H.J. Nussbaumer

M. Vetterli

Ecole Polytechnique Fédérale de Lausanne Département d'Electricité 16, chemin de Bellerive, CH-1007 Lausanne, Switzerland

ABSTRACT

This paper introduces a computationally efficient technique for splitting a signal into N equally spaced sub-bands subsampled by 1/N and for near perfectly reconstructing the original signal from the sub-band signals. This technique is based on a multirate approach where some operations are nested to decrease the computation load. Simulation results show that the performances are comparable to that of conventional quadrature mirror filters, but with a very significant reduction in computational complexity.

INTRODUCTION

Conventional quadrature mirror filter (QMF) banks are now widely used, particularly for speech compression [1]. These banks divide the signal into N adjacent sub-bands subsampled by 1/N, and allow the reconstruction of the original signal from the N sub-band signals with negligible distorsion, regardless of the order of the band-pass filters.

In this paper, we expand on earlier work [2-3] to show that conventional QMF banks may be replaced by new filter banks which have nearly the same alias-free reconstruction properties, but with the band-pass filters derived by frequency shifting from a single prototype low-pass filter. We then use a multirate implementation [4] in combination with a nesting technique to develop an implementation which provides performances comparable to that of conventional QMF filter banks, but with a computational complexity which is significantly lower than with QMF banks or earlier pseudo-QMF banks.

PSEUDO QMF FILTER BANK

We consider a signal x(t) which is band-limited to a frequency $f_{\rm S}/2$ and sampled at rate $f_{\rm S}$, with $\omega_{\rm S}=2\pi f_{\rm S}=2\pi/T_{\rm S}.$ We want to split the sampled input signal x(n) into N sub-band signals y_k(Nn) subsampled at rate $f_{\rm S}/N$, by using N equally spaced adjacent band-pass filters with impulse responses h_k(n), and with k=0,...,N-1. The signal splitting must be such that a near perfect approximation $\hat{x}(n)$ of the original signal x(n) may be reconstruc-

ted from the subsampled channel signals.

In the following, we derive the N band-pass filters $h_k^-(n)$ by frequency translation (fig. 1) from a prototype L-tap linear phase low-pass filter h(n) with cut-off frequency at $f_{\rm S}/4N$, and with

$$h_{k}(n) = h(n)\cos[2\pi(2k+1)(2n-N)/8N]$$
 (1)

The z-transforms of the band-pass filters are given as a function of the z-transform $H\left(z\right)$ of $h\left(n\right)$ by

as a function of the z-transform
$$H(z)$$
 of $h(n)$ by
$$H_{k}(z) = \frac{W}{2} \frac{W^{2(2k+1)} H(W^{2(2k+1)} z)}{H(W^{-2(2k+1)} z)} + \frac{W^{-N(2k+1)} H(W^{-2(2k+1)} z)}{U(2)}$$

with

$$W = e^{-j2\pi/8N}$$
 , $j = \sqrt{-1}$ (3)

The subsampled channel signals, with z-transforms $y_k(z)$ are derived from the input signal x(n) with z-transform X(z), by filtering with the filters $H_k(z)$, and decimating N-l out of every N consecutive channel samples. Thus, $y_k(z)$ is given [5] by

$$\underline{Y}_{k}(z) = \frac{1}{N} \sum_{u=0}^{N-1} X(w^{8u}z^{1/N}) H_{k}(w^{8u}z^{1/N})$$
(4)

We show now that a near-perfect replica $\hat{x}(n)$ of x(n), with z-transform $\hat{x}(z)$ may be reconstructed from the N channel signals. This is done by inserting N-l zero-valued samples between successive samples of the channel signals, by filtering the resulting sequences with the filters $h(n)\cos[2\pi(2k+1)(2n+N)/8N]$, and by summing the resulting signals. Hence

$$\hat{X}(z) = \frac{1}{4N} \sum_{k=0}^{N-1} \sum_{u=0}^{N-1} [[w^{N(2k+1)}_{H(w^{8u+4k+2}_{z})} + w^{-N(2k+1)}_{H(w^{8u-4k-2}_{z})}][w^{-N(2k+1)}_{H(w^{4k+2}_{z})} + w^{N(2k+1)}_{H(w^{-4k-2}_{z})}][x^{8u}_{z})$$
(5)

The aliasing terms in the reconstructed signal are eliminated if the coefficients of $x(w^{8u}z)$ in (5)

are zero, except for u=0. In our approach, we insure this condition by eliminating the aliasing due to adjacent filters and by designing the prototype low-pass filter H(z) in such a way that non adjacent band-pass filters do not overlap, with

$$H(W^{a}) = 0 \quad \text{for} \quad |a| > 4 \tag{6}$$

Thus, we have $H(W^{a}z)H(z) = 0$ for |a| > 8, and (6) reduces to

$$\mathfrak{X}(z) = \frac{1}{4N} \left[G_0(z) X(z) + \sum_{u=1}^{N-1} G_u(z) X(w^{8u}z) \right] , \quad (7)$$

with

$$G_0(z) = \sum_{k=0}^{N-1} (H^2(W^{4k+2}z) + H^2(W^{-4k-2}z)) , \quad (8)$$

and, for $u \neq 0$,

$$G_{u}(z) = (-j)^{2N-2u}(-j+(-j)^{-1})[H(-w^{4u+2}z)H(-w^{4u-2}z)]$$

$$+ (-j)^{-2u}(j+j^{-1})[H(w^{4u+2}z)H(w^{4u-2}z)] = 0$$
 (9)

Hence the aliasing terms are eliminated and $\mathfrak{X}(\mathbf{z})$ reduces to

$$\dot{X}(z) = G_0(z)X(z)/4N \tag{10}$$

Evaluating $G_0(z)$ on the unit circle yields

$$G_0(e^{j\omega T_S}) = e^{-j2\pi(L-1)\omega/\omega_S}$$

$$\begin{array}{l} ^{N-1} \quad _{\Sigma} \quad [\, e^{\, j \pi \, (L-1) \, (2k+1) \, /2N}_{H^{\, 2} \, (\omega - (2k+1) \, \omega}_{S} /4N) \\ ^{k=0} \quad _{+} \quad e^{\, -j \pi \, (L-1) \, (2k+1) \, /2N}_{H^{\, 2} \, (\omega + (2k+1) \, \omega}_{S} /4N) \, I \end{array} \ (11)$$

Assuming the number of taps L of the prototype low-pass filter is odd, with L=2pN+1, the reconstructed signal is a perfect replica of the input signal within a multiplicative constant - 1/4N for p odd and + 1/4N for p even, when

N-1

$$\Sigma$$
 [H² (ω -(2k+1) ω _S/4N) + H² (ω +(2k+1) ω _S/4N)] = 1 (12)
k=0

This condition is realized when $H(\omega)=1$ in the pass-band, $H(\omega)=0$ in the stopband and when the usual QMF condition is satisfied in the transition band with in particular a - 3dB response at cut-off frequency.

MULTIRATE IMPLEMENTATION

Since the analysis and reconstruction process are nearly identical, we restrict our discussion to the analysis filter bank. The subsampled channel signals are given by

$$y_k^{(Nm)} = \sum_{n=0}^{L-1} h(n) \cos[2\pi (2k+1) (2n-N)/8N] x (Nm-n)$$
 (13)

We compute separately the term $y_k^{(1)}$ (Nm) which corresponds to n = L-1 = 2pN and the term $y_k^{(2)}$ (Nm) which

corresponds to n = 0,...L-2. In order to compute $y_{L}^{(2)}$ (Nm), we use the change of index [4]

$$n = 2Nn_1 + n_2$$
 , $n_1 = 0, ..., p-1$
 $n_2 = 0, ..., 2N-1$ (14)

With (13), this yields

$$y_k^{(2)}$$
 (Nm) = $\sum_{n_2=0}^{2N-1} a_{n_2}$ (Nm) cos[2 π (2k+1)(2 n_2 -N)/8N] (15)

with

$$a_{n_2}(Nm) = \sum_{n_1=0}^{p-1} h(2Nn_1+n_2)(-1)^{n_1}x(Nm-2Nn_1-n_2)$$
 (16)

The corrective term $\mathbf{y}_{k}^{(1)}\left(\mathbf{Nm}\right)$ is given by

$$y_k^{(1)}(Nm) = h(2pN)(-1)^p cos[2\pi(2k+1)N/8N]$$

$$\times (Nm-2pN)$$
(17)

Hence, y_k (Nm) becomes

$$y_{k}^{(Nm)} = \sum_{n_{2}=0}^{2N-1} b_{n_{2}}^{(Nm)} \cos[2\pi(2k+1)(2n_{2}-N)/8N]$$
 (18)

with

$$b_0 (Nm) = a_0 (Nm) + h(2pN) (-1)^p x(Nm-2pN)$$

$$b_{n_2}(Nm) = a_{n_2}(Nm)$$
 for $n_2 \neq 0$ (19)

This shows that the N length-L band-pass filters are replaced by 2N filters of length (L-1)/2N, plus the modified cosine transform (18), which may be computed by taking the real part of a DFT, with

$$y_k^{(Nm)} = Re[W^{-(2k+1)N} \sum_{n_2=0}^{2N-1} b_{n_2}^{(Nm)} W^{2n_2} W^{4kn_2}]$$
 (20)

We compute (20) with the auxiliary transform [6]

$$g_{k}^{(Nm)} = \sum_{\substack{n_{2}=0 \\ n_{2}=0}}^{2N-1} \frac{b_{n_{2}}^{(Nm)}}{(2\sqrt{2}\cos(2\pi n_{2}/4N))} W^{4kn_{2}}$$

$$n_{2}\neq N$$
(21)

Finally, y_{ν} (Nm) is derived by

$$y_{k}(Nm) = (\frac{b_{N}(Nm)}{\sqrt{2}}) (\sqrt{2} \cos [(2k+1)\pi/4]) + Re[\sqrt{2} w^{-(2k+1)N}(g_{1}(Nm)+g_{1+1}(Nm))]$$

The premultiplications of b $_{n_2}$ (Nm) by $1/2\sqrt{2}$ cos($2\pi n_2/4N$) and of b $_N$ (Nm) by $1/\sqrt{2}$ are nested with the filters by premultiplying the coefficients $h\left(2Nn_1+n_2\right)\left(-1\right)^{n_1}$ of the filters with these factors.

(22)

Hence these premultiplications disappear, and the computation of the N band-pass filters reduce to the evaluation of 2N filters of length (L-1)/2N, one DFT of length 2N, plus auxiliary additions and postmultiplications by $\sqrt{2}$ cos[(2k+1) $\pi/4$] = $^+$ 1 and $\sqrt{2}$ w^{-(2k+1)N} = $^+$ (1 $^+$ j). This shows that each set of band-pass filter output samples is computed with 4N auxiliary real additions, plus L real multiplications and L-2N real additions for the filters (including (19)), and the real 2N-point DFT (21). We note that the reduced filters are symmetric for K = 0 and K = N. Therefore, one can save p multiplies in the computation of b₀ (Nm) and b_N (Nm).

Furthermore, for N even, the reduced filters for K=N/2 and K=3N/2 have the same coefficients, and operate on the same set of input samples. Thus, another set of p multiplies can also be saved, and the total number of multiplies for the 2N filters reduces to L-2p for N even. Since the DFT operates on real input sequences, it can be computed either as an N-point complex DFT or as a 2N point DFT on two sets of real input sequences, with 2N auxiliary real additions [7]. In this last case, this yields a total of L-2p real multiplications, 4N+L real additions, and half the number of real operations required for a 2N-point complex DFT.

Applying this approach to a 8-band flat filter bank with a 8 KHz input sampling rate yields a total of 53000 real multiplications per second and 155000 additions per second by using the Rader-Brenner technique for the DFT, and a 49-tap prototype low-pass filter. With a 65-tap prototype low-pass filter, the computational load becomes 67000 real multiplications per second and 171000 real additions per second. This is about half the number of operations required with a conventional implementation of QMF filter banks.

RADIX-4 IMPLEMENTATION

When the proposed technique is implemented in a small signal processor, the use of a conventional FFT algorithm is sometimes undesirable. In this case, one can use the approach discussed above to design a 4-band QMF algorithm which can then be used repeatedly in a radix-4 tree structure similar to the radix-2 tree structure used with the conventional QMF. Each set of output samples of the 4-bank filters is then computed with (3L+9)/4 real multiplications and L+42 real additions, and the algorithm becomes sufficiently simple for easy implementation in a microcomputer with limited memory capacity. This yields a reduction of about 40% of the number of operations when compared to the conventional QMF with comparable filters.

CONCLUDING REMARKS

In this paper, we have considered a particular class of flat frequency response QMF filter banks where the various band-pass filters are derived by frequency shifting from a prototype low-pass filter. We have shown that this filter bank can be

implemented very efficiently by using a multirate technique where auxiliary multiplications are nested with the polyphase filters. Simulation results show that the original signal is near perfectly reconstructed from the subsampled channel signals, with a frequency response which is flat within \pm 0.2 dB and a rejection of the main aliasing term in excess of 40 dB for a prototype low-pass filters of 65 taps.

REFERENCES

- [1] D. Esteban, C. Galand, "Application of Quadrature Mirror Filters to Split Band Voice Coding Schemes", Proc. 1977 Int'l IEEE Conf. on ASSP, pp 191-195.
- [2] H.J. Nussbaumer, "Pseudo QMF Filter Bank", IBM Technical Disclosure Bulletin, Vol. 24, No 6, pp 3081-3087, Nov. 1981.
- [3] J.H. Rothweiler, "Polyphase Quadrature Filters, A New Subband Coding Technique", Proc. 1983 Int'l IEEE Conf. on ASSP, pp 1280-1283.
- [4] M.J. Narasimha, A.M. Peterson, "Design of a 24-Channel Transmultiplexer", IEEE Trans., Acoust., Speech, Signal Processing, Vol. ASSP-27, pp 752-762, Dec. 1979.
- [5] R.W. Schafer, L.R. Rabiner, "A Digital Signal Processing Approach to Interpolation", Proc. IEEE, Vol. 61, pp 692-701, June 1973.
- [6] C.M. Rader, N.M. Brenner, "A New Principle for Fast Fourier Transformation", IEEE Trans., Acoust., Speech, Signal Procession, Vol. ASSP-24, pp 264-265, 1976.
- [7] H.J. Nussbaumer, Fast Fourier Transform and
 Convolution Algorithms, Springer-Verlag: Berlin, New-York, Heidelberg, 1982

Figure 1 : Module of the transfer function

a) Prototype filter

b) Modulated filters

Figure 2 : Analysis and synthesis filter bank for subband coding

Figure 3 : Efficient implementation of the analysis filter bank with a polyphase network and an FFT