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ABSTRACT

The Euclidean algorithm is a frequently used tool in
the analysis of one-dimensional (1D) multirate systems.
This tool is however not available for multidimensional
(MD) multirate systems. In this paper we discus how
Groebner basis techniques can fill this gap. After pre-
senting the relevant facts about Groebner bases, we
will show in a few examples how this technique can
contribute to MD multirate systems theory.

1. Introduction

Recently there has been much research work done on
multidimensional (MD) multirate systems. An overview
can be found in [1]. However, some basic questions
have been left untouched. In essence most of these
questions boil down to the following question: given
a matrix of polyphase components', can we effectively
decide whether or not that matrix has a left inverse.
The answer to this question is positive, and relies on
Groebner bases techniques. Groebner bases (GB) were
first introduced by Buchberger in his Ph.D. thesis and
popularized by [2]. By now the importance of Buch-
berger’s contribution has been appreciated in many
fields, and many good books on the subject have ap-
peared, notably [3]. Moreover, there are now many
algebraic systems incorporating Groebner bases tech-
niques: MATHEMATICA and MAPLE are two well
known examples. In this paper we want to highlight
the relevance of Groebner bases for MD multirate sig-
nal processing.

In many applications, the design and analysis of
invertible MD multirate schemes amounts to a quest
for the number “1”. The following three questions will
be used as examples of this paradigm.

1. Given an FIR low-pass filter G(z), can we effec-
tively decide whether or not G(z) can occur as
an analysis filter in a critically downsampled, 2-
channel, perfect reconstructing (PR) FIR filter
bank?

1We will always assume that all our filters are FIR.
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2. Given a sample rate conversion scheme consisting
of upsampling by p, filtering with an FIR filter
U(z) and downsampling by ¢, can we effectively
decide whether or not this scheme is FIR, invert-
ible?

3. Given an oversampled, MD FIR analysis filter
bank, can we effectively find an FIR synthesis
filter bank, such that the overall system is PR?

These questions give only a small sample of the set
of MD problems for which Groebner bases are an es-
sential tool. At this point we would like to mention the
work of Park and Woodburn [4]. Using Groebner bases
techniques Park and Woodburn have given a complete
parametrization (in terms of ladder structures) of MD
bi-orthogonal filter banks with 3 or more channels. An-
other example of an application of Groebner bases can
be found in [5]. In this work the Groebner bases tech-
nique is an essential tool for the practical implementa-
tion of the Quillen-Suslin theorem.

In Section 2. we will derive a mathematical formula-
tion for the three above problems, show how the num-
ber “1” is involved, and how to solve them in the 1D
case. In Section 3. we introduce Groebner bases, and
show how they can be used to solve the MD versions of
these questions. Some toy examples will be included.

2. The One-dimensional Case

To answer the first question we decompose G(z) into
its polyphase components

G(z) = Go(2%) + 271G (2?).

As noted in [6], the filter G(z) occurs as the low-pass
filter in a 2-channel PR filter bank if and only if there
exists Laurent polynomials Ho(z) and H(z) such that

Go(2)Ho(2) + G1(2)H1(z) = 1. (D

Choosing an integer L such that Go(z) = 22 Go(2)
and G1(z) = zI'Gi(z) are anti-causal, and by multi-
plying the left and right hand side of Eq. (1) with a
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sufficiently high power of z, the condition of Eq. (1)
can be translated to the existence of polynomials a(z)
and f(z) and a integer M such that

o(2)Go(2) + B(2)G1(z) = M. (2)

The condition and the construction of the polyno-
mials «(z) and B(z) are simultaneously solved by the
Euclidean algorithm. In a sequence of division with re-
mainder steps, the Euclidean algorithm computes a lin-
ear combination of the polynomials G;(z) which equals

the greatest common divisor of Go(z) and Gy(z). If the
greatest common divisor is anything else but a power of
z, G(z) can not act as the low-pass filter in a 2-channel
filter bank. If the greatest common divisor is indeed a
power of z, then the coefficient of the linear combina-
tion immediately allow the construction of a filter bank
with G(z) as low-pass filter.
To answer the second question we may assume that
the numbers p and ¢ are coprime, p > ¢. Let U(z) =
Pe-1 27U;(279) be its polyphase decomposition with
respect to pq. Let the expression Uy (z), 0 < k < p,
0 <1 < gq, be the polyphase component U;(z) such
that ¢ = k (modp) and ¢ = ! (modgq). Invert-
ibility of the sample rate conversion scheme can then
conveniently be formulated as the existence of a Lau-
rent matrix D = (D, £(2)) which is a left inverse of
U = (Us,i1(2)). As one easily checks, the condition that
U has a left inverse implies that there exist (’q’ ) Laurent

polynomials D;(z) such that
> Di(2)Mi(z) = 1, (3)

where M;(z) ranges over the determinants of the max-
imal minors of U. Moreover, Eq. (3) is also sufficient:
in [7] it is shown how D can be derived from the data
D;(z). Similar to the approach in the first question, the
condition of Eq. (3) can be translated into a condition
on polynomials. The solution can then be found using
the Euclidean algorithm.

The third question is mathematically indistinguish-
able from the second. An oversampled filter bank cor-
responds to a non-square polyphase matrix, and the
question is whether or not this question has a left in-
verse.

If we consider the three problems in their MD ver-
sions, the conditions which need to satisfied resemble
their 1D counter parts Eq. (1) and Eq. (3). The only
difference is that we have to interpret the variable z as
a multivariable (z1,---,2,). However, the Euclidean
algorithm is no longer valid, and thus the coefficients
a(z), B(z) and D;(z) and their existence have to be
found in another way. At this point Groebner bases
techniques enter the scene.

3. The Multidimensional Case

The Groebner Bases Algorithm (GBA) is a very pow-
erful tool for solving a great variety of problems in mul-
tivariable polynomial theory. The general GBA deter-
mines for any set of multivariable polynomials {f;(x)}
and any polynomial h(x) whether or not h(z) can be
written as a linear combination

D Xi(@)fi(#) = hz). (4)

Moreover, it finds an explicit set of polynomials {\;(z},
if such a set exists.

In order to define Groebner basis, we first have to
introduce the notion of monomial order. A monomial
in Clz] = Clz1,. .., 2, is'a power product of the form
2" - -z&r, and we denote by T'(z1,. .., 2, or simply
by T, the set of all monomials in these variables. In
the univariate case, there is a natural monomial order,
that is,

l<z<zi<ed< .

In the multivariate case, we define a monomial order <
to be a linear order on 7" satisfying the following two
conditions.

1.1 <tforallteT.
2.ty <ty impliest; -s <ty -sforall s,¢1,t5 € T.

Once a monomial order is given, we can talk about the
leading monomial, It(f()), of f(x) € Clz]. It should
be noted that; if we change the monomial order, then
we may have a different 1t(f(2)) for the same f(z).
Now, fix a monomial order on T, and let I C C[] be
an ideal (i.e a set which includes all the elements which
it can generate by taking linear combinations). Define
It(1) by
(1) = {t(f(=))|fel}.

Definition 1 {fi(),..., fi(z} C I is called a Groeb-
ner basis of I if

(fr(x)), ..., t(fe(=))) = (D)

v.e. if the ideal generated by 1t(f1(z)), ..., 1t(fi(=)) co-
wncides waith 18(7).
Example 1 Fix the degree lexicographic order on C[z, y],

and let I = (f(=),g(x)), with f(z) = 1 - zy and
g(x) = z%. Then the relation

(1+2y)f(z) +y°g(x) =1

implies that T = C[z,y], and therefore (1t(1) = Clz, y]
But (It(f(x)),1t(g(=))) = (—zy, z?) C (). Therefore,
{f(x),g(=)} is not a Groebner basis of the ideal I. O

The main reason that Groebner basis is useful for us
comes from the following analogue of the Euclidean di-
vision algorithm. - )
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Theorem 1 (Division Algorithm)

Let {It(fi(x)), ..., 1t(fi(x))} C Clx] be a Groebner ba-
sis w.r.t. a fired monomial order, and let h(x) € Clz].
Then there is an algorithm for writing h(x) in the form

M(@)fi(@) + -+ M(@) fi(=) + r(2)
such that h(x) € I ¢f and only if r(x) = 0.

h(z) =

The polynomial (x) in the above is called the normal
form of f(x) w.r.t. {It(fi(x)),...,6(f:(=x))}. Now, in
order to solve our problem, we just compute the normal
form of h(x) w.r.t. the given set of polynomials (as-
suming that this set is a Groebner basis. Otherwise,
we first have to transform it to another set of polyno-
mials which is a Groebner basis. There is a standard
algorithm for this transformation). If it is 0, then h(x)
can be written as a linear combination of the polyno-
mials f;{(x) and we have at the same time found the
polynomials A;(z).

For the purpose of this paper we are only inter-
ested in the case that the polynomial h(z) equals the

constant 1:
2 Ni(@)filz) = 1. (5)

In that case, the theory also provides an easy para-
metrization of all solutions: {A;(x)} is a solution of
Eq. (5), then {ui(=)} is also a solution if and only if
there exist polynomials {e;(#)} such that

i) = Ai(@) = 3 aj(@)(8i5 = fi(=)Xi(=). (6)

Returning to our three problems, we see that we
should be able to apply Groebner bases computations
to solve them. There is however one catch: our ques-
tions involve Laurent polynomials, and not regular poly-
nomials. This can however easily be overcome by a
simple trick.

For every variable z; we introduce two new variables
z; and y;. Substituting 2 for every positive power z”
and y¥ for every negative power z; k¥ we transform the
original set of Laurent polynomials into a set of regular
polynomials. We then enlarge this set by adding the
polynomials z;y; — 1. One verifies that the constant 1
is a linear combination of the original set of Laurent
polynomials if and only if the same is true for the con-
structed set of regular polynomials. Moreover, given
a linear combination of polynomials , we find a linear
combination of Laurent polynomials by back substitu-
tion: z; and y; are replaced by z; and zi‘l respectively.

We now consider the first question. Applying the
method outlined above, we can check whether or not a
given MD low-pass GG(z) can act as an analysis filter in
a 2-channel filter bank. Moreover, if the answer is yes,
we explicitly find a particular low-pass synthesis filter

Frequency response for Analysis Filter

~Pi i
Vertical

Horizontal

Figure 1: The frequency response of G(z1, z2).

Hpori(2). From Eq. (6) we also derive that any other
solution Hgen(2z) is of the form

Hgen(2) = (1 = (A(2)F(2))o)Hpart(2) + A(2). (7)

In this formula A(z) is an arbitrary Laurent polyno-
mial, and the expression {.)g denotes the result of con-
secutive down- and upsampling with respect to the
sampling lattice involved. Note that in the one-dimen-
sional case, Eq. (7) reduces to a formula which can
directly be derived from the Bezout identity (see [6] for
more details).

Example 2 Consider the filter G(z1, z3) with impulse
response

0 0 0 8 0 0 0

0 0 24 —96 24 0 0

1 0 24 —192 456 —192 24 0
M 8 -—96 456 3200 456 —-96 8
] 24 —192 456 —192 24 0

0 0 24 —96 24 0 0

0 0 0 8 0 0 0

The filter G(z1,z2) is designed to have a diamond-
shaped low-pass frequency response. It is flat of order
2 at DC, and vanishing at the aliasing frequencies of the
quincunx sampling lattice (see Fig. 3.). These proper-
ties make it a likely candidate for the low-pass analysis
filter of a 2-channel, PR filter bank (downsampling on
the quincunx lattice). Applying the GBA? we indeed

2We used MATHEMATICA and the Groebner package
written by Garry Helzer, gah@math.umd.edu, for the actual
computations.
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find that this is the case, and the filter Hy4r:(21, 22)
with impulse response

1 0 96 576 96
—— | 48 576 42838 576 48
3585

is found as a particular solution for the synthesis filter.
By choosing an appropriate A(z1, z2) as in Eq. (7) we
can modify Hpari(21,22) in order to meet or approxi-
mate extra conditions. O

We will now consider the second question and show
how Groebner bases can be used in 2D sample rate
conversion schemes. As the purpose is to convey the
method, and not to show our computational skills, only
toy examples will be used.

Example 3 Consider the 2D sample rate conversion
scheme which consists of vertical upsampling by a fac-
tor 3, filtering with a filter H(2) = H(z1, 22) and hori-
zontal downsampling with a factor 2. We assume that
H is FIR, and we would like to know if this scheme has
an FIR inverse. To be more precise, we are looking for
an FIR filter G(2), such that horizontal upsampling
by a factor 2, filtering with G(z) and vertical down-
sampling with a factor 3, cancels the effect of the first
sample rate conversion scheme.

Let the filier H(2) be givenby H(z) = Y h; ;2727 .

Following the method outlined in Section 2., but now
for this 2D case, we construct the 3 x 2 polynomial ma-
trix Hkyl(z) = zh3i+k,2j+121_122—17 where 0 < £ < 2
and 0 </ <1.

Now assume momentarily that H(z) is a separable
filter H"(21)H?(z3). 1t is easily seen that in this case
the filters Hy i(z) are products of 1D polyphase com-
ponents, i.e. Hg(z) = H(21)H?(z2). Consequently,
all the maximal minors of Hy ;(z) have determinants
equal to 0. Therefore the 2D analogue of Eq. 3 cannot
be satisfied, and inversion is impossible.

Finally we consider an, admittedly slightly contrived,

non-separable example, where the filter H(z) is given
by the 4 x 6 (horizontal x vertical) impulse response

2 3 2 1 3 2
3 5 3 1 3 2
1 1-1 1 1 1
2 2 2 1 1 1

The polyphase component matrix Hy, ; is then given by
z+ T I N Pt PP

(Hip) = +3,z2 Ypartart s42e7 4325 4a0 02t |
+ ‘1+2z;1+z—1 I PIE = TR B ik Pl

Computing the determinants of the maximal minors
we find Do(z) = —1 — 2z, Di(z) = —25 b — it

and Dy(z) = 1 — 231 — 272, ', These determinants
are proper multivariable expressions and the Euclidean
algorithm will therefore not work. This example is sim-
ple enough to be solved by ad hoc computations, but
the GBA provides the generic method. In this case
one easily verifies that Dy — Dy = 1 and therefore
there exist an inverse FIR filter G(z). To find G(z)
we first need to find a left inverse Gy ; to Hy;. Follow-
ing the method in [7], the i*® row of this left inverse
can be found by rewriting 3, A;(2)D;(z) = 1 in the
form ZJ- B;H;; = 1. The vector ( 8o, 81,82 ) will then
make up the i*? row of Gt 1. Finally, the matrix Gy is
related to the inverse filter G(2) as the set of backward
polyphase components To be precise, G(z) is given
by G(z) = 5 2¥2L Gy (22, 23). Working out these for-
mulas one finds the following impulse response for the
filter G(2):

-2 2 -1 -1 1 -1
3 -3 2 1 —1
-1 1 0 -1 1
2 -2 1 -1
a
References

[1] T. Chen and P. Vaidyanathan, “Recent Devel-
opments in Multidimensional Multirate Systems,”
IEEE Transactions on Circuits and Systems for
Video Technology, vol. 3, pp. 116-137, April 1993.

[2] B. Buchberger, “Grobner bases — An algorithm
method in polynomial ideal theory,” in Re-
cent Trends in Multidimensional Systems Theory
(N. Bose, ed.), ch. 6, pp. 184-232, Dordrecht: D.
Reidel, 1985.

[3] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties
and Algorithms. Undergraduate Texts in Mathe-
matics, Springer-Verlag, 1992. ISBN 0-387-97847-
X.

(4] H. Park and C. Woodburn, “An Algorithmic
Proof of Suslin’s Stability Theorem for Polynomial
Rings.” To appear in the Journal of Algebra., 1994.

[5] S. Basu and H. M. Choi, “Multidimensional causal,
stable, perfect reconstruction filter banks,” in Pro-
ceedings of the ICIP-94, pp. 805-809, Nov. 1994.

[6] M. Vetterli and C. Herley, “Wavelets and Filter
Banks: theory and design,” IEEE Transactions on
Stgnal Processing, vol. 40, pp. 2207-2232, Sept.
1992.

[7} A. Logar and B. Sturmfels, “Algorithms for
the Quillen-Suslin Theorem,” Journal of Algebra,
vol. 145, pp. 231-239, 1992.

2124



