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Abstract

Recent work has shown the strong connection between FIR
perfect reconstruction filter banks and bases of compactly
supported wavelets. The compactly supported wavelets
that have been presented to date have been very con-
strained, and correspond to filter banks where very little
freedom in the design of the filters is allowed. In this pa-
per we present new theoretical results on FIR filter banks
based on Diophantine equations and continued fraction ex-
pansions; and use them to show how more general wavelets
may be designed. We further show that by considering a
noncausal IR structure it is possible to have a linear phase
paraunitary solution. A number of design examples illus-
trating the advantages of the new results are presented.

1 Introduction

The discrete wavelet transform uses a set of basis functions
which are discrete scales and translates of a single basis
wavelet:

Bonn(t) = g™/ 2-h(t/af —nbo), (m,n € Z), a0 >1, bo#0
1)
The wavelet transform gives a time-scale representation
which is sharp in time at small scales, and sharp in scale
at large scales. It has recently been shown that a dyadic
discrete wavelet scheme (i.e. ag = 2) may be realised using
a multirate filter bank, and that a paraunitary FIR filter
bank gives rise to an orthonormal basis of compactly sup-
ported wavelets [2] under certain conditions. It has also
been demonstrated that more general perfect reconstruc-
tion filter banks generate biorthogonal systems of com-
pactly supported wavelets [5]. While orthonormality is lost,
considerable freedom in the design of the wavelets is gained;
in particular it is possible to achieve linear phase [1, 5, 6].
The conditions for the convergence of the infinitely iter-
ated and subsampled lowpass filter in the filter bank real-
isation of the discrete wavelet scheme were considered in
[2]. A condition sufficient to ensure convergence to a con-
tinuous function was found to be that the filter possess a
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sufficient number of zeros at 7 to adequately attenuate the
supremum of the magnitude of the Fourier transform of the
remaining factor. It was for this reason that the filters in
(2] and [5] were designed to have the maximum possible
number of zeros at .

In this paper we first present new theoretical results on
filter banks which allow us to design filter banks that still
have a fixed number of zeros at m but have greater free-
dom than those of [2] and [5]. These generate orthonormal
or biorthogonal systems of compactly supported wavelets.
We present a novel IR structure which satisfies the re-
quirements for both linear phase and losslessness. Finally
relevant design examples are given.

2 Bezout’s identity

It is well known that in a two-channel maximally decimated
filter bank, the necessary and sufficient condition to achieve

. perfect reconstruction with an FIR synthesis section after

an FIR analysis with filters Ho(z) and H;(z) can be written’
in two equivalent forms [6]:
Hoo(2)H1i(z) — Hou(z)Hio(2) = 2! (2)
Ho(Z)Hl(—Z) - Ho(—Z)Hl(Z) 22—2'_1 (3)

I

In (2) we have introduced the polyphase notation (3, 4] for
the filters Ho(z) and Hq(2):

Hi(z) = Hio2%) + 27 Ha (")

The conditions (2) and (3) of course greatly constrain the
possible solutions. We will refer to any filter Hi(2) such
that (3) is true as a complementary filter to Hy(z).

A polynomial Bezout identity is an equation of the form
a(z)p(2) + b(2)g(z) = 1 where all quantities are polyno-
mials. It is well known that given a(z) and b(z) there is
a solution [p(2),q(z)] if and only if a(2) and b(z) are co-
prime. The fact that (2) and (3) have the Bezout identity
form gives us the following two facts [6].

Fact 2.1 Assume that the filters Ho(z) and Hi(z)
are both FIR and causal.  Then given one of the
pairs [Hoo(z), Hor(2)], [Hao(2), Hu1(2)], [Hoo(2), Hio(2)] or
[Hoy(2), Hi1(2)] in order to calculate the other pair neces-
sary to achieve perfect reconstruction it is necessary and
sufficient that the given pair be coprime (ezcept for possible
zeros at z =00 or z =0).
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Fact 2.2 4 filter Ho(z) has o complementary filter if and
only if it has no zeres in pairs at z = & and z = —a.

Fact 2.2 tells us when Ho(z} will have a complement; if it
exists it can be found by solving a set of linear equations
{4}, or by using Buclid’s algorithm [1, 6]. Proofs and fur-
ther fmplications are given in [6]. That solutions can gen-
erate biorthogonal bases of compactly supported wavelets
is shown in [L, 6].

3 Diophantine equations

The equation
az+ by =c (4)

where all quantities are integers is known as a basic dio-
phantine equation. It is obvious that the solution (z,y)
is not unique; for example if sofutions to the equation
aw + bz = @ are available we can add them to (z,y) to
generate new solutions (2,3} = (z,y) 4 k(w, z) where k is
any constant. The analogy between the equations (4) and
(3) allows us to create new perfect reconstruction solutions
to (3} based on the fact that Hy(z} = E(z)}Ho(z) sets the
right hand side of (3} to zero provided that E(z) = E(-z).
In fact it turns out that all valid complementary filters
must have this form. The result makes use of an important
restriction on the lengths of the possible solutions: that a
general length N filter has N — 2 length N — 2 complemen-
tary filters.
Lemma 3.1 All filters of length N + 2m — 2 which are
complementary to a length N filter Ho(z) have the form:

Hi(z) = 7" Hy(2) + E(2)Ho(z)
where E(z} = E(—=z} is a polynomial of degree 2(m — 1),
ke(0,1,---m) and Hy(z) is a length N — 2 complementary
filter.

A case of very particular interest is when both Hg(z}

and Hy(z) are linear-phase, and we desire alternative linear
phase complementary filters. Here we make use of the fact
that for a linear phase length N filter there is a unique
length N — 2 filter if NV is odd. It suffices to consider the
odd length linear phase case only, since the even length case
can always be brought to this form.
Lemma 3.2 Given a linear phase Hy(z) of odd length N,
and its length N — 2 linear phase complement Hi{z), all
higher degree linear phase filters complementary to Ho(z)
are of the form:

Hy(2) = 27" Hi(2) + E(z)Holz)

where -
E(z) = Eia;ﬁz"f‘;r‘)’ 4z Cm=2i)
i=1
The case where Hy(z) is chosen to be an even power of the
binomial is treated in detail by L. Daubechies {2]. Proofs
of the above lemmas, with additional background material
are in [6].

4 Continued fraction expansions

We now show that different solutions to (3) are related by
the canonic continued fraction expansion (CFE) of the ratio
of their polyphase components.

We define D_y = Hgo, Do = Ho1, A-p = Hyo and 4g =
Hyy. For the sake of simplicity we remove the phase factor
in (2). In this notation (2) becomes:

Doy(2)Ao(z) - A(2)Dolz) = 1 (5)

Now use Euclid’s algorithm starting with the pair
D_y(z), Dio(z). The general step is:

Dj-1(2) = 6(z)Ds(2)+ Dyalz)

so we get the sequences b;(z} and Dj(z}. Similarly by using
Buclid’s algorithm on the pair A_(z), Ao(z) we get the
sequences a;(z) and Ay{2}. It is shown in [6] that (5} implies
ag(z) = bo(z), and hence

deg D; > deg Dy

Dofz)As(z) - Ao(z)Dr(z) = -1

Since this is of the same form as but of lower degree than
(5), we can continue, and it is easily shown that we find a
succession of Bezout identities:

Dja(2)Aj(z) - Di(z}Aja(z) = (-1 (6)

which are of decreasing degree. The equations given by (6)
imply in turn that ae(z) = bo(z}, a1z} = by(2),- - -, a3(2) =
bi{z),~--anfz} = bn(z). But it is well known that the
outputs of Euclid’s algorithm (the a; and b;} are the partial
denominators of the CFE. Hence:
SR

o R b2} +

I
. I
‘ b} 4 ————
[bolz); B2}, oz}, bu(2)]

where we have used the standard notation [by; by,bs,--~bn]
to denote a terminating CFE. Hence it follows from the
equalities a; = & that the CPE's of D_y(z)/Dy(z) and
A_i{z)fAc(z) are identical for the first N + 1 terms.
The terminal equation for §} = N gives: ayyu(z) =
=(~1)¥ An(z)Dy. Note that Dy is scalar, being the last
divisor in the algorithm, and Dy(z) and Di(z) being co-
prime by assumption. In summary:

H

[bofz); Buz), balz)s- -~ b2}

= [bol2); bil2), balz)y- - bnlz), —(~ 1} An(z) D]

Different choices An(z) give different complementary fil-
ters.
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5 Linear phase paraunitary IIR solu-
tions

We now show that it is possible to achieve linear phase and
losslessness in the IIR case; in the FIR case this is possible
only with the filters that generate the Haar basis or trivial
variations thereof.

If we consider the most general form of the rational
polyphase matrix [3, 4] and impose the conditiion for loss-
lessness:

Hy (=) = [Hy(2)] ™

we find that H,(z) must necessarily be of the form:

B(z)

A(z)
NA(z) Al | P

H,(z) = -B(z"

where:
A(2)A(z™Y) + B(2)B(z7") = 1 = 8,(2)85(z7")  (8)

and A,(z) = det Hy(z).

In the following we shall refer to any symmetric filter
that has a central term as having whole sample symmetry,
and one that does not have a central term as having half
sample symmetry. For FIR filters the first case corresponds
to filters of odd length, and the second to those of even
length.

First take the case where Ho(z) = A(2%)+ 271 B(2?) is to
be half sample symmetric then the polyphase components
must be reversed versions of each other:

_ [ Hw(z) z'Hoo(z™)

Hp(z) - [ Hm(z) _Z—me(z—l) (9)
On equating (7) and (9) we get that the following
polyphase matrix exhibits linear phase and losslessness:

_ A(z) 27t A(zTY)
Hy(z) = [ —2mA(2) 2 A(z7Y) ] (10)

where A(z) is any allpass function. For example choosing
[=n=0, we get:

Ho(z) A(2?) + 27T A(z7Y) (11)
Hi(z) = ~A(2%) + 27T A(z7Y) (12)

Next suppose Ho(z) is to be even sample symmetric. In
this case one of the polyphase components must be half
sample symmetric, the other whole sample symmetric, and
both must be either symmetric or antisymmetric. Since
antisymmetric filters always have a zero at z = 1 the latter
case can never satisfy (8).

It is also implied by (8) that the denominators of A(z)
and B(z) are equal, so we must solve:

Na(2)Na(z7") + NB(z)NB(z"‘) = DA(z)DA(z“)

where N4(z) and Np(z) are the denominators and Dy(z)

is the common denominator.

Since an IIR filter is symmetric if and only if both numer-
ator and denominator are, we need consider only the sym-
metry of N4(z), Ng(z) and D4(z). There are four cases
that give that A(z) and B(z) have the whole/half sample
symmetries described above. These are that D4(z) ,Na(z)
and Np(z) are all symmetric and have lengths that are re-
spectively (odd,odd,even), (odd,even,odd), (even,even,odd)
and (even,odd,even).

For example for the (odd,odd,even) case A(z) has whole
sample symmetry, B(z) has half sample symmetry, and (7)
is lossless and gives filters that have whole sample sym-
metry. It is not clear whether rational solutions exist or
not.

6 Wavelet design results

Filters of the types described above are now used to gener-
ate wavelets. . Figure 1 shows the time function and spec-
trum of a compactly supported wavelet from an orthonor-
mal basis. It is a generalisation of those described in {2];
the extra freedom has improved the frequency selectivity. A
paraunitary filter bank with filters of length 22 was used.
Figure 2 gives the time functions and spectra of the lin-
ear phase compactly supported wavelets belonging to a
biorthogonal system. They were generated by filters of
length 19 and 25.

Taking the filters in (11) and (12) and the simple allpass '

. section:

14 az"!4bz7?
Alz) = b+az1+4 272
with @ = 7, b = 2.4 we get reasonable lowpass response for
Hy(z). The wavelet and its spectrum are shown in figure 3.

References

[1] A. Cohen, I. Dgubechies, and J.-C. Feauveau. Biorthog-
onal bases of compactly supported wavelets. submitted,
1990.

[2] 1. Daubechies. Orthonormal bases of compactly sup-
ported wavelets. Communications on Pure and Applied
Mathematics, XL1:909-996, 1988.

[3}] P.P. Vaidyanathan. Multirate digital filters, filter
banks, polyphase networks, and applications: a tuto-
rial. Proc. IEEE, 78(1):56-93, Jan. 1990.

[4] M. Vetterli. Filter banks allowing perfect reconstruc-
tion. Signal Proc., 10(3):219-244, 1986.

(5] M. Vetterli and C. Herley. Wavelets and filter banks:
relationships and new results. In Proc. [EEE Int. Conf.
ASSP, pages 1723-1726, Albuquerque, NM, April 1990.

[6] M. Vetterli and C. Herley. Wavelets and filter banks:
Theory and design. IEEE Trans. Acoust., Speech, Sig-
nal Proc., 1990. submitted.

- 2019 -



Figure I: Time function and spectrum of wavelet from orthonormal set generated by FIR filters of length 22.
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Figure 3: Time function and spectrum of wavelet generated by linear phase lossless IIR filter bank.
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