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ABSTRACT

We consider the construction of time-varying orthogonal fil-
ter banks. We first show that implementing an orthogonal
finite impulse response filter bank over a finite signal seg-
ment involves finding a set of orthogonal boundary filters.
We show that by carrying out a Gram-Schmidt orthog-
onalization procedure we generate boundary filters, that
necessarily remain localized in the region of the bound-
ary. We give a complete constructive characterization of
such boundaries for two-channel finite impulse response fil-
ter banks. These boundary constructions allow us to change
the topology of orthogonal subband trees at will, by grow-
ing or pruning branches at any time. The boundary filter
case can be further generalized to give overlapping transi-
tion filters when changing between orthogonal structures. If
we use the time-varying filter banks in an iterated scheme
they converge to continuous-time bases, much as in the
non-time-varying case.

1 INTRODUCTION

Two-channel multirate filter banks, such as indicated in
Figure 1, have been actively studied for some time. This
structure has been widely used for subband coding, and
the conditions under which it achieves perfect reconstruc-
tion are thoroughly understood. A very popular solu-
tion is that where perfect recomstruction is achieved with
Hi(z) = 2V ="Ho(—2z""), N being the filter length of Ho(z),
and Go(z) = Ho(z™'), Gi(z)= Hi(z!). This is known as
the orthogonal solution, since it can be easily verified that

< hl(n),ho(n—zk) > =0 (1)

< ho(n), ho(n — 2k) > b < hi(n), hi(n — 2k) >,
2)
i.e. the filter impulse responses are orthogonal with respect

to even shifts.

The action of the filter bank on an infinite signal col-
umn vector X can be represented using the time do-
main operators Ho and H;, where the k-th row of
Ho is ho(n — 2k), and the k-th row of H; is hi(n —
2k) = (=1)""ho(No — n + 2k) [9, 7]. The two rela-
tions (1), and (2), together with the fact that Figure 1
is a perfect reconstruction system, implies that if we in-
terleave the rows of Ho and H; to form the matrix T
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Figure 1: Maximally decimated two-channel multirate filter
bank.

| ]
where Pyg is the block

ho(0)
~ho(No 1)

ho(1)

ho(No — 1)
ho(No - 2) h

P = [ o ]
we get that
TT'=T'T=1

In words, T is a doubly infinite unitary matrix, or the rows
of T form an orthonormal basis for 1*(Z), the space of
square summable sequences.

A constraint of the analysis using this scheme is that it is
necessarily stationary; that is it assumes that we are deal-
ing with infinite signals, and that we use the same set of
filters for all time. It is always possible for the finite dura-
tion signal problem to zero-pad the signal, but this means
that there is some redundancy, and hence orthogonality is
lost. Similarly one can switch filters at any time, but the
perfect reconstruction property will be lost (at least in the
transition).

The contribution of this paper is to show that it is pos-
sible to apply orthogonal filter banks to finite duration sig-
nals, and to change the filters used in the analysis (or indeed



the topology of a filter bank treeg without losing orthogo-
nality or perfect reconstruction. Solutions to the finite du-
ration signal problem have been given before, notably using
the symmetric extension method (8], but we are interested
in the orthogonal case. Time-varying filter banks were con-
sidered in [Gﬁ using a different approach.

Applications of the time-varying filter solutions to the
construction of arbitrary orthogonal tilings of the time-
frequency plane are described in [3, 4]. We will restrict our
attention to the case of two-channel orthogonal FIR filter
banks; greater detail on many of the topics, and extension
to the M-channel case are given in [5]. In the case of station-
ary two-channel filter banks there is a well-documented link
with bases of wavelets [2]; we show that iteration of discrete-
time time-varying bases can lead to continuous-time time-
varying bases in much the same way.

2 BOUNDARY FILTERS

Implementing an FIR filter bank over a finite signal segment
involves finding some special way of treating the boundaries.
Since we want the resulting operator to have the properties
of orthogonality and perfect reconstruction (just as in the
infinite duration case) we require a square unitary matrix. If
we take, for example, the case of length-4 filters, applied for
the segment 0 < n < ny, consider the following truncation
of the time-domain operator

hoglg ho(2)  ho(3) O 0

hog? —hh?g;) o 2 & G
0 o 0 0

M 0 —ho(3) ho(2) —ho(l) ho(O;

(3)
We have shown the top left corner only, but the bottom
right is entirely similar. It is easy to verify that this matrix
is square, has full rank, but is no longer unitary. If we
denote by M; the i-th row of M we find that

<M;',M] > = 0) 'EE{O,I},]G {2,3,”'111—1,"1}; (4)

but < Mo, M; > # 0 and < Mn,_;,Mn, > # 0. Since
the matrix is of full rank, i.e. we have a set of linearly
independent vectors, we can restore orthogonality using the
Gram-Schmidt procedure. To do this start by normalizing

the first vector My = Mo /||Mo]|, and then

'

" " o1
My = M- <M, My >My - <M,M>M,

j=3

Myi— < My, My > M, . (5)

The simplification is a consequence of (4). Finally set Mlu =
M;/HM;H. Note that since M1 and M, each have only

three non-zero entries, so does M; from (5). The same
procedure is applied to the other boundary vectors Mn, 1

and M,,. A new matrix M” which has rows

(Mg, M}, Mz, Ms, -, Mny—2, My, . My, }

is then obviously unitary. What is important to note is
that M" has exactly the same zero entries as M; i.e. the
boundary filters have the same support as the truncated
filters.

One might expect that this example merely illustrates a
peculiarity of the length-4 case; but this is not so. For any
two-channel FIR filter bank the boundary vectors always
have non-zero elements only in the region of the boundary.
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Hence any possible completion of a truncated time domain
matrix can be found just by using the Gram-Schmidt pro-
cedure. Formally we state this as follows.

Proposition 2.1 The set of boundary filters needed to ap-
ply @ two-channel orthogonal filter bank, with length-N fil-
ters to a finite length signal is a set of SN —2)/2+d vectors
at each boundary, each of which has only N —2+d non-zero
values.

A proof is given in [5], we will here give the major steps.
First consider a matrix G which contains a truncated ver-
sion of the infinite time domain matrix, but where (in con-
trast to (3)) none of the filters are “chopped off.” That is
[ ]

Py

Py

where Py is the block of impulse response coefficients al-
ready defined. The dimension of G is clearly 2k x No +
2(k — 1), where k is the number of blocks. Next form the
matrix

Q=[04 G O],

where Oy, and Oy, are 2k x d; and 2k x d, zeros matrices.
We shall use Q to construct an orthogonal filter bank for a
signal of length L = No + 2(k — 1) + di + d,. We already
have 2k basis vectors (the rows of Q) so we must find the
L — 2k = No — 2+ d; + d, remaining vectors necessary to
complete the basis.

Now note, from standard linear algebra, that P = (I -

QT Q) is the orthogonal projection onto the space orthog-
onal to the row space of Q. Hence, any row suitable to be
added to the list of basis vectors must have the form

e=(I-Q7Q) e,

for some e;. In fact the Gram-Schmidt procedure is to
choose L -2k vectors linearly independent of the existing 2k
rows of Q and of each other; orthogonalize the first o with
. ?
respect to the others by taking e; = P - eo, and form a new
" I !
matrix Q; by adding the normalized vector e, = eq/[|eo].
The second vector is orthogonalized using the projection

P = (I-QfQi) and so on.
The critical observation,
proved in [5], is that (I — QTQ) has the following form
I-Uy 0
-Q'Q=| o0 0 0
0 I-Lo




where the blocks Ug and Lo are square matrices of size
(No —2)/2 4+ di and (No — 2)/2 + d, respectively. Hence
the projection matrix is zero apart from the small blocks
in the upper left and lower right corners. Thus all of the

orthogonalized vectors e; will have non-zero entries only
in the first and/or last N — 1 positions. When the signal
length L is large enough (roughly twice the filter length)

the two non-zero portions of the Gram-Schmidt outputs e:
are non-overlapping. In this case we can choose half of the
inputs to the procedure to have zeros in the last N — 1
positions, the corresponding outputs will then have no-zero
values only in the first N —1 positions. Similarly the second
half of the Gram-Schmidt inputs can be chosen such that
the outputs have non-zero values only in the last N — 1
positions. The N = 4 case constructed first was of this
form, so that there were two filters each with three non-
zero values at each boundary. Solutions which have non-
zero values at both boundaries correspond to the circulant
solutions and variations.

Essentially, once given enough linearly independent vec-
tors to complete the basis, the Gram-Schmidt procedure
Just orthogonalizes them. If we change the input vectors,
then we get a different orthogonal set at the output. Ob-
viously the procedure is not unique. Given one solution,
we can however search the space of all possible solutions by
premultiplying by the matrix

U; 0 0

0 I,. O

0 0 U,
where U; and U, are unitary matrices of size (No —2)/2+d,
and (No — 2)/2 + d, respectiveley. Minimal parameteriza-
tions of such matrices are easily realized in terms of rotation
elements.

3 TRANSITIONS BETWEEN FILTER BANKS

We can use the boundary filters generated above to switch
between orthogonal filter banks. This is easily done since
if Mo and M, are the matrices representing two different
filter banks operating over finite signal segments then

% )

M,

clearly implements a boundary between the filter banks.
The above matrix is obviously unitary. The matrices M,
and M, need not represent finite duration filter banks; if
M, were half-infinite with boundary filters in the lower
right corner, and M, half-infinite with boundary filters in
the upper left we should still get a unitary matrix. This
would give us a decomposition of an infinite signal, but
where we change filters at some point in the processing.

For this transition obviously there is no overlap between
the boundary filters of the M, and M, blocks; orthogonal-
ity is trivially obvious. It is also possible to have transition
filters such that they have support on both sides of the
boundary. We can explore the whole set of transition filters
by premultiplying by a matrix

I 0o o
0 U; 0},
0 0 I

where d is the number of vectors in the transition block, i.e.
the total number of boundary vectors on both sides of the
transition. In general this produces overlapping transition
functions, except in the particular case where Uy is block
diagonal and preserves the boundary filter pattern.

(6)

(M

(8)
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Figure 2: Splitting of the input signal x using orthogonal
two channel filter banks. (a) Single division. (b) Iterated
division.

Growing a subband tree, for example in changing from
the structure of Figure 2 (a) to that of Figure 2 (b) or
the reverse. This would make it possible to improve the
frequency resolution (going from (a) to (b)) or the time
resolution (from (b) to (a)) in a time-varying fashion.

4 CONTINUOUS-TIME BASES

In [2] it was demonstrated how discrete-time bases derived
from two-channel filter banks could be iterated to derive
continuous-time bases of wavelets. It turns out that a sim-
ilar results holds in the time-varying case: we can use the
discrete-time methods that we have derived to generate
continuous-time bases.

We will here sketch the idea, leaving a detailed analysis
to [5]. We consider the boundary filter case only, and, for
simplicity, examine the example where there is only one
boundary. For example suppose the matrix M, in (7) to be
half infinite, and to have boundary filters in the upper left
corner; its rows form an orthonormal basis for half-infinite
right-sided sequences. Call the matrix which contains its
even-indexed rows Ho, and the matrix with its odd-indexed
rows Hj. We will iterate this filter bank by considering the
matrix products HE.

Denote by Lik(z) the z-transform of the coefficients of

the i-th row of (Ho)k:

Li(z)= > Hi(i,n)z"

Nn==~00

It can now be shown that, for some small iy (less than twice
the number of boundary filters) that

k=1
Lu(z):z—l-”*(‘"‘o)HHo(z?’) i>i.  (9)

p=0

The function L, x(z) can easily be recognized as the z-
transform of the “graphical iteration” [1] to find the scaling
function ¢x(z) corresponding to the filter Ho(z) (see [10]).
That is if we define from Lix(z) a continuous-time function

f2y=HEG5)  j/2F<z<(G+1)/25 (10)



Figure 3: Boundary functions for wavelet basis for the inter-
val [0,4). Left and right boundary functions at one scale are
shown; these are supported on {0, 2) and [2, 4) respectively.
The wavelets Yr(z), ¥n(z — 1) are also shown.

it can be shown that for ¢+ > 4o ffk)(:c) converges to the
scaling function ¢n(z + 40 — 1) = ¢i(z) as k — oo.

Thus the rows i > 1o converge to ¢r(z +i0—1). But what
of the rows i < 7o ? This question is answered by the next
proposition.

Proposition 4.1 The sequences ffk)(z) for 0 < i < 3
converge for t > € , provided that for and 1 = iy does.
Further, given € > 0 when 0 < i < io we find that ¢i(z) is
a finite linear combination of ¢n(z — m) for z > €.

Figure 4: Transition functions for the transition between
¢2(z) and ¢a(z). There are three orthogonal transition
functions shown, which span the null space between {¢2(z+
1), ¢2(z +2),---} and {g3(z — 2),¢3(z - 3),---}.

We call the ¢i(z) for i < i the boundary scaling func-
tions. Again, following the analogy with the non-time-
varying case, to complement the scaling functions we define

M) = (Hy - Hg)(5,j)  §/2" <z < (+1)/2" (1)

Under the same conditions the ssk)(z) converge to Ya(r +
io — 1) for 1 > i0. For 0 <1 < 10 the sﬁk)(r) converge to
functions z/)o(z}, ¥1(2), - - Yig(r), which we call the transi-
tion wavelets. It is a direct consequence of Proposition 4.1
that these sequences converge for z > ¢ and have the same

smoothness as ¥x(z) away from the boundary.
Because of the orthogonality of all rows of M we have

Ho-Hp=1 and Hp-Hj =0
This guarantees

< ¢n(z), ¥p(z) > =

bnp-
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So the transiton scaling functions and wavelets are orthog-
onal as expected. To show orthogonality of the wavelets
across scale note that the wavelet at a scale k is found

from the rows of Hy - Hlé So to show orthogonality of the
wavelets at scales k and k — 1 we observe:
k « k-1 *
H, -Hp - (Hgp) -Hy H1~H0-Hi
= 0.

(12)
(13)

i

Thus
< Yn(z),¥p(22) > = 0.

This is the machinery we need to derive wavelet bases for
the interval.

An example is shown in Figure 3, where the left and right
boundary wavelet functions are shown, along with 1/;;.%1
and Ya(z — 1). The Daubechies length-4 filters were use
in generating this example.

We can also take iterates of a discrete-time basis contain-
ing transition filters. An example of the iteration of such a
scheme, using the same filters, is given in Figure 4.
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