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ABSTRACT

In this paper, we study the issue of regularity for multi-
wavelets. We generalize here the concept of balancing for
higher degree discrete-time polynomial signals and link it
to a very natural factorization of the lowpass refinement
mask that is the counterpart of the well-known zeros at «
condition for wavelets. This enables us to clarify the sub-
tle relations between approximation power, smoothness and
balancing order. Using these new results, we are also able
to construct a family of orthogonal multiwavelets with sym-
metries and compact support that is indexed by the order
of balancing. More details (filters coefficients, drawings of
the whole family, frequency responses,...) can be obtained
on the [wes] at http://lcaveww.epfl.ch/~lebrun

1. INTRODUCTION

In the usual framework of wavelets, the two concepts of re-
production of continuous-time polynomials (approximation
theory issue) and preservation/cancelation of discrete-time
polynomial signals (subband coding and compression issue)
are highly correlated since they have been proved to be
equivalent to the same condition on the number of zeros at
= in the factorization of the lowpass filter. The situation is
different for multiwavelets. In [7, 8], interested in the sub-
band coding issue in general and the problem of processing
one dimensional signals with multiwavelets in particular, we
introduced the concept of balanced multiwavelets that has
since inspired many other papers [6, 11, 12]. The aim of
this concept was to avoid the artificial step of prefiltering
in multiwavelet based systems. Here, we will prove that
the notion of balancing order is in fact central to the whole
issue of regularity for multiwavelets.

2. MULTIWAVELETS

Generalizing the wavelet case, one can allow a multires-
olution analysis {V,}nez of L*(R) to be generated by a
finite number of scaling functions ¢o(t), #1(t),... ,Pr—1(t)
and their integer translates. Then, the multiscaling func-
tion (2) := [Po(t),... ,d-—1(t)]" verifies a 2-scale equation

B(t) =Y M[k]g(2t — k) (1)
k
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Figure 1: Orthogonal multifilter bank for r = 2.

where now {M[k]}« is a sequence of r x r matrices of real
coefficients. The multiresolution analysis structure gives
Vi = Vo @ Wo where Wy is the orthogonal complement
of Vo in Va. We can construct an orthonormal basis of
W generated by vo(t),¥1(t),... ,¥--1(t) and their integer
translates with 9(t) := [1o(t),... ,9¥r—1(t)]" derived by

B(t) == ) N[k]gp(2t - k) )
k

where {N[k]}« is a sequence of r x r matrices of real co-
efficients obtained by completion of {M[k}};. Introducing
the refinement masks M(z) := ; ¥°, Ml[n]z™" and N(z) :=
1 3. N[n]z™", the equations (1) and (2) translate in Fourier
domain into

®(2w) = M(e/“)®(w) and ¥(2w) = N(e/“)d(w) (3)

We can then derive the behavior of the multiscaling function
by iterating the first product above. If this iterated matrix
product converges, we get in the limit

=] - .,
$(w) = Mou(@)2(0) = [[ M) 2(0) (9
i=1
For simplicity and without loss of generality, we will now on
concentrate on the case r = 2. Furthermore, we will assume
that the sequences {M{k]}« and {IN[k]}« are finite and thus
that ¢(¢) and 1(t) have compact support. We then recall
some result obtained in {1] about the convergence of the
iterated matrix product M (w). For M(z) satisfying a
matrix Smith-Barnwell orthogonality condition

M0 M (z7Y) + M(=2)M (-2~ =1 (5)

a necessary condition for uniform convergence of the iter-
ated product to a scaling matrix Mo (w) such that My (0)
is non-zero and bounded is either

(i) M(1) =1, M(-1) = 0 (note that Moo (w) has rank 2)

(it) M(1) has eigenvalue Ao(1) =1 and |A1(1)| < 1, M(-1)
has rank 1 and satisfies roM(—1) = 0 where ro is a left
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Figure 2: Multifilter bank seen as a time-varying filter bank.

eigenvector of M(1) for the eigenvalue 1 {note that Moo (w)
has then rank 1).

Now, assuming (5) and (i) or (ii), the scaling functions and
their integer translates form an orthonormal basis of Vp.
Thus, for 8(t) € Vo, we have
s(t) =) _ s [n](t —n) (6)
n
then from Vo = V-, & W_,, we get
S Tl — ) + da (-
() = S eTulnld(s - m) + bz =) (D)

and we have the well known relations between the coeffi-
cients at the analysis step

saafn] = > Mk - 2n]so[k] (8)
k

d_y [n]

it

) " N[k — 2n]so[] )
K
and for the synthesis, we get

sofn] =Y M [n — 2k|s_1[k] + N [n — 2k]d_.[k] (10)
k

These relations enable us to construct a multi-input multi-
output filter bank (abbr. multifilter bank) as seen in Fig. 1.
In case of a one-dimensional signal, it then requires vec-
torization of this input signal to produce an input signal
which is 2-dimensional. A simple way to do that is to split
a one-dimensional signal into its polyphase components. In-

troducing
[;”1‘1’8] = M(z%) LL] ai)

and in the same way no(z) and n;(2), the system can then
be seen as a 4 channel time-varying filter bank (Fig. 2).
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3. HIGH ORDER BALANCING

In [7, 8], we showed that if the components mo(z) and mi(2)
of the lowpass branch have different spectral behavior, e.g.
lowpass behavior for one, highpass for the other, it then
leads to unbalanced channels that mix the coarse resolution
and details coeflicients and create strong oscillations. One
expect then some class of smooth signals to be preserved
by the lowpass branch and cancelled by the highpass.

3.1. Balancing
We define the band-Toeplitz matrix corresponding to the

lowpass analysis

” M{o] M[1] M([2] M[3] ...
L= M[o] M[1] M[2] M[3] ... (12)
M(0] M[1] M{2] MI[3] ...

and in the same way, we define H the band-Toeplitz ma-
trix corresponding to the highpass analysis. So, we want
w =[..,1,1,1, 1,...]T to be an eigensignal of the low-
pass branch, hence we introduce

Definition 3.1 An orthonormal multiwavelet system is said
to be balanced iff the lowpass synthesis operator LT preserve
[.. ,L,1L,1,1,...]7 de LTu; =u;.

By the orthonormality relations
[tTuT}[g]=1 and [R][LTuT]=1I
weget L'L+H H=LLLT =,LH =0andHH' =1

Then LTu; = uy implies Lu; = u; and so Hu; = 0ie w
is cancelled by the highpass branch. Now, we can state

Theorem 3.1 The following conditions are equivalent
BO. LTu; = u;.
B1. [1,1] is a left eigenvector of M(1) for Xo(1) = 1.
B2. $(0) = [1,1]".
B3! mo(z)+m1(2) has zeros on the unit circle at j, -1, —j.
B4. One can factorize M(z) = $T(2*)Mo(2)T~*(2) with

T(2) = [-Zl_l ”11] and  Mo(1) H = m

Proof. The equivalences [B0O=B1=>B2=>B3=>B0] were
proved in [8], and {B1=>B4] is a direct consequence of The-
orem 4.1 in [9]. Assuming B4, we get

mo(z) +mi(z) = [1 1] M(z%) LLJ
=ip [_2_4 ‘11} Mo(%) = LL ﬂ [zh]
= (=50 amee [

and this is condition B3. ]




3.2. High Order Balancing

Definition 3.2 An orthonormal multiwavelet system is said
to be balanced of order p iff the signals

U, = [..,(=2)" (-0, 1,27, T
withn =0,...,p—1 are preserved by the operator L i.e.
LTy, =2""u, forn=0,...,p—1
Similarly to the previous case, LTu, = 2 ™u, implies
Lu, = 2"u, and Hu, = 0 for n = 0,...,p — 1. The

polynomial structure of the signal is captured up to degree
p — 1 by the lowpass branch coefficients. We then get

Theorem 3.2 The following conditions are equivalent

B0,. L u, =27, forn=0,...,p—1.

B3}. Defining o™ (z) := ugn)(z)/u((,")(z) where u((,")(z)
and u{™ (2) are the formal series u{™(z) := Yorez(Zk+
i)"27F, we impose mo(2) +aP (z4)m.(2) to have ze-
ros of order p at j,—1,—j.

B4,. M(2z) can be factorized as

M() = TP (Mpa(IT ) (13)

with Mp-1(1) [ﬂ = [i] and T(z) defined as before.

Proof.

{BO,=>B4,]: M(z) satisfies the conditions of Theorem 2.1
in [10] with gy := [0",2""] for n = 0,... ,p — 1. Then,
applying Corollary 4.3. from {10], we get the factorization

M(z) = §lp.co(zz) e Cpr (ZP)Mpi(2)C A1 (2) . .. €T (2)

-1 _n-1

with Co(2):= | %% _, 2% | and the FIR refinement
-2""by, by,

mask M,_1(z) verifying Mp—1(1)rp—1 = rp—1 where r;} :

[an,bs] = 27™[1,1] obtained recursively from yn for n

0,...,p—1. Thus Ca(2) = 2"T(2) and Mp-1(1)[1, 17

L.

[B4p=>B3;]: This is proved by induction on p {wes]. Here,

we will only verify the result for p = 1,2,3. Thecasep=1

is a consequence of Theorem 3.1. For p = 2, we have

]

2(mo(2) + a® (2" )m1(2)) = 2mo(2) + 3 — 2~ Hmi(2)

=[2 3-z"*]M(z%) LL]

Forp=3

8(mo(z) + o (2*)mu(z))
= 8mo(z) + (15 — 1027 * + 327 8)my(2)

_ 5,4 3
= é(%-———z-_{) [8"“'32_4 -—9] M2(22) [zll]

t Conditions B3 and B3, were first given by Selesnick in {12].
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Figure 3: Order 2 balanced orthogonal multiwavelet: the
scaling functions are flipped around 2, the wavelets are sym-
metric/antisymmetric, the length is 5 taps (2x2).

Hence the result for p=1,2,3.
[B3,=>B0p): As mentioned in [12], condition B3, says that
the multirate system

~(14) ~ | moz) + a® (z)ma(z) |-

has zeros of order p at the roots of the umity j,—1,7. So,
from the rank M wavelets theory (Theorem 2.1. in [4]), we
get that this system preserves discrete polynomial sequences
of degree n = 0,... ,p~—1, and since this multirate system is
equivalent to the lowpass synthesis branch for polynomial
sequences of degree up to p — 1, this translates in time
domain into condition B0p. ]

4. REGULARITY

Now, one may wonder how these new results relate to the
classical notions of regularity: approximation power and
smoothness.

4.1. Approximation Power and Balancing Order

One says that ¢(t) has approximation power m if one can
exactly decompose polynomials 1,¢,t2,....,t™ ! using only
o, 1 and their integer translates, i.e. forn =0,... ,p-1,
we have t* = Y, x, [k]$(t — k). Then, assuming that ¢(t)
is balanced of order p, we get that M(z) factorizes as in
(13), so applying p times Theorem 2.6. from [10], we get
that ¢(t) has at least an approximation power of p.

Proposition 4.1 If an orthonormal multiwavelet system is
balanced of order p, then the associated multiscaling func-
tion ¢(t) has an approzimation power of at least p.

We can notice that the reciprocity is false: the DGHM [2]
multiscaling function has an approximation power of 2 but
is not even balanced [8].

4.2. Smoothness and Balancing Order

From the previous proposition, and some results from [10]
(Corollary 2.10.) showing links between the approxima-
tion power and the smoothness of the multiscaling function
(number of continuous derivatives or Sobolev exponent s i.e.
J U121 + [w]?)"dw < o0), we get the following result



Figure 4: Order 3 balanced orthogonal multiwavelet: the
scaling functions are flipped around 3, the wavelets are
symmetric/antisymmetric, the length is 7 taps (2x2) and
an estimate of the smoothness using Proposition 4.2 gives
the Sobolev exponent s = 1,71.

Proposition 4.2 If an orthonormal multivavelet system
has balancing order P and the spectral radiys of My.1(2) in
the factorization (13) verifies P(M,_1(1)) < 2, then defin-
ing
1 . —dw
Ve = i logz p(Myp—y (e 9h-1) | M,_, (e~ N (19

with {w, ... yWk-1} invariant cycles of w ++ 2 (mod 27),
ond 7 := infx v, we get that &(t) is at most | p — v-1]
times continuously differentiable (and has at most Soboley
eiponent s =p — ),

Idea of proof, To characterize the smoothness, we are
interested in the decay as N — oo of ®(2*Mwg) for we €
[0,27). From the convergence (4), we form the truncated
products My (w) := H,’i 1 M(e779/%y then evaluating these
on the invariant cycle {wo, ... »WE-1}, we get

kN )
MkN(szWO) = H M(e-j2“t2'=NUo)
i=1 (15)

= (M(e~ny. M(e~in)) "

then we study the asymptotic behavior of this product by
looking at the eigenvalues of M(e™/%Wk-1) . M(e™7%o) =
UiAr U7, where Ap = diag(x\f,k),/\fk)). Then if p(A}) =
max{]A], AK)} > g+ then the scaling functions can-
not have Sobolev exponent of more than i and so cannot
be more than ¢ — 1/2] times continuously differentiable.
Applying this to the factorization (13), we get the upper-
bounds on smoothness, |
Using results from the Perron-Frobenius theory (5], one can
also find lower-bounds and prove that s = P isagood
estimate of the Sobolev €xponents of ¢(t) and (t) [wes].
For example in the case of the Haar multiwavelet, with
wo =2m[3, Ao = 0,1, = 1 it then proves that the scaling
functions cannot be continuous. In the case of the DGHM
multiwavelet, \g = Tag AL = 27, it proves that the scaling
functions can be at most C!. They are in fact Lipschitz,

5. CONSTRUCTION OF HIGH ORDER
BALANCED MULTIWAVELETS

Using the results above, we are now able to construct a
Daubechies like family of multiwavelets, Namely, by impos-
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ing the number of T(22). .. T~!(2) in the factorization (13),
we force the order of balancing, Then, we design M,,_l(z)
by imposing conditions of orthonormality (5) on M(z), flip-
ping property on my(z), mi(z) (i.e. my(z) = z‘u“mo(z))
and linear phase on no(z) .and n1(2). Using a Grébner
bases approach and the program Singular [3], we have been
able to construct all the multiwavelets of compact sup-
port C [0, 6] with flipped scaling functions and Symmet-
ric/antisymmetric wavelets for order 2 and 3 of balancing
[wes]. Fig. 3 and Fig. 4 show some examples of high order
balanced multiwavelets with these properties.

6. CONCLUSION

By introducing the concept of high order balancing, we have
clarified the issue of general design of multiwavelets, We
have proved that this concept was equivalent to a natyra]
counterpart of the zeros af condition. With these re-
sults, we made it possible to design general families of high
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