10 | 1.865+ 0.205 | 2.000+ 0.103 | 1.904+ 0.184
Flowers.6 | 1.643+ 0.222 | 1.573+ 0.210 | 1.851+ 0.211
Food.9 2.0004+ 0.005 | 1.6774+ 0.222 | 1.990+ 0.245
Grass.1 | 2.000+ 0.375 | 1.862+ 0.177 | 2.000+ 0.241
Metal.4 1.7874+ 0.217 | 1.888+ 0.145| 1.863+ 0.182
Stone.3 2.000+ 0.096 | 1.2784+ 0.223 | 1.500+ 0.226
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TABLE IV

NEIGHBORHOOD SHAPES USED IN THE MEASUREMENT OF THEAUSSIANIZATION PERFORMANCE

Index Neighborhood Structure Size (P)

for a givenc! (z, ¢;)

1 (L,g): BAU{(L,p)lj=1,....,J, j#i} 10U (l+1,¢:):1 | J+9

2 (1g:): BAU{(Lo)li=1,...,J,5#i}:1 J+8

3 (1, ¢:): (3x3) 9

4 (1, ¢:): 4 (cross shape (c.s.)) 5

5 (i) d (s )u{(l,p)li=1,...,d,j#i}:1U (I+1,¢:): 1 J+5

6 (l,¢:0): 4 (cs)U{({l,p)li=1,....J, 5 #i}: 1 J+4

7 (I, 9i): 4 (s )u{(l,9)li=1,...,J,5#i} 4(cs.) 5(J+1)
U+1,¢:):4(cs.)

8 (1,di): BXBYU {(l, )i =1,...,J,5#i}: LU (@+1,¢:):1 | J+25

9 (Ls): BXBYU {(l,95)l=1,...,J,j#ir 1 J+24

10 (1, ¢:): (5%5) 25

1) (I,4:): X, means that X is the neighborhood at the lelsa@ind orientations;, centered at the coefficient(xzy, ¢;).

2) {(l,p;)lj=1,...,J, 5 # i} Y, means that for each one of the ré¢dt— 1) orientations at level, Y is the neighborhood
centered at the coefficiert(zy, ¢;),1=1,...,J, 5 #i.

3) (141, ¢:): Z, means that Z is the neighborhood at the next lower Ieyéland orientatiorp; centered at the corresponding

spatial location.

TABLE V

AVERAGE RETRIEVAL RATE (%) IN THE TOP 15 MATCHES.

Methods
Neighborhood| Non-Gaussianized S9 S9
Index & & &
Frobenius (28) | Frobenius (28)| KLD (35)
1 85.34 87.11 92.72
Methods
Neighborhood| Non-Gaussianizeg S¢ S¢
Index & & &
Frobenius (28) | Frobenius (28)| KLD (35)
10 85.34 93.86 94.23
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Standard Deviation [dB]

Fig. 1. Curves representing the standard deviation of the covariation estimation as a function of the parfonétert’ “°M

estimator.

Standard Deviation [dB]
Standard Deviation [dB]

(a) (b)

Fig. 2. Curves representing the standard deviation of the covariation estimation as a function of the parfometer 1.2, 1.5

and 25 dispersion pair§yx, vy ), using the"“? estimator.
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Amplitude Probability Curves
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Fig. 3. Modeling of the horizontal subband at the first level of decomposition oftbeers.6image with theSa.S and
the GGD depicted in solid and dashed lines, respectively. The estimated parameters SarSthtbstribution have the values
a = 1.76, v = 0.08 while the GGD has parametess= 0.11 and 3 = 1.02. The dotted line denotes the empirical APD.
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Fig. 4. Histogram of the neighborhood indices in terms of resulting in the best Gaussianization performance for3@®et of

subbands.
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Rotation—invariant KLD
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Fig. 5. (a)Bark physically rotated aB0 and 120 degrees, (b)D(I]|Q)(0) for J = 4. Notice that the minimum is achieved

for 6* = 90 degrees, which is the exact relative angle between the two texture samples.
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Fig. 6. Histogram of the estimated values for the characteristic expamgefuyr, the set 0208 texture images of siz&28 x 128.
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Fig. 7. Texture images from the VisTex database, from left to right and top to bottom: 1) Bark, 2) Brick, 3) Bubbles, 4) Grass,
5) Leather, 6) Pigskin, 7) Raffia, 8) Sand, 9) Straw, 10) Water, 11) Weave, 12) Wood, 13) Wool.
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Fig. 8. Average percentages (%) of correct retrieval rate for individual texture class.



