ADAPTIVE SAMPLING FOR VERY LARGE PARTICLE SYSTEMS USING AN
INCREMENTAL SELF-ORGANIZING FEATURE MAP: AN APPLICATION IN
MOLECULAR DYNAMICS

Laurent Balmelli

Laboratory for Audio-Visual Communications
Swiss Institute of Technology

ABSTRACT

This paper describes an improvement of the self-organizing

feature map (SOFM) obtained with the Kohonen neu-
ral network. The ameliorations are dedicated to its
usage in computer graphics and mainly in animation
of particle-based systems. We show its application in
the context of the visualization of molecular dynamics
systems. Finally, we compare this solution with other
works based on particle systems.

Animations: http://lcavsun6.eplf.ch/EGCAS96

1. INTRODUCTION

The visualization of molecular dynamics systems can
be achieved with several graphic techniques. In this
paper, we consider a polygon-rendering method, which
consists of displaying each atom with a sphere. Prop-
erty mapping is then applied on the spheres, by colour-
ing them using the temperature of the corresponding
atom. If an animated visualization is wanted, this
method is suitable as long as the system size is small
(500-2000 atoms). For large system (10® —107) atoms),
this technique becomes unusable, as the scene com-
plexity is too high for today’s machines. This pa-
per proposes a method to animate the visualization of
large molecular dynamics (MD) systems by reducing
the amount of information (essentially the set of atom
coordinates) and keeping the main interesting features:
the system organization and the properties (like tem-
peratures) distribution. This technique can be applied
in several other applications based on particle systems.
Suggestions are made in Section 4 to include it in other
models. Comparisons are made with a crowd visual-
ization model, a model for human hair structure and
finally with a model for the visualization of water flow.

2. BACKGROUND

2.1. molecular dynamics

A molecular dynamics problem consists of the physical
simulation of a set of atoms. Each atom is considered
as a point mass and Newton’s equations are integrated
to calculate its motion. In the basic model, electronic
interactions are not taken into account. This model is
however sufficient to simulate substances like gas, fluids
(in [4], a simple MD model to simulate water is given),
solids...etc. In this paper, we consider the issue of the
visualization of a large set of atoms, where one wants
to observe macro-phenomenons like aggregations, mi-
celles or simply global system evolution.

A solution for visualizing and animating efficiently a
very large MD system would be to discretize it accord-
ing to its topology and its distribution, each discrete
value representing a local density of atoms - in [3], the
inverse problem is related, where the authors propose
to simulate large particle sets using density functions
based on the evolution of smaller sets -. This operation
can be performed using a SOFM like the Kohonen neu-
ral network. To obtain the property distribution of the
system, property mapping can be applied on the dis-
crete representation. This technique can also be used
to enhance the discrete model, as the network conver-
gence quality depends heavily on the shape of the sys-
tem.

To produce an animation of the system, a more ef-
ficient discretization method has to be defined such as
one which considers the slow convergence of the Koho-
nen network. For this reason, an incremental algorithm
is proposed to update the discrete representation. The
advantage of having the possibility to quickly recalcu-
late the discrete model from a previous configuration is
that an animation can be produced with it. Visualiza-
tion could even be achieved while the system is effec-

tively computed using molecular dynamics algorithms,
assuming that those are effective enough to not slow
down the frame rate of the animation. This feature
would allow us to study MD systems in ”real-time”.
More simply, visualization can be achieved with sets of
pre-computed data which in this case are atom posi-
tions at successive time steps.

2.2. Neural nets and the Kohonen network

This section presents the bases of neural networks, how-
ever more details can be found in [6]. The mathemat-
ical neuron model is an information-processing unit.
Three basic elements can be distinguished:

e A set of synapses (inputs), each of which is char-
acterized by a weight of its own. A weight is pos-
itive if the associated synapse is excitatory, else
the synapse is inhibitory.

e An adder for summing the input signals, weighted
by the respective synapses of the neuron.

e An activation function for limiting the amplitude
of the neuron output. Typically, the normal-
ized amplitude range of the output belongs to
the closed interval [0:1] or [-1:1].

o A threshold that has the effect of lowering the net
input of the activation function.

A neuron is defined by the following pair of equa-
tions

uy, = fr(Z)
yr = (ur —)

where f, is a fixed function, k is the neuron index (In
the basic neuron model described in [6], fi is a weighted
summation), uy, is the adder output, 8y, is the threshold
and yy, is the output signal of the neuron. The activa-
tion function in can be any ”useful” function, depend-
ing on the usage context.

Figure 1 gives a representation of the basic neuron
model. Each synapse j of neuron k is weighted by wy,;
and z; denotes the input value on synapse j.

The Kohonen network is composed of a set of neu-
rons, usually organized as a 2D mesh (see Figure 2).
The input is propagated to all neurons and each of
them computes the output according to its character-
istics. Neurons are only differentiated by their weight
values and they all compute the same function.

Assuming that the network input is a tridimensional
vector #, the first feature of the Kohonen network is

activation
function

input

output
signa P

junction

weights

Figure 1: Basic neuron model

e ——— ..

Figure 2: Example of a two-neurons network

that each neuron k simply computes the Euclidean dis-
tance between the input and its weights. In this model,
0}, is null and ¢ is the identity function.

Yk = \/(331 - U)k,l)2 + (z2 — wk,z)z + (z3 — wk,3)2

The winner neuron is defined as the closest neuron from
the input (see Figure 4). The second feature is that
a static neighborhood is initially defined between the
neurons of the network. Every neighbouring neurons
are linked together by a line for representation. Fig-
ure 3 shows a tridimensional cubic neighborhood be-
tween the neurons of the network.

Figure 3: Example of a 3D neighborhood in the Koho-
nen network

We now present an algorithm for a Kohonen net-
work having a tridimensionnal input (each neuron has,
in this case, three synapses). The inputs are chosen
randomly in the input space to obtain a feature of gen-
eralization. One could say that the network ”learns”
the distribution of the input space by modifying the
weights of its neurons. This concept is discussed in
more details in [6].

initialization
e input: (£3,...,2,) aset of tridimensional vectors

e set w}, to random values for each neuron.

define a static neighborhood between the neurons
of the network.

a is a learning factor and 0 < a < 1.
e V} is a set of neighbours for the neuron k.

e lett=0

algorithm

1. Pick up randomly an input vector

2. Search the winner neuron
The winner neuron (i.e the closest neuron) is de-
fined as the one with y, = min; _,(y;), where p
is the number of neurons and y; = ||w; — ;]|

3. For this neuron k and Vj,(t), do the update wj;(t) =
(¢ — 1)+ alt) % (& —), where j € {k, Ve(t)}.

4. t =t+1, update o and Vj, for the next iteration

5. return to step 1 until the network has converged.

The complexity of the weight update depends di-
rectly on the chosen network topology. The level of
convergence of the network can hardly be evaluated
and the convergence speed depends of the chosen pa-
rameters for the algorithm. One can say that the net-
work converges when it presents an organization (this
term will be clear with the following examples). It is
very important to note that the neuron weights are
initialized to random values. These values should be
uniformly distributed in a bounding box enclosing the
MD system. After having randomly chosen an input,
the winner neuron and its neighbours are approached
from it using a displacement vector proportional to a «
factor and to the distance they are separated by. Figure
4 illustrates this operation, with a = 0.5.

This operation is performed by the Kohonen algo-
rithm in each iteration. The learning factor « is con-
tinuously decreased during the iterations. The chosen
decreasing function is

1

a(t+1) = a(t)(m

where a(t) is the value at iteration t and @ is an in-
crement set by the user. For instance, a common value
for a(0) is 0.9. The value a(t) is updated after every T,

. 5%,
Winner e \ %
neuron . Tl
neighborhood ™~~~ _ _
link Q

neighbor
neuron

Figure 4: Illustration of the Kohonen algorithm

neighborhood of neuron 1

Figure 5: Dlustration of an 2-extended neighborhood
for the neuron 1

time interval. Initially, it is necessary to artificially ex-
tend the neighborhood for each neuron to the complete
network, and decrease it during the iterations.

The extended neighborhood is not used for the graphic
representation and only the links with direct neigh-
bours are displayed. In the example of figure 5, the
initial neighborhood of neuron 1 is extended to neu-
rons within a distance of two. In this case V;(0) =
{2,3,4,5,7}. The neighborhood decreasing function is
then

Vi) —1 iftmodT,=0and Vi ¢ 0

Vet +1) = { Vi (t) otherwise

where T, is the decay interval. The operator &
denotes a reduction of the neighborhood set according
to the network topology. Figure 5 shows an example of
a bidimensionnal neighborhood topology (planar grid).
For instance, V},(0) —1 would be {2, 4} according to the
indices in figure 5).

3. APPLICATION IN VISUALIZATION OF
MOLECULAR DYNAMICS

3.1. Discrete representation

The following examples show the results obtained using
different atom distributions. The chosen neighborhood
topology is a tridimensionnal grid, whose size is given
by three integers (ns,ny, n.) representing the number
of neurons in each dimension of the topology.

In the first example, the original system size is 250000
atoms and their distribution is approximately uniform.
The network convergence is obtained using the param-
eters a(0) = 0.9, T, = 1000, ® = 1, T, = 2500, § = 6,
ng = ny = n, = 6 after 20000 iterations of the Koho-
nen algorithm.

atoms are located- the convergence is harder, because
of the regular structure of the network. This case is
illustrated below.

In the next example, the system size is 170000 and
the atoms are quite uniformly distributed in each of the
boxes 1 and 2 (see configuration scheme on Figure 8),
but the density of atoms in box 2 is half of the density
in box 1. A network with a neighborhood configuration
of nyg =5, ny =5, n, =5 was used. A neighborhood
extension was made along dimension n, where the sys-
tem is extended by box 2. The parameters used were
a(0) = 0.9, T, = 1000, & = 1, T, = 2500, § = 6,
ng = ny = 5 and n, = 6 and 20000 iterations of the
Kohonen algorithm were performed.

Figure 6: original system

Figure 7: discret system

One can see that the neuron distribution is an ap-
proximation of the system distribution. One obtains
high quality convergence (i.e approximation) on con-
tinuous distributions of atoms for both uniform or non-
uniform distributions. On detached distributions -when
the system have more than one separated region where

Figure 9: discret system

In this case, convergence quality is lower and one
can see that some neurons appear in locations where
no atom is present in the original system. We call
these neurons ”lost” neurons. This is due to the chosen
neighborhood topology for the neural net. Some neu-
rons have neighbours in both regions represented with
boxes 1 and 2 and are ”lost” between these. In the
next sections, two techniques to improve visualization

of such systems are described.

3.2. Property mapping

Each neuron (after convergence) can be coloured us-
ing information such as the average temperature of the
surrounding atoms. The property function applied to
the neuron i is

1 &
pi=-2. T
n; =

where n; is the number of atoms surrounding this
neuron and T} is the temperature of atom j. Other
functions for p; could be used to filter atom properties,
and thus enhancing visualization in some applications.
The property mapping on the neural net must be ap-
plied after convergence because of the random initial-
ization of the neuron weights. The neurons will then
”travel” in the discrete space before reaching their final
location. After convergence and for each atom of the
original system, the winner neuron is searched. Then,
the atom property is added to the neuron property.
Finally, the final neuron property is the average of the
properties which were added to it. The next illustra-
tions show the results obtained using this technique.
The MD systems are the same as those used in the
previous examples.

Figure 10: Exemple of property mapping

In figure 10, one can observe now a “line” of warm
neurons (high average temperature p;). With this re-
sult, one can see that in the discrete model the user
can track more efficiently the properties of the system.
Information that are not visible in the real system, due
to the too great amount of data, can now be observed.
The region emphasized on the discrete model shows a
warm region of atoms which is not discernable in the
real system. If after the property mapping operation
some neurons were never “hit” by atoms (this will be
the case for the lost neurons), they will be deleted from

the representation. In the second example, property
mapping on the detached distribution used in a previ-
ous example is applied.

Figure 11: Higing of neurons using property mapping

As shown in Figure 11, The ”lost” neurons are suc-
cessfully hidden and the visualization of the discrete
system has been enhanced.

3.3. Introducing a varying radius in the repre-
sentation

An efficient method to handle the lost neurons is to
represent each neuron with a radius proportionnal to
the number of atoms it represents (by counting for how
many atoms each neuron is the winner neuron). We will
see that this solution is very usefull when we will in-
troduce the algorithm for incrementally updating the
network. The radius size is increased logarithmically
in function of the size of the input. We give here some
example of the convergence obtained with a detached
distribution. The atoms are simply distributed on two
parallel squares, having both the same density of neu-
rons. Figure 12 show the convergence without using a
varying radius, whereas figure 13 show the result while
using it.

3.4. Adding an incremental mechanism

We call an incremental update a method which allows,
from an initial network configuration (defined by a set
of neuron weights), to find the resulting network config-
uration after having modified the input space used for
the previous network convergence. The construction of
such an algorithm is possible for two reasons:

e Because of the very small time step used, the
atoms in the MD system move slowly. Then, the

Figure 13: Convergence using a varying radius

values of the set of atom coordinates obtained at
one iteration is not very different from the ones
obtained at the next iteration.

e The values of a set of successive locations of an
atom are correlated during the simulation.

The issue is that some atoms in the system move
faster than others, and those ones ought to influence
more the network (i.e the discrete representation), as
the difference between their previous locations and the
new ones is greater than that of the other atoms. For
this reason, we propose a mechanism for choosing ran-
domly these ”interesting atoms” more often than the
ones whose position do not vary greatly. The core of
the incremental algorithm relies on this idea. The ve-
locity of an atom determines its activity. This value
can be used to assign a probability to each atom for
the random selection. A probability mass function can
then be constructed for the whole system. Even if the
network have previously converged before using the in-
cremental algorithm, the atoms still have to be chosen

randomly for the following reason: the Kohonen net-
work gives an approximation of the distribution of its
input and has a feature of generalization, and by choos-
ing with a higher probability the fast atoms, the dis-
crete model will reproduce more faithfully the system
motion. This insight allows the network to be modified
on only a small random subset of the database (the
atom coordinates) and not the complete set, and thus
lower the number of necessary iterations to obtain the
network update. A simple and efficient algorithm for
the random selection of the atoms is given below. The
first task is to normalize the atom velocities and to sort
them in a decreasing order. The normalization is done
using the value , where

2 2 2
Vi + Uy + vy

where v, ;, vy,; and v, ; are the velocity of atom 1
on each axis and n is the system size. Each velocity

/22 2 2
Os%z ’Uz,i+;iy,i+vz,i =1)_ZS]_

Finally, by simply generating uniformly a random
number in the range [0...1] and using the following
algorithm, an atom can by chosen according to its as-
signed probability:

Initialization

. [vi_“, ey vg"] is the sorted velocity vector, where
a; correspond to the atom index.

.7,:0

Algorithm

1. generate a random number 0 < ¢ <1

L i G5 .
2. i=i+1, C:Z;‘:1 v;? and inder = a;

3. if £ < c then take the atom which index is index
else return to 2

The great advantage of sorting the normalized atom
velocities in a decreasing order is that one can minimize
the number of steps of this algorithm for finding the
chosen atom. Initially, the non-incremental algorithm
(see Section 2.2) is used to obtain an initial state for the
incremental algorithm. During the update only a few
iterations are sufficient to update the network (usually
5-10% of the number of iterations necessary for con-
vergence when using the non-incremental algorithm),
but this depends on the system shape and the topol-
ogy of the network. This makes this method suitable

for animation. To keep a fine discrete representation of
the system, it is very important to have a very small
learning value (computed by the «(t) function) and to
have a 0-extended neighborhood, meaning that an in-
put modifies only the winner neuron.

In the following example, a MD system containing
2000 atoms has been discretized using a 4x4x4 Kohonen
network. The system has been simulated using molec-
ular dynamics algorithm during 100 time steps. After
computing each time step, the network has been in-
crementally updated using the new atom coordinates.
Figure 14 shows the MD system evolution after 100
timesteps. We obtain a similar initial discret state as
the one shown in figure 7. The result of this com-
putation is taken as the initial network state by the
incremental algorithm. Figure 15 shows the resulting
incrementally modified network.

Figure 14: system evolution after 100 timesteps

One can observe in this example that the system
begins to burst after some timesteps. The network
tries to follow its motion and is heavily modified by the
atoms ”escaping” the system. In this kind of simula-
tion, no boundaries for the MD system has been simu-
lated. This is definitely the worse case for the incremen-
tal modification as the network structure cannot burst.
On system having quasi-periodic motion, for example
on a melting structure, we obtain a very good approx-
imation of the atoms motion. In this case, the varying
radius concept introduced in section 3.3 is very useful,
as during the incremental modification, each neuron
does not represent anymore an equal density of atoms,
as it was the case in the original model. We can now
approximate the motion of the system and have a rep-
resentation of the amount of input that are effectively

Figure 15: discrete system obtained with the incremen-
tal update

moving. We give here an example of a 2000 atoms sys-
tems. This system simulates a set of atoms where only
a few of them are sufficiently excited to bounce on the
structure and then to return in the group. We give
approximations of the system at several resolutions to
show that, even with a low complexity model (i.e small
value of the parameters n,, n,, n,) one obtain a good
approximation of the original model. We can then eas-
ily adapt the resolution to the capabilities of the ma-
chine. We give here only a representation of the original
model: figure 16 shows the initial state of the periodic
motion, whereas figure 17 shows the highest location
reached by the atoms. The resulting approximations
are given in appendix.

Figure 16: Initial state. a few excited atoms are emerg-
ing of the structure

The incremental mechanism added to the Kohonen
algorithm is the key to obtain animated visualization of
large systems because of the low number of iterations
necessary to obtain the network update. This feature
allows visualization of an MD system while this one is

Figure 17: The excited atoms reached their highest
location and will now fall down into the structure

computed. In the case where the user works on pre-
computed data, the incremental algorithm can be used
to obtain a sufficient frame rate for the animation of
very large molecular dynamics systems.

4. DISCUSSION

The methods described in this paper can be used to im-
prove rendering performances and/or to animate very
large particle-based systems having drastic density vari-
ation over space and time. It can also be used to visual-
ize them at different levels of resolution, depending on
the chosen resolution level (i.e the values (ns,ny,n.)).
These new possibilities can be exploited in many ap-
plications and some examples are presented below.

We showed in this paper that, using a topologi-
cal and adaptive sampling method, one can represent
the organization of a molecular dynamics system with
less information. In the example of Figure 10, one
can see that the system is represented with 1000 times
less information (if we consider the factor between the
amount of atom coordinates and the amount of neu-
ron weights). Animation of very large system can be
thus performed. A multi-resolution concept can be in-
troduced with the following example. Assuming that
an user wants to initially visualize the organization
and behaviour of a atoms system by representing each
atom with a sphere, then zooming into the ”interest-
ing” parts of the system to observe phenomenons like
aggregation or micelles. Obtaining an animation with
a sufficient frame rate with such a great amount of
information is still a challenge in computer graphics,
even when using level of details. This can be achieved
by animating a discrete representation of the system.
Zooming into the system will reduce the size of the vis-
ible scene. So discretization can be targeted on the ob-
served sub-system, improving resolution of the discrete
scene. One can obviously represent the real system
when the scene complexity is sufficiently low, depend-
ing on the hardware used.

Assigning properties to the components of the dis-

crete system is done with the property mapping pro-
cess. FEach discrete value characterizes its surrounding
environment. We have also shown that the property
mapping technique on the discrete system can also be
useful to observe phenomenons that cannot be seen in
the real system, because of the great quantity of infor-
mation. This remark is also illustrated by figure 10.

In [2], a crowd in a virtual building is simulated us-
ing a model in which each individual is an independent
entity. To optimize the position of signs, the corri-
dors dimensions or the location of emergency exits, the
pedestrian flow is visualized by representing each per-
son with a geometric model. To prevent graphic bot-
tlenecks, several levels of details are defined for those
models, allowing faster animations when large crowd
are visualized. An alternative to this graphic represen-
tation would be to discretize crowd before representa-
tion, as only global movement tendencies want to be
observed. This approach would allow the simulation of
a much bigger crowd. Geometric models should then
be designed to represent groups of people instead of in-
dividuals. According to the chosen discretization level,
our method would allow us to observe the evolution of
crowd flows at different levels of resolution.

There is very little literature which directly con-
cerns the simulation of human hair structure using par-
ticle systems. Particle systems have been previously
used by Reeves [7] to model fire and by Reeves and
Blau [8] to represent tree and grass. The application of
our method is exposed for human hair representation,
but can also be applied to those former works. Usual
hair structure of a human is composed of 100000 to
200000 strands of hair, whose diameter ranges from 40
to 120. In [5], Rosenblum, Carlson and Tripp proposed
a method in which each strand is represented using
a series of connected straight strand segments. Each
strand segment is rendered as a fixed width line and
its position is determined by a simple dynamic simu-
lation. Each strand structure is static, preventing the
animation of large hair structures in case where many
virtual humans are represented. Using our method, a
entire hair structure could be discretized with a level
of resolution depending on the distance to the view-
point. This could be used to model a crowd of virtual
humans. The discretization level could be adapted ac-
cording to the distance from which the observation is
made, or according to the graphic capabilities of the
system used. To have a realistic motion of the hair
structures, physical equations would need to be solved
for the total number of strands in the scene and visu-
alization would be achieved using the discrete systems,
with an appropriate geometric model for each discrete
value. Obviously, in the case where many humans, i.e

many hair structures, are modelled, an equivalent num-
ber of neural net would have to be used. Discretization
can still be done even when the observation of the hair
structure is made at a close distance as the neuron-
hiding capability of our method can be used to ”erase”
neurons not converging on a hair strand.

The visualization of water currents can also be effi-
ciently achieved with particle-based techniques. In [4],
Chiba and al. propose to model water using a set of
imaginary particles called ”water-particles”. To gen-
erate images, they determine the water surface with a
scalar field F(z,y, z), using a sum of Gaussian density
distribution (one for each water particle). The equa-
tion F(z,y,z) — ¢ = 0 is then solved using an algo-
rithm proposed by Doi and Koide [1]. This equation
becomes complex when large expanse of water are mod-
elled. Rendering can thus be improved by initially dis-
cretizing the set of water particles, which will obviously
reduce the scalar field complexity. Our discretization
method is convenient in this case, as the density of wa-
ter particle is not necessary uniform, especially when
simulating waves.

5. ACKNOWLEDGMENTS

This work has been realized during a project at Silicon
Graphics, Cortaillod in Switzerland with the collabo-
ration of the Computer Graphics Lab at EPFL Lau-
sanne, Switzerland. The project topic was to visual-
ize large atoms systems simulated using parallel algo-
rithm on SGI SMP machines. We greatly appreciate
Silicon Graphics for providing an exciting environment
in which this research was conducted. We also thank
Prof. Daniel Thalmann of the Computer Graphics Lab
at EPFL Lausanne for the coordination between EPFL
and SGI. Last but not least, we would like to thank
Ronan Boulic and Tolga Capin from the Computer
Graphics Lab at EPFL Lausanne for their great ad-
vices, support and discussions and Grace Chang for
her final review.

6. REFERENCES

[1] A.Doi and A.Koide. An efficient method of trian-
gulating equi-valued surfaces by using tetrahedral
cells. IEICE Transactions E74, 1:214-224, 1991.

[2] E.Bouvier and P.Guilloteau. Crowd simulation
in immersive space management. In 3rd EURO-
GRAPHICS Workshop on Virtual Environments,
1996.

[3] A. Luciani, A. Habibi, A Vapillon, and Y. Duroc.
A physical model of turbulent fluids. In Computer

Animation and Simulation 95, Springer Computer
Science. ISBN 3-211-82738-2, 1995.

[4] N.Chiba, S.Sanakanishi, K.Yokoyama, I.Ootawara,
K.Muraoka, and N.Saito. Visual simulation of
water currents using a particle-based behavioural

model. The Journal of Visualization and Computer
Animation, 6(3), July-September 1995.

[5] R.E.Rosenblum, W.E.Carlson, and E.Tripp III.
Simulating the structure and dynamics of human
hair: modelling, rendering and animation. The

Journal of Visualization and Computer Animation,
2(4), October-December 1991.

[6] S.Haykins. Neural nets, a comprehensive founda-
tion. IEEE Computer Society Press.

[7] W.T.Reeves. Particle systems, a technique for mod-
elling a class of fuzzy objects. IEEE Computer
Graphics, 17(3):359-376, 1983.

[8] W.T.Reeves. Approximate and probabilistic algo-
rithms for shading and rendering structured parti-
cle systems. IEEE Computer Graphics, 19(3):313—
322, 1985.

A. APPRENDIX

We give here the result of an approximation at several
resolutions of the model described in section 3.4 (figure
16 and figure 17). Obviously the state reached in figure
17 is the most critical to approximate, as some atoms
are separating themselves from the structure. We give
then illustrations only for it, as the approximation of
the initial one (figure 16) is already considered in the
previous section of this paper. We can observe that,
thanks to the varying radius introduced in section 3.3,
we have a notion of the amount of atoms which follow
the approximated motion.

In the first illustration (figure 18), one can see that
the motion is roughly approximated. Because of the
small amount of neurons, each one is approximating
a large number of atoms. This implied that the neu-
rons are not separating themselves very much from the
structure and their property (depicted by their color)
poorly locate the excited atoms. The second approx-
imation (figure 19) is done with 64 neurons. Here we
begin to see the location of the excited atoms and the
varying radius is showing explicitly that only a small
density of them are following the approximated mo-
tion. The next approxmation (figure 20) gives a better
result as we raised the resolution level to 100 neurons.
Finally, in figure 21, with a resolution of 144 neurons,
we obtain an approximation which is very close to the

original model. The results obtains are very interesting
as we made absolutely no assumptions on the model to
approximate (except that we adapted the parameters
of the topology (ns,mny,n.) to its shape) and on its
motion.

Figure 18: approximation (n, = 6,ny = 6,n, = 1)

Figure 19: approximation (n, = 8,n, = 8,n, = 1)

Figure 21: approximation (n, = 12,n, = 12,n, =1)

