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ABSTRACT

This paper introduces a computationally effi-
cient technique for splitting a signal into N
equally spaced sub-bands subsampled by 1/N and for
near perfectly reconstructing the original signal
from the sub-band signals. This technigque is based
on a multirate approach where some operations are
nested to decrease the computation load. Simulation
results show that the performances are comparable
to that of conventional quadrature mirror filters,
but with a very significant reduction in computa-
tional complexity.

INTRODUCTION

Conventional quadrature mirror filter (QMF)
banks are now widely used, particularly for speech
compression [1]. These banks divide the signal into
N adjacent sub-bands subsampled by 1/N, and allow
the reconstruction of the original signal from the
N sub-band signals with negligible distorsion, re-
gardless of the order of the band-pass filters.

In this paper, we expand on earlier work [2-3]
to show that conventional QMPF banks may be replaced
by new filter banks which have nearly the same
alias-free reconstruction properties, but with the
band-pass filters derived by frequency shifting
from a single prototype low-pass filter. We then
use a multirate implementation [4] in combination
with a nesting technique to develop an implementa-
tion which provides performances comparable to that
of conventicnal QMF filter banks, but with a compu-
tational complexity which is significantly lower
than with QMF banks or earlier pseudo-QMF banks.

PSEUDO QMF FILTER BANK
We consider a signal x(t) which is band-limited
to a frequency fS/2 and sampled at rate fs’ with
w, = 2mE = 2W/TS.We want to split the sampled in-
put signal x(n) into N sub-band signals yk(Nn) sub—
sampled at rate fS/N, by using N equally spaced ad-
jacent band-pass filters with impulse responses

hk(n), and with k=0,...,N-1. The signal splitting

must be such that a near perfect approximation
%(n) of the original signal x(n) may be reconstruc-

ted from the subsampled channel signals.

In the following, we derive the N band-pass
filters hk(n) by frequency translation (fig. 1)

from a prototype L-tap linear phase low-pass filter
h(n) with cut-off frequency at f /4N, and with
s

h. (n) = h(n)cos[27 (2k+1) (2n-N)/8N] (1)

The z-transforms of the band-pass filters are given
as a function of the z~transform H(z) of h(n) by
2k+1 2 (2k+1
wN( )H(W( )z)
H (z) = =

k 2
] 2k -
. E.N( +l)H(W 2(2k+l)z) (2)
2
with
W= e 2Ny T (3)

The subsampled channel signals, with z-transforms

yk(z) are derived from the input signal x(n) with

z—transform X(z), by filtering with the filters

Hk(z), and decimating N-1 out of every N consecuti-

ve channel samples. Thus, yk(z) is given [5] by
N-1

T X(W
u=0

8uzl/N) Hk (WSUZI/N)

<

N

]
Z |

We show now that a near-perfect replica %(n) of
x{(n), with z-transform X(z) may be reconstructed
from the N channel signals. This is done by inser-
ting N-1 zero-valued samples between successive .
samples of the channel signals, by filtering the
resulting sequences with the filters

h(n) cos[ 27 (2k+1) (2n+N) /8N], and by summing the re-
sulting signals. Hence

N-1 N-1

r = (I
k=0 u=0

1 N(2k+1 8u+4k+2
%(z) = 5 o (FHL) g Burdke2

-N(2k+ -4k -2 - +
o @ N2k su oy TLw N (2R a2,

N (2k+1) -4k-2
+ W H(W

( )

8u
z)J1X (W "z) (5)
The aliasing terms in the reconstructed signal are

climinated if the coefficients of X (Wo'z) in (5)
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are zero, except for u=0. In our approach, we insu-
re this condition by eliminating the aliasing due
to adjacent filters and by designing the prototype
low-pass filter H(z) in such a way that non adja-
cent band-pass filters do not overlap, with

H(wa) =0 for ial > 4 (6)
Thus, we have H(Waz)H(z) = 0 for |a‘ > 8, and (6)
reduces to
1 N-1 8u
%(z) = = [Go(z)X(z) + T G (2)X(W =2)] (7
4N u
u=1
with
N-1
Gotz) = £ @@ v mte %) . @
k=0
and, for u # 0,
2N-2 -1 4u+2 40u-2
6 (2) = (-3) g (=3 O THEW S W T2 ]
-2 - 2 4u-2
+ e e P rw 10 ()

Hence the aliasing terms are eliminated and X(z)
reduces to

X(z) = Go(z)X(z)/4N (10)

Evaluating Gg(z) on the unit circle yields

Gg(eijS) _ e—j2ﬂ(L—l)w/wS
N-1
z [e]ﬂ(L—l)(2k+l)/2NH2(w—(2k+l)ws/4N)
k=0
+ e—jﬂ(L_l)(2k+l)/2NH2(w+(2k+l)ws/4N)} (11)

Assuming the number of taps L of the prototype low—
pass filter is odd, with L=2pN+l, the reconstructed
signal is a perfect replica of the input signal
within a multiplicative constant - 1/4N for p odd
and + 1/4N for p even, when

N-1
b [Hz(w—(2k+l)ws/4N) + Hz(m+(2k+l)ms/4N)]= 1 (12)
k=0

This condition is realized when H(®W) = 1 in the
pass-band, H(w) = 0 in the stopband and when the
usual QMF condition is satisfied in the transition
band with in particular a - 3dB response at cut-off
frequency.

MULTIRATE IMPLEMENTATION

Since the analysis and reconstruction process
are nearly identical, we restrict our discussion to
the analysis filter bank. The subsampled channel
signals are given by

L-1
yk(Nm) = ¥ hi{n)cos[2m(2k+1) (2n-N) /8N]x(Nm-n) (13)
n=0
1
We compute separately the term y( )(Nm) which cor-

2
responds to n = L-1 = 2pN and the term yﬁ )

(Nm) which

corresponds to n = 0,...L-2. In order to compute

2
yé )(Nm), we use the change of index [4]

n = 2Nn; + na . ny = 0,...,p-1
nyg = 0,...,2N-1 (14)

With (13), this yields

(2) 2N-1 ’
vy (Nm) = 2 a (Nm)cos[27(2k+1) (2n,-N)/8N] (15)
n2=O n2
with
p-1
a (m) = % h(2Nn;+ns) (1) "' x (Nm-2Nn; -115 ) (16)
2
n1=O

(1)

The corrective term yk (Nm) is given by

yél)(Nm) = h(2pN)(—l)pcos[2ﬂ(2k+l)N/8N]

% (Nm-2pN) (17)

Hence, yk(Nm) becomes

2N-1
y, (Nm) = I b (Nm)cos[2m(2k+1) (2nz-N)/6N] (18)
ny=0 n2
with
bo(Nm) = ag(Nm) + h(2pN) (~1)Fx (Nm-2pN)
b (Nm) = a (Nm) for n, # 0 (19)
ny n2

This shows that the N length-L band-pass filters
are replaced by 2N filters of length (L-1)/2N, plus
the modified cosine transform (18), which may be
computed by taking the real part of a DFT, with

2N-1
y, (Nm) = re[w” FPDN Tp o umyw R 2] (20)
n2=0 B2
We compute (20) with the auxiliary transform [6]
2N-1 bnz(Nm) 4k
g m) = f ()W (21)
n,=0 2v2 cos (2Tn,/4N)
no#N
Finally, yk(Nm) is derived by
bN(Nm)
y, (Nm) = (——) (V2 cos [ (2k+1)T/4])
V2
= —(2k+t1)N
+ Re[v2 W (gk(Nm)+gk+l(Nm))] (22)

The premultiplications of b (Nm) by

ns _
1/2V2 cos(2mn,/4N) and of bN(Nm) by 1/v2 are nested
with the filters by premultiplying the coefficients

h(2Nn1+n2)(—l)n1 of the filters with these factors.
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Hence these premultiplications disappear, and the
computation of the N band-pass filters reduce to
the evaluation of 2N filters of length (L-1)/2N,
one DFT of length 2N, plus auxiliary additions and
postmultiplications by v2 cos[(2k+1)7m/41 = ¥ 1 and

- (2k+1)N
/2w PKTDN _ 4+ (144) | This shows that each set of

band~pass filter output samples is computed with 4N
auxiliary real additions, plus L real multiplica-
tions and L-2N real additions for the filters (in-
cluding (19)), and the real 2N-point DFT (21). We
note that the reduced filters are symmetric for

¥ = Q0 and K = N. Therefore, one can save p multi-
plies in the computation of by (Nm) and bN(Nm).

Furthermore, for N even, the reduced filters for

K = N/2 and K = 3N/2 have the same coefficients,
and operate on the same set of input samples. Thus,
another get of p multiplies can also be saved, and
the total number of multiplies for the 2N filters
reduces to L-2p for N even. Since the DFT operates
on real input seguences, it can be computed either
as an N-point complex DFT or as a 2N point DFT on
two sets of real input sequences, with 2N auxiliary
real additions [7]. In this last case, this yields
a total of L-2p real multiplications, 4N+L real
additions, and half the number of real operations
required for a 2N-point complex DFT.

Applying this approach to a 8-band flat filter
bank with a 8 KHz input sampling rate yields a
total of 53000 real multiplications per second and
155000 additions per second by using the Rader-
Brenner technique for the DFT, and a 4%-tap proto-
type low-pass filter. With a 65-tap prototype low-
pass filter, the computaticnal load becomes 67000
real multiplications per second and 171000 real
additions per second. This is about half the number
of operations required with a conventional implemen-
tation of OMF filter banks.

RADIX~4 IMPLEMENTATION

When the proposed technique is implemented in a
small signal processor, the use of a conventional
FFT algorithm is sometimes undesirable. In this
case, onecan use the approach discussed above to de~
sign a 4-band QMF algorithm which can then be used
repeatedly in a radix-4 tree structure similar to
the radix-2 tree structure used with the conventio-
nal QMF. Each set of output samples of the 4-bank
filters is then computed with (3L+9)/4 real multi-
plications and L+42 real additions, and the algo-
rithm becomes sufficiently simple for easy implemen~
tation in a microcomputer with limited memory capa-
city. This yields a reduction of about 40% of the
number of operations when compared to the conven~
tional QMF with comparable filters.

CONCLUDING REMARKS

In this paper, we have considered a particular
class of flat frequency response QMF filter banks
where the various band-pass filters are derived by
frequency shifting from a prototype low-pass fil-
ter. We have shown that this filter bank can be

implemented very efficiently by using a multirate
technique where auxiliary multiplication$S are nes-
ted with the polyphase filters. Simulation results
show that the original signal is near perfectly re-
constructed from the subsampled channel signals,
with a frequency response which is flat within

+ 0.2 dB and a rejection of the main aliasing term
in excess of 40 dB for a prototype low-pass filters
of 65 taps.
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Figure 2 : Analysis and synthesis filter bank for subband coding
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Pigure 3 : Efficient implementation of the analysis filter bank
with a polyphase network and an FFT
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