A Mixed-Framework Arithmetic Coder

Paolo Prandoni

Martin Vetterli

LCAV, Ecole Polytechnique Fédérale de Lausanne, Switzerland
email: prandoni@de.epfl.ch, vetterli@de.epfl.ch

ABSTRACT

A mized-framework adaptive arithmetic coding
technique is introduced in which the probability es-
timation process dynamically switches among a set
of allowed models; the sequence of model choices is
determined jointly with the relative data segmen-
tation to yield the optimal coding performance for
the given set of predictors. A specific application
is detailed in which the arithmetic coder can switch
between the backward adaptive estimator of the
Q-Coder and a forward adaptive bit count scheme.

1. INTRODUCTION

Several picture coding systems like JBIG, JPEG,
and EZW, utilize or allow for a binary arith-
metic coder as the last processing step. Indeed,
given an accurate estimate P(z) of the probabil-
ity distribution of the binary input data z, arith-
metic coding produces a code stream of expected
length L within two bits of the source entropy,
L < H(X) + 2. The practical difficulty in im-
plementing this scheme lies entirely with the es-
timation of P(xz); given the nonstationary nature
of image data, dynamically adaptive schemes have
proven the most successful.

Adaptivity in the probability estimation process
can be of two kinds. Backward adaptivity infers
from past data a statistical description which is
extended to the current input. The Q-Coder [1],
for instance, implements a backward predictive
model by means of a state machine whose tran-
sition table is carefully tailored to the average
statistical behavior of bilevel images. The very
structure of the adaptation mechanism, however,
imposes a constraint on the generality of the pre-
dicted distribution; furthermore, causal transition
in the data (as in a piecewise stationary memo-
ryless source for which the underlying probability
distribution changes abruptly in time) will cause
a substantial mismatch overhead in any backward
adaptive coder. Forward adaptivity, on the other
hand, relies on both past and future data to gener-
ate an estimate of the underlying statistical model;
two-pass, adaptive Huffman coding in JPEG is an
example. Clearly, this model offers complete gen-

erality in that an exhaustive minimization process
can be performed to single out the distribution
which minimizes the length of the coder’s output.
Apart from the higher computational cost of such
a procedure, however, the price to be paid for this
generality with respect to backward adaptive sys-
tems consists in the side information which needs
to be tagged to the coded data to inform the de-
coder of the selected statistical model.

The choice of the most advantageous estimator
depends entirely on the particular data sequence
which needs to be encoded: it is easy to produce
data sets for which a backward adaptive model
outperforms a forward adaptive model, and vice-
versa. Therefore, the criterion for choosing the
type of estimator can only be the compression ra-
tio at the encoder’s output. Moving one step fur-
ther, it is easy to see that for a nonstationary data
segment a suitable time segmentation of the data,
together with the “right” coding model choice for
each segment, could lead to an even better perfor-
mance. It will be shown that in fact, under rea-
sonably mild assumptions, a joint time segmenta-
tion and model choice process provides the optimal
compression ratio for a given set of backward and
forward estimators.

In this paper we will develop an arithmetic
coder in which the estimation procedure can be
either the backward-adaptive Q-Coder state ma-
chine or a forward-adaptive bit count estimation;
the framework is however fully general and any
set estimators can be successfully used. Model
switches will be determined based on the partic-
ular properties of the input sequence. Intuitively,
the model follows a simple strategy: where the
side information associated with a forward adap-
tive prediction outweighs the coding improvement,
the system will select the possibly less efficient
but cheaper backward model; conversely, when the
backward model fails to produce a good estimate,
the forward model will supersede it. Importantly,
this series of model choices will be carried out in
a globally optimal sense together with the segmen-
tation process.
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2. THEORETICAL BACKGROUND

For a wide class of stationary signals includ-
ing Markov processes and, as a particular case
thereof, Bernoulli sequences, Minimum Descrip-
tion Length (MDL) theory [2] provides a lower
bound on coding performance. Specifically, given
a finite N-point data sequence 7' = z123...TN,
the performance of any coder, backward or for-
ward adaptive, is bounded by the information of
the sequence, defined as

I(@) = min{~log Py(e) + (1/2)klog N},

where the statistical model Py(z) depends on the
k-element parameter vector § = {6165 ...6;} and
the minimization is carried out over all number of
parameters and all corresponding parameter vec-
tors.

Considering the case of Bernoulli sources for
simplicity, by taking expectations over all N-point
data sequences we obtain the average information

I(X)=H(®®) + %log N, 1)

where 6 is the Bernoulli parameter for the source
and H (#) is the binary entropy function. The last
term represents the cost of not knowing 6 a priori,
and it can be paid for in two ways: in forward
adaptive coders, by providing the estimated value
for 6 to the decoder; in backward adaptive coders,
by the estimation mismatches in the causal pre-
diction.

For nonstationary sequences the situation is
more complex; the previous bounds in a MDL
sense have been extended to piecewise stationary
Bernoulli sources by Merhav [3]. Intuitively, in
this case the extra cost to be paid also includes the
information pertaining to the parameter transi-
tions in the data sequence; it can indeed be shown
that for N-point sequences containing M switch-
points, the average information can be expressed
as:

M
I(X) = % ZliH(ei)JrM% log N+ MlogN, (2)
=0

where [; is the length of the data segment for which
the Bernoulli parameter stays constant and equal
to 6;, and > I; = N. With respect to (1), the
cost associated to the Bernoulli parameter is mul-
tiplied by M; furthermore, an additional price of
log N bits for each transition appears. Merhav
also proved that this lower bound can be attained
by a purely sequential coder (no look-ahead), but
the method is hardly practical. These results were
recently extended by Willems [4], who addressed
more practical issues in the problem of determin-
ing the set of parameters for a piecewise-constant
Bernoulli sequence. His analysis is however mostly

concerned with the attainability of the Merhav
bound in a strictly sequential fashion.

While these lower bounds are very useful in
stating the best performance one can expect from
a coding system, their asymptotic nature makes
them less helpful in the case of a single realiza-
tion of a nonstationary process. In particular, the
theoretically equivalent efficiency of most estima-
tors holds only in the limit; for one finite data
sequence, practical and computationally efficient
estimators can yield substantially different results.

In this work, we somewhat step aside from
the theoretical framework described above; rather,
our goal is to implement a practical system using
widely available building blocks (such as the Q-
coder), the baseline performance of which is very
well known in a variety of settings. The aim is
twofold; on one hand we want to provide a sys-
tem which easily “tags on” to pre-existing cod-
ing scheme. One might want to retain the core
structure of such coders for efficiency or compat-
ibility reasons. Secondly, we want this system to
be as open as possible, the immediate advantage
being its straightforward extendibility to settings
(such as the multi-symbol nonstationary source)
for which few theoretical guidelines are available.

3. OPTIMAL SEGMENTATION

Given the nonstationary nature of the data se-
quence, intuitively one might think to first seg-
ment the data according to some stationarity cri-
terion and then code each segment separately with
the best coder for each segment. For any station-
arity measure, however, it would be possible to
construct a different segmentation and sequence
of models which yields a lower number of coded
bits. Indeed, for a single realization of a time-
varying process, there is no absolute measure of
stationarity; the criterion for determining the time
segmentation must be the same as for the choice
of the coding model, namely the compression ra-
tio. By jointly determining the segmentation and
the choice of models, the globally optimal result is
achieved for the given set of coding models.

A good review of optimal segmentation tech-
niques for data analysis can be found in [5]; the
main ideas will be used here to formalize the prob-
lem at hand. In the reminder, we will consider
memoryless binary sequences m{v = I1ZTy...IN
generated by a switching Bernoulli source whose
parameter 6 changes abruptly over time (piece-
wise constant distribution); we will make no as-
sumptions on the number or on the location of
the transition points. For convenience, define
zr(m,n) = I?E_I)T 41> Which represents a sub-
set (segment) of the data sequence. For T' = 1,
it is simply z;(m,n) = 2%, and z1(m,m) = Tpm.
By setting T' > 1, each segment is composed by
an integer number of minimal T-point data cells;
this will be useful in the next section, and this no-



tation will allow us to describe the minimization
algorithm independently of T'.

The goal is to find the optimal minimum total
coding cost:

OW) = min min {e(er(LN)},  (3)
where S is the set of all possible data segmenta-
tions, P(s) is the set of all possible model choices
for segmentation s, and ¢(-) is the number of out-
put bits when the segments described by s are
sequentially coded with the models described in
.

Let us assume we have K different coding mod-
els for the data; cg(zr(m,n)) will represent the
number of output bits when coding the data seg-
ment zp(m,n) with coder number k. To make
the minimization problem in (3) computationally
tractable, we assume that the coding cost for all
models is nonnegative, additive over disjoint seg-
ments and that the coding cost for a segment is
independent of the models used to code the pre-
vious data. With these assumption we define the
minimum coding cost for a given segment as

Clar(m,n) = min {ex(er(m,n)}. (1)

For i < ¢, consider a set of ¢ + 1 indices
s={li,...,.Lix1}suchthat 0 = l; <y < ... <
li+1 = q. This set uniquely defines a segmentation
of the data subset z7(1, ¢) in which segment j, for
1< j <iiszr(ly+1,lj41); call this an order-g
sub-segmentation and, for all s, let I(s) = i, the
number of segments. With this notation, and
exploiting the above assumptions on the coding
models, we can simplify (3) for any ¢ as:

Clg = min min {c(z7(1,q))}

s€S(q) pEP(s)
I(s)
min {Z Clzr(l; + 1,141))} (5)

s€eS(q) =

We now describe an efficient way to explore
the space of all possible segmentations. Let S(q)

be the set of all the 2(¢=1) possible order-g sub-
segmentations; the sets S(g) can be built incre-
mentally in the following way:

Step 0: S(0) = { {0} } by definition;
Step q:
S(q) ={sU{p},Vs€5;,j=0,...,q -1}

where, if s = {l1,...,L;}, sU{q} = {l1,..., i, q}.
As an example, the first three steps yield:

Sto= {0,131}

Sy {{072}5{071;2}};

S3 {{0’3}7{0’173}’{07273}7{071’2’3}};

S S S3

Figure 1. Incremental construction of the segmen-
tation.

and are illustrated graphically in figure 1. Given
this structured construction of S(g), we can
rewrite (5) for all g as:

0= gziz, 2 “

I(s)
> Clerl; +1,1i41)) + Clar(h +1,9))}

i=1

In other words, using Bellmann’s optimality prin-
ciple [6], the minimization process can be deployed
incrementally together with the set of possible seg-
mentations:

Step 0: C(0) = 0;
Step q:

Clg) = Orsnjflgq{é(j) +Cr(j+1,9)} (7)

which is carried out up to ¢ = N; at each step
we need to keep track of C(g) and of the value
for 7 which minimizes it. This dynamic program-
ming approach allows us to find the optimal cost
for the complete sequence (and the correspond-
ing optimal segmentation) in an incremental, ef-
ficient way, which has only quadratic rather than
exponential complexity in the number of opera-
tions and linear storage requirements.

4. THE ALGORITHM

4.1. Coding models

We apply (3) to the arithmetic coding problem by
allowing for two coding models (K = 2).

The first model is the backward adaptive predic-
tor implemented in the Q-Coder [1]. This estima-
tor declares one of the two possible input values
(say 0) the least probable symbol (LPS) and as-
signs a probability to it; the other input value (1)
is labeled the most probable symbol (MPS). The
LPS probability is constantly adjusted depend-
ing on the sequence of LPS’s and MPS’s which
are encoded; if the LPS probability passes the 0.5
mark, the LPS and MPS labels are swapped. The
probability estimation is carried out by means of a
29-value state machine; an LPS probability value
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Figure 2. Coding example

and pointers to the next and previous states are
associated to each state. The entries in the state
machine were found experimentally in the context
of bilevel image coding.

The second model is a forward adaptive pre-
dictor in which an estimate of the BernoulliA pa-
rameter for segment xzg(m,n) is simply 6
(1/T)H(zr(m,n))/(n — m + 1), where H(-) in-
dicates the Hamming weight; this estimate is sub-
sequently quantized to a five-bit index into the
Q-Coder probability table.

Strictly speaking, the additivity and indepen-
dence properties required by the dynamic pro-
gramming approach of the previous section are
not fulfilled by these coding models. However, by
constructing a segmentation where the minimal
element is a multi-bit cell, the requirements are
approximately satisfied at the price of a slight sub-
optimality for the final segmentation. In our algo-
rithm we set the cell to be one byte long (T' = 8).

The optimal cost of equation (4) becomes in this
case:

C(azr(m,n)) = min{ey(z7(m, n)), s (zr(m,n))+D}

where ¢, and ¢y are the output bits for the back-
ward and forward models respectively and D is
the number of bits needed to code the side infor-
mation for the forward model.

4.2.

After the algorithm has found the optimal segmen-
tation and sequence of coding models, the data
must be encoded accordingly, including the neces-
sary side information for the decoder about model
switches. In order to allow for sequential decod-
ing, with no extra buffering space requirements,
we chose to embed switchpoint information in the
coded stream as the switches occur, in the form
of escape characters. There are several ways to

Encoding side information

encode an escape by exploiting the particular fea-
tures of a given implementation of an arithmetic
coder (such as forbidden code register values in
the Q-Coder [7]); we will however describe a to-
tally general way which fits better in the frame-
work introduced so far.

In a binary arithmetic coder, the output bit-
stream is a binary number uniquely identifying
a final coding interval of length A. Consider a
stationary input bitstream for simplicity (the fol-
lowing results are the same in the case of adap-
tively adjusted probability values): let the (esti-
mated) probabilities for the least probable symbol
and most probable symbol be p and 1 — p, respec-
tively; the algorithm starts by setting A = 1 and,
for each input bit, appropriately scales A by p
or 1 — p. At the end of the N-bit input stream,
A = ptMN (1 — p)(N=LV)) " where L(N) is the
number of LPS which appeared in the sequence;
the compression rate can be therefore expressed

as
log A
N k)
where here and in the following all logarithms are
in base 2. In our implementation we consider the
escape character as a fictitious third symbol of
nominal probability 1 — ¢; we then scale the LPS
and MPS probabilities to pe and (1 — p)e respec-
tively, while leaving the estimation procedure un-
modified. Each escape character contributes ap-
proximately — log(1—¢) bits to the output stream;
on the other hand, independently of the number
of escapes, the compression rate is reduced to:

a(e)

ag =1+

1+

L(N)logpe+ (N — L(N))log(1 — p)e

N N

ag + loge

The cost of a single escape code and the output
expansion due to the possibility of a third sym-
bol are therefore related by equation (8), which

(8)



in turn depends directly on d, the number of
bits d we want to spend for each escape, since
€ = 1 — 274 Ideally, the value for d should be
found as a part of the same global optimization
process by iterating the segmentation algorithm
for all meaningful values for d until the global min-
imum for the overall compression ratio is found.
In practice, experience has shown that values for
d in the range of 10-15 bits provide generally good
results. In the examples in the following sections,
d = 13 throughout; the total side information
cost for a forward encoded segment is therefore
D = 2d + 6 bits, where the term 2d accounts for
the escape codes at the beginning and at the end
of the segment and the remaining 6 bits are the in-
dex into the Q-Coder probability table (including
one bit to specify the LPS symbol).

4.3. Complexity

As stated in Section 3., the computational com-
plexity of the algorithm is O(N?2). As for all dy-
namic programming methods, however, this com-
plexity can be reduced to O(N) at the price of
a slight suboptimality; as the complexity coeffi-
cient (which exactly relates the number of oper-
ations to N) grows, the suboptimality becomes
more and more negligible. The idea is that past
data is not likely to influence the global segmen-
tation after a significant delay; after such a delay
we can therefore assume that the early part of the
segmentation coincides with the optimal one and
code the relative data with the models selected by
the algorithm; the early data can be subsequently
discarded. With respect to equation (7), this is
equivalent to saying that, for large ¢, the value for
j minimizing the expression will not be small; if
we fix the value for the “significant delay” to wT
samples, the iteration becomes:

~ A~

Clg= min {C@)+Clzr(i+1,9)} (9)

—w<j<q

The tradeoff between suboptimality and delay
span is obviously dependent on the properties of
the class of input signals.

It is to be noted that the complexity of the de-
coder is equivalent to that of a standard arithmetic
decoder, and that the decoding is instantaneous.
This complexity asymmetry, together with the en-
coder’s inherent delay, suggest that the proposed
algorithm is most useful in lossless data storage
settings in which the premium is almost exclu-
sively on compression ratios.

5. A SIMPLE EXAMPLE

In the following example, the input to the dynamic
arithmetic coder is the raster scan of the bilevel
image displayed on the left of Figure 2. While
this is not, of course, a proper image coding sys-
tem (no image-specific prediction is applied) it il-
lustrates in an intuitive way the properties of the

proposed algorithm. The plot on the right of Fig-
ure 2 displays the LPS probability for the binary
arithmetic coder versus the index of the coded
byte. The rectangular blocks in solid line rep-
resent portions of the signal for which the coder
has identified a constant parameter for the LPS
probability by a forward adaptive estimate; the
dashed line represents the evolution of the LPS
probability when the system works in a backward
adaptive mode. We can identify four distinct seg-
ments, corresponding to the four textures in the
image. Section A and D simply code the gray tex-
tures according to their pixel densities; forward
adaptation is efficient here due to the regularity
of the pattern. In section C, for which the image
has the same number of black and white pixels per
square region, the system locks to a LPS proba-
bility of 1/2, to avoid the coding inefficiency of an
oscillating backward adaptation. Finally, section
B is coded mainly in backward adaptive mode,
which is consistent with the frequent and short
transitions in the image. It is to be noted how
the algorithm achieves a very good segmentation
of the image. The compression rates are 14.3%
for the proposed algorithm versus 12.3% for the
Q-Coder.

6. CODING OF BILEVEL IMAGES

The JBIG algorithm is a very efficient cod-
ing algorithm for bilevel images [8]. Its context-
adaptive arithmetic coding is particularly effective
in exploiting patterns and redundancies in a typ-
ical image, yielding very high compression rates.
In JBIG, a context is a binary number identifying
the configuration of bits surrounding the pixel to
be encoded; for a typical image containing text
and graphics, the most frequent context is con-
text zero, accounting for the white background
surrounding characters.

Transparent application of the dynamic arith-
metic coder to the JBIG algorithm is difficult
due to the fact that the system subdivides the
image into numerous narrow stripes; this gener-
ally produces input files which are too small for
the dynamic algorithm. An exception is how-
ever the data relative to context zero. Within
the limited improvement margins allowed by the
high efficiency of the JBIG algorithm, the mixed-
framework arithmetic coder provided in this case
some interesting results. Figure 3-(a) displays
the improvement (in bytes) obtained by coding
context-0 data in each JBIG stripe with the pro-
posed algorithm; the input was the standard
CCITT fax test image number five. The total out-
put reduction for the image is 34 bytes, which is
not negligible considering that the baseline com-
pression ratio for the standard JBIG is already
91.5%, with an output file of 6528 bytes. Fig-
ure 3-(b) displays the segmentation and the LPS
probabilty for the data in stripe 17 as an example.
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Figure 3. (a) Byte savings per stripe for the mixed-framework coder applied to the JBIG algorithm. (b)

Segmentation for stripe 17

Future developments of this line of research are
aimed at a closer integration of the proposed al-
gorithm with an existing image coding system.

7. CONCLUSIONS

We have presented an arithmetic coder in which
the probability estimation procedure switches be-
tween forward and backward adaptivity in con-
junction with the optimal segmentation of the
nonstationary input data. While the algorithm
has been exemplified using the probability estima-
tor deployed in the Q-Coder, the proposed tech-
nique is completely general and can be directly
applied to any set of coding models; a method
to encode side information is also proposed which
is transparent to the implementational details of
the arithmetic coder. The proposed algorithm has
been tested within the framework of the JBIG im-
age coding system with positive results.
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