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Abstract

The wavelet transform has recently emerged as a powerful
tool for non-stationary signal analysis. Its discrete version
is closely related to filter banks which have been studied
in digital signal processing. Also, multiresolution signal
analysis has been used in image processing. This paper
indicates the relationship between these techniques. Then,
it is shown how to construct biorthogonal systems with
linear phase FIR filters, and having regular analysis and
synthesis. Some examples of practical interest are given.
The complexity of the discrete wavelet transform is also
discussed.

1 Introduction

The search for basis functions better suited for the anal-
ysis of non-stationary signals is a topic of on-going research
in signal processing. The short-time Fourier transform
(STFT) uses basis functions of the type:

Cmﬂ(t) = e—jmw"lw(t - ntﬂ)a (m7n € Z) (1)
where w(.) is an appropriate window function, like a Gaus-
sian as in the Gabor basis. Then, the STFT is the inner
product of the signal with the set of basis functions. It is
clear from (1) that the STFT has the same frequency and
time resolution at all points (m,n) of the time/frequency
plane. This can be unsatisfactory in signal analysis, where
signal discontinuities should be resolved sharply in time
at high frequencies while slow variations should be seen
sharply at low frequencies. Of course, the time/frequency
product is lower bounded by the uncertainty principle, but
instead of a constant time and frequency resolution, one can
trade-off one for the other. This is achieved with wavelets,
where the family of basis functions is obtained by transla-
tion and dilation/contraction of a single prototype wavelet

h(t) [2]:

hma(t) = aam/z . h(;t; —nbo), (m,n€Z), ag>1, bo#0
0
(2)

where typically ag = 2 and by = 1. The scale factor ay™?
is used to conserve the L, norm of the wavelet. For large
positive m, hna(t) is dilated by a7 and shifted by large

steps aZbo, while for negative m, hmn(t) is contracted and
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shifted in small steps. Therefore, the wavelet transform
is sharp in time at high frequencies as well as sharp in
frequency at low frequencies (with corresponding loss of
frequency or time resolution). Notice the “constant shape”
property of the wavelets (due to dilation) which does not
hold for the STFT (which uses modulation).

While the continuous time wavelet transform has a num-
ber of attractive features, we will be concerned with the
discrete case in what follows. Such a discrete wavelet trans-
form (DWT) is shown in figure 1 and is implemented with
multirate filter banks [6]. At each stage, the spectrum is di-
vided into low and high half band, leading to a logarithmic
frequency resolution. Note that the wavelet is a highpass
filter that “shaves off” the upper half of the spectrum at
each stage. Due to the subsampling by 2 at each stage,
the time resolution decreases accordingly. That is, we have
a sampling of the time/frequency plane exactly as in the
continuous time wavelet transform with ap = 2. The basic
building block of such a DWT is a two channel filter bank
subsampled by 2. If the filter bank has the perfect recon-
struction (PR) property (that is, there exists a stable PR
synthesis filter bank), then the DWT can be inverted since
each stage can be inverted. Furthermore, if the filter bank
is lossless [4], then the filter impulse responses and their
translates form an orthonormal set [7]. Since the DWT is
made of a cascade of such elementary lossless banks, it is
easy to verify that resulting basis is orthonormal as well.

While the theory of PR filter banks is an adequate frame-
work for deriving DWT’s implementable with filters having
rational transfer functions, the wavelet theory leads to some
interesting questions. One such question is the regularity
of the infinitely iterated and subsampled lowpass filter ap-
pearing as the horizontal branch of the DWT in figure 1.
This filter has a z-transform equal to:

0

Hao(z) = ] Ho(z*)

=0

®)

LDaubechies [2] gives a sufficient condition under which
H,,(z) converges to a continuous function (otherwise, it
has fractal behavior). The condition is that the filter has a
sufficient number of zeros at z = —1 so as to attenuate the
supremum of the magnitude of the Fourier transform of the
remaining factor [2]. The regularity of orthogonal wavelets
with compact support (that is, lossless two channel FIR
filter banks) is investigated in {2], and a construction is
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given for shortest filters with a given regularity.

In this paper, we will look at linear phase wavelets with
compact support instead. Since there are no linear phase
orthogonal wavelets (except the trivial Haar case), we have
to use biorthogonal bases. Now the regularity of both anal-
ysis and synthesis has to be checked, and we derive such
regular pairs. Multiresolution schemes, first introduced in
computer vision and then in image compression [1], are
briefly revisited in the light of the DWT, showing how re-
dundancies can be removed. Then, we discuss the complex-
ity of the DWT and show how fast convolution techniques
can decrease the number of operations. Another benefit of
these FFT based techniques is that they lead naturally to
a wavelet based spectrogram.

2 Biorthogonal Systems
In the two-channel critically sampled case for perfect re-
construction with FIR filters it is necessary and sufficient

that Go(z) | _ z™™ [ Hy(=2)
(68) -5 (5

Gi(2) —Ho(-2)

and A(z) is equal to:

Ho(2)Hy(—2) — Ho(—2)Hy(2) = P(2) — P(~z) = ¢z~ %21
(5)

Obviously (5) implies that while P(z) can have arbitrary

even coefficients it must have one and only one non-zero

coefficient of an odd power of z. The Hy(z) filter and sub-

sample operation can be written as a matrix Hy equal to:

4)

he(0) 0 0
hg(L bl ].) ]10(0)

0 ho(L—1)

0 0 0 (6)

So we write : Hoz = y where z and y are infinite input
and output vectors respectively. Similarly the upsample
and filter operation can be represented by a matrix G (*
stands for hermitian transpose) where a column contains
h1(0), —h1(1), h1(2) etc, where we used used (4). H; and
Gy are defined similarly. The rows of Hp (resp. H;) are
given by the coeflicients of Hop(z) (resp. Hy(z)); and the
columns of G§ (resp. GY) are given by the coefficients of
Hi(—z) (resp. —Ho(—=z)). Noting that the polynomials
Ho(z)Ho(~=) and Hy(z)H;(—z) each have all coefficients
of odd powers of z equal to zero gives the matrix identities:

(M

Similarly using (5) to note that Ho(z)H;(—z) has a single
non-zero coefficient of an odd power of z one finds :

HoG; = 0= H\G,

HoGy =1=HG} (8)
Since we have a perfect reconstruction system we get:
GyHo + G1Hy =1 9)

Note that (8) implies that G§Ho, and GiH; are each pro-
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jections, onto subspaces which are not in general orthogo-
nal. Because of (7) and (8) the analysis synthesis system is
termed biorthogonal. In the special case where we have a
paraunitary solution one finds: Gy = Hp and G, = H,; and
(7) gives that we have projections onto subspaces which are
mutually orthogonal [3]. The above discussion shows that
in a pyramid scheme, one can essentially always subsam-
ple the difference signal (ignoring quantization of course).
The lowpass version corresponds to Hy. The interpola-
tion corresponds to G§Ho. Thus, the difference signal is
I — GyHy = G1H, following (9). Thus, applying H; to
the difference signal leads to HyG7H; which equals H; by
(8), that is, we have now the same signals as in a subband
coding system, and can therefore perfectly reconstruct. We
have assumed that we can find a complementary filter Hy
to Hy so as to achieve perfect reconstruction, and this is
possible in most cases [5].

3 Regular Linear Phase Filters

For a paraunitary solution the synthesis filters are equal
to the analysis filters to within a time reversal; hence both
are regular provided that Ho(z) is. If linear phase filters
are desired we have seen that Go(z) = cz~'Hy(—2) and
Gi(z) = —cz™'Hp(—2); this implies that both Hy(z) and
Hy(—z) must satisfy the regularity condition, since they
are the iterated filters. To construct a linear phase scheme,
it suffices therefore to find some P(z) = Ho(z)H1(—2), sat-
isfying (5), where Ho(2) = (1 +271)Y Ry(z) and Hy(—2) =
(1 + z7Y)MRy(z), are regular, and Ro(z) and Ry(z) are
linear phase. The idea is now to give as many zeroes at
z = —1 to P(z) as possible, leading to the most regular
solution of a given degree.

For a given order N = Ny + N; we can solve for the co-
efficients of R(z) = Ro(z)Ri1(z) by solving a set of linear
equations. Assume that the degree of R(z) is M; so that of
P(z) is N+ M. Since R(z) is linear phase it has only [2£Z]
independent coefficients. Also note that P(z) has | Y2031 |
odd powers of 271, and this is the number of equations to
be solved. However since the binomial coefficients are sym-
metric, only about half of these equations are independent.
In fact we have only

LV + M +1)/2] +1)/2]

(10)

independent equations to solve. Next observe that M + N
must be even; for if it is odd then the highest power of 27!
in P(z) - and hence in R(z) - must equal zero (it cannot
be the single non-zero coefficient because of symmetry).
Consider now the two cases for N:

N even: clearly M is also even giving 42| = M/2 +1
coefficients. For M = N — 2 we find from (10) that there
are N/2 equations, as well as N/2 coefficients. This implies
that we can find R(z) by solving a system of N/2 equations
in N/2 unknowns.

N odd: when N is odd so is M, which implies that R(z)
has a single zero at z = 1 or z = —1, since it is linear phase.
However since (5) implies that (1 — 27!) cannot be a factor
of P(2), so the single zero must be of the form (1 + z71).



In fact it turns out that the even case with M = N — 2
gives the same solution as the odd case with M' = N' for
N' = N — 1. That is, the effect of removing one factor
(1+z7") from the binomial part of P(z) with N even is to
place that factor in R(z) for N' =N ~1odd.

Example: if N = 5 and hence M = 5 we solve the 3 by
3 system found by imposing the constraints on the coefh-
cients of the odd powers of 271 of

- - -3 -4 -5
(ro+mz 1oz 4 rpz 27t rg2 ™)

(145271 410272 +1027° + 5274 + 27°) = P(2)

So we solve:

51 0 ro 0
10 10 6 n =10 (11)
2 10 20/ \'m 2

Then we factor R(z) into linear phase components, each of
which must be made regular by adding zeros at z = —1
from the binomial portion of P(z). Each of the filters so
constructed for odd N < 18 have been found to have a
regular linear phase factorization. For small N it may hap-
pen that ensuring regularity requires an inequitable distri-
bution of the zeros. For example with N = 5 we find:
Ho(z) = 1+ 27" and Hy(—2) = (1 + 271)3R(z). The dif-
ficulty in finding regular factorizations appears to ease as
N increases. Figure 2 shows regular analysis and synthesis
wavelets for the case N = 17. Both filters are of length 18
and have 9 zeroes at z = —1 each, that is, they have the
first 9 moments at the origin equal to zero.

Comment: A second approach to calculating R(z) is
based on the linear phase lattice form of [7]. These lat-
tices produce linear phase perfect reconstruction filters of
odd degree on both upper and lower branches. If we solve
for the lattice coefficients to make the upper branch equal
(1 + 2z YN for N odd, then the lower branch must equal
R(z) since this is the unique linear phase polynomial of de-
gree M = N giving a P(z) that satisfies (5). Note that
all coefficients of R(z) in both constructions are rational,
making implementations simple.

4 Complexity of the DWT

The efficiency of the DWT comes from the fact that if
one stage requires complexity C' per input sample, then,
because of the subsampling, the next stage takes C/2, and
s0 on, that is, the whole DWT has complexity less than 2C'.
A direct implementation with filters of length L; leads to
C = (Lyu,(Ly —1)a) per input sample (¢ and « stands for
multiplication and addition respectively). The operation
performed by a two channel filter bank subsampled by 2
can be written in z-transform domain as:

(4= o) 2 (i

Y(z) Hio(2) Hul(z)
where X;(z) and H;;(z) are the j-th polyphase compo-
nent of X(z) and H;(z) respectively (that is, X(z) =
Xo(22)+ 271 X1(2?), and similar relations for H;(2)). When

(12)
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H;(z) are FIR filters in particular, the above product can be
sped up by performing the polynomial products in Fourier
domain. The degree of Hi;(z) being L¢/2 — 1, take an
(even) signal length L, and a Fourier transform length L.
so that L, > L¢/2+ L,/2—1 and thus wrap-around ef-
fects are avoided. The complexity of (12) becomes equal
to 2 FFT(L,), 4 freq. domain convolutions and summa-
tion of spectras, and 2 IFFT(L;). For the sake of dis-
cussion, take a length L, = 2™ FFT that uses typically
2m-1(m — 3) + 2 multiplications, freq. domain convolution
using 3L,/2 = 3 - 2™~ multiplications (real input and fil-
ters) and then the complexity of (12) is (m2m+14-8)pu per L,
samples, where L, = 2(L; — Ly/2+1) typically (assuming
an infinite input that can be segmented arbitrarily). Given
a certain filter length Ly, there is an optimal L, that will
minimize multiplications per input sample. We will assume
Ly to be a power of 2 and choose L, = Ly (other sizes can
give an improvement, but this is sufficient for our discus-
sion). Then, the number of multiplies per sample becomes:

(2L logy Ly +8)/(Ly +2) (13)
that is, we have replaced the O[L;] complexity of the direct
computation by Oflog Ly]. For ex., when Lj = 32, then
(13) leads to 70% savings over the direct method.

A further simplification occurs if we compute more than
one stage at once in the Fourier domain. After the IFFT,
one would derive even and odd indexed samples (see (12))
to enter the next stage. But if X(k) is the transform do-
main vector of length N, then we can write:

= Nj2-1
LN Y (X(k) + X(k + N/2))Wyf3
k=0
NJ2-1
1N S Wik(X(k) - X(k+ N/2))Wgf7

k=0

z(2n)

z(2n +1)

where Wy = e~#27/N. That is, both z(2n) and z(2n + 1)
can be obtained from a half sized IFFT. Now, compute
the next stage with an FFT of size N/2, so as to cancel
the IFFT. The multiplication by Wy* in the expression for
#(2n+1) can be merged with the next convolution. There-
fore, subsampling in Fourier domain is achieved at the cost
of additions only. As long as the size N/2 transform is
of sufficient size (so as to avoid wrap-around effects), we
can compute the next convolution in the Fourier domain as
well. For ex., compute 2 stages of a DWT with Ly = 32
and L, = 128. Then 166 input samples still produce a
valid linear convolution. The cost of the first stage is 2
FFT(128), 2 freq. domain convolutions and 1 IFFT(128).
The second stage uses 2 freq. domain convolutions and 2
IFFT(64). This amounts to a total of 1542 u’s, or 9.31 s
per input sample. A stage by stage computation would use
25 to 50% more multiplications. The savings are moder-
ate (eventhough we avoided back and forth Fourier trans-
forms) because the filter in the lowest stage correspond to
a long filter in the input stage (due to subsampling), re-



ducing the usable input size accordingly. Another benefit
of the Fourier domain computation appears when we want
to display the power spectrum instead of the time-domain
waveform after filtering. Then, the IFFT’s are avoided,
and one obtains a wavelet based spectrogram with (block)
logarithmic frequency resolution.

5 Conclusion and Directions

We have shown how to construct regular biorthogonal
bases corresponding in particular to linear phase wavelets.
Examples of interest have been derived. The complexity of
the DWT has been investigated.

Possible directions of further research include DWT’s us-
ing filter banks having rational sampling rates (leading to
finer frequency resolution) as well multidimensional DWT’s
using non-separable decompositions and filters (allowing
greater freedom than separable DWT’s).

In conclusion, the crossfertilization between ideas from
wavelet theory and multirate filter banks appears to be
quite useful, and multiresolution signal analysis suggests
numerous applications that can benefit from this unified
framework.
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Figure 1: Discrete wavelet transform implcmented with
multirate filter banks.

Figure 2: Regular symmetric scaling function (top)
and corresponding antisymmetric wavelet (bottom) for
the analysis with N = 17. Both are length 18 linear
phase FIR filters. The equivalent scaling function and
wavelet for the synthesis are linear phase and regular as
well, and look similar (but are not equal to the above).



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


