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ABSTRACT

This work addresses the recovery of an image from noisy
observations when multiple noisy copies of the image are
available. The standard method is to compute the average
of these copies. Since the wavelet thresholding technique
has been shown to effectively denoise a single noisy copy,
it is natural to consider combining these two operations
of averaging and thresholding. The first important task
is to find the optimal ordering. The second issue is the
threshold selection for each method. By modeling the signal
wavelet coefficients as Laplacian distributed and the noise
as Gaussian, our investigation finds the optimal ordering
to depend on the number of available copies and on the
signal-to-noise ratio. We propose thresholds that are nearly
optimal under the assumed model for each ordering. With
the optimal and near-optimal thresholds, the two methods
yield very similar performance, and both show considerable
improvement over merely averaging.

1. INTRODUCTION

Since the seminal work of denoising via wavelet threshold-
ing proposed by Donoho and Johnstone [3], there have been
many variations in both theory and practice. Most of these
works are for applications in which there is only one set
of observations (e.g. one time series sequence or one still
image). However, in some applications there are multiple
copies of the same or similar images, thus it is necessary to
investigate denoising techniques which remove noise from
multiple corrupted copies of the same signal. For a cor-
rupted video sequence, suppose we choose a few consecutive
frames in which the motion is not significant and that we
have already taken care of the registration problem, one can
view the frames as multiple noisy copies of the same image.
Another example is when one scans a picture, but with un-
satisfactory result, thus one does multiple scans, and then
combines these copies to obtain the most noise-free copy
possible. Since wavelet thresholding has worked well for
one copy, it is natural to consider its extension to multiple
copies.

The standard method for combining the multiple copies
is to simply compute their weighted sum. One can only do
better by incorporating a thresholding step. The question
is, which ordering is better, thresholding first or averag-
ing first, and what is the threshold value for each method?
These are the issues to be addressed in this work. With
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the coefficients of each subband modeled as samples of a
Laplacian random variable and the noise as samples of a
Gaussian variable, we will show that the optimal ordering
(in the mean squared error sense) depends on the number
of available copies and the ratio between the noise power
and the signal power. Moreover, we propose near-optimal
subband adaptive thresholds for both orderings. Results
show that with the optimal or the proposed near-optimal
thresholds, the two methods yield very similar performance,
and both outperforms weighted averaging substantially.

2. COMBINING WEIGHTED AVERAGING
AND WAVELET THRESHOLDING

Let f denote the M x M matrix of the original image to
be recovered. The signal f has been transmitted over a ad-
ditive Gaussian noise channel N times, and at the receiver
we have N copies of noisy observations, g™ = f+¢™ n=
1,..., N . For the n-th copy, the pixels Ez(-;-l) are itd Gaussian
N(0,02), where o2 is the variance of the n-th copy of noise.
The noise between different copies are also assumed inde-
pendent. The goal is to find an estimate f which minimizes
the mean squared error (MSE), = Ef\é:l(ﬁj - fij)%

The recovery of the image is done in the orthogonal
wavelet transform domain (the readers are referred to stan-
dard wavelet literature such as [4, 5] for details of the 2D
dyadic wavelet transform). The wavelet coefficients can be
grouped into subbands of different scale and orientation,
with one lowest frequency subband, and the rest called de-
tail subbands. It has been found that for a large class of
images, the coefficients in each detail subband can be well
described by a Generalized Gaussian distribution [6], which
is often simplified to the special case of Laplacian distribu-
tion. In this work, we also use the Laplacian distribution.
Under probability distributions, the MSE is well approxi-
mated by the ezpected squared error. Thus for each detail
subband, we wish to find the estimator of the coefficients
which minimizes the expected squared error.

2.1. Wavelet Thresholding and Averaging

To denoise one copy, the wavelet thresholding operation by
Donoho and Johnstone [3] has three steps. First, take the
wavelet transform of the noisy observation g = f +¢, de-
noted by Y = X + V. Then each coefficient is thresholded
with a chosen threshold. Finally, the thresholded coeffi-
cients are transformed back to yield the recovered signal.
The thresholding operation is performed only on the coef-



ficients of the detail subbands.

There are two popular thresholding functions: the soft-
threshold function, nx(t) = sgn(t) - max(0, [t] — A), which
shrinks the input towards zero, and the hard-threshold func-
tion, 9a(t) = t - 14>, which keeps the input only if it is
above the threshold A. Although the soft-thresholding op-
eration tends to smooth the image slightly more than the
hard-threshold function, it yields images with better visual
quality especially when the noise power is significant. Fur-
thermore, with the chosen probability distributions, soft-
thresholding yields a lower MSE than hard-thresholding, as
was shown in [1]. Thus, soft-thresholding will be the pre-
ferred operation in this work. The next issue is the selection
of the threshold value.

As in [1], we model each detail subband of the wavelet
coefficients of the original uncorrupted image f as sam-
ples from a centered Laplacian random variable with an
unknown parameter. That is, let X ~ p(x) = LAP(B) =
BeAl=l Y|X ~ p(yle) = N(x,0?), and the estimator be
X =5 (Y), then the optimal threshold is

A*

arg min By|xEx(X — X)?

Il

arg min / / (m(y) — 2)* p(y]2) p(z) dy de.

A good ;Lpproximation of A* was found in [1] to be A(8) =

2
7 = E_E) where o, is the standard deviation of X. This
oz V2 ]
threshold A(8) is simple and effective and has an intuitive
explanation. When the noise power is much smaller than
the signal power, 0/0: < 1, the normalized threshold A\/o
is small to preserve most of the signal features; on the other
hand, when o /o, > 1, A/o is chosen to be large to remove
the noise which has overwhelmed the signal. By modeling
each detail subband as samples from a Laplacian random
variable with the unknown parameter 8 to be estimated,
this method also allows the threshold to be adaptive to
each subband.

When there are multiple copies available, the standard
method is to use the (pixel-wise) weighted average as the
estimate. Let V™ ~ N(0,062),n = 1,...,N, be the
random variables representing the n-th copy noise, define
Z to be the weighted sum of the N random variables
Y™ = x 4 V("),

N N
Z= ZanY(n) =X+ Zanv(">,
n=1 n=1

where Ean = 1. It is well-known that the optimal apn
are ay, = =/ E;N:l =, and the resulting MSE is o2, =

Var(Z — X) = Var (T0_ an V™) =1/(30_ &),

Now let us incorporate thresholding into averaéing. The
weighted sum Z is essentially a new random variable and
Z|X ~ N(z,0} ). Since this is exactly the setting for
one copy thresholding, the next straightforward step is to
simply find the best threshold and apply it on Z. However,
can we do better than that? More specifically, since we have
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Figure 1. Scaled MSE difference (Rsr(A&r) —
Rrs(M\ps))/o® as a function of N and o /0.

two operations here — averaging and thresholding — it is
natural to ask which ordering is best in the mean squared
sense.

2.2. Combining Thresholding With Averaging

Consider the special case when 01 = g2 = -+ = on =
Thus, o - = ay = %. To make references more
convenient, let S(-) denote the weighted sum operation and
T'(-) the thresholding operation, and we give the following
notation to the two orderings:

STy, ..., yWyy.
TSYW,. .., v™)),

Xst(N) = § Loy mr™)
Xrs) =m (205, Y™).

n=1

The MSE or risk of the S(7'(-)) method is

Rst()) = ExEyq), _yoox(Xsr(V) - X)?
1
= §NExByix(m(Y) - X)?

N-1

Y

Ex [Ey|x(7l>\(y) - X)]z, 1)

where Y|X ~ N(z,0?) and (1) follows from the fact that
{Y(l), LYW )} conditioned on X are independent. The
risk of T(S(")) is

Rrs(A) EXEy(l),'__,Y(N)|X(XTS(A) -X)?

ExEz x(m(2) — X)?,

where Z|X ~ N(z, %) The optimal threshold is the
argument which minimizes the risk, that is, A5y
argminy Rsr(A), and A\}g = argminy Rrs(A) .

To compare the risks of these two methods, we look at the
scaled difference (Rs(A\57) ~ Rrs(Mrs))/o® as a function
of N (the number of copies available) and of the ratio o, /o,
as illustrated in Figure 1. For each NV < 5, there is a cutoff
point Oy below which Rs7(As7) > Rrs{ATs), and above



which Rsr(A%r) < Rrs(Mrg). For N > 5, however, the
T(S(-)) method is better for any value of o, /c. This find-
ing indicates that the best method depends on the relative
power between the noise and signal, and also on the value
of N. With the optimal thresholds, the improvement of
one method over the other is small, on the order of 10302,
The T'(S(-)) method requires much less computation than
the S(T'(-)) method (since the former can be implemented
by computing the wavelet transform once, whereas the lat-
ter computes it N times), thus if computation is an issue,
the T'(S(-)) method is preferred.

We do not have closed form solutions for A\}g and A5,
thus their values would need to be calculated each time or be
tabulated. However, we have found that they can be well
approximated by simple closed form expressions. For the
T(S(-)) estimator, the threshold is simply a modification of
 for one copy denoising, but with a change in the noise
variance,

5 a*/N
Ars = P 2
For the S(T'(-)) method, we use the approximation
- 2/ NGB/
for = T 3)

The threshold for S(T'(-)) needs to decrease as N increases,
even though at the thresholding stage, each copy is thresh-
olded independently of the other copies. To explain this,
note that the inner expectation of Rgr(A) can be written
as

By, ymx(Xsr(A) ~ X)? =
FByix (M) = Byixm(Y))” + (Byixm(¥) - X)*.

The first term is the variance due to thresholding, while
the second term is the square of the bias. The optimal
threshold is obtained from the tradeoff between the variance
term (which decreases with increasing A) and the bias term
(which increases with increasing A). As N becomes larger,
the variance term decreases due to the 1/ factor while the
bias term stays the same. Thus, A needs to be decreased as
well to obtain the minimum total.

Figure 2 compares the optimal and approximate thresh-
olds for both methods as a function of N, for ¢ = 1 and
oz = 1. Using the approximate thresholds Ars and Agr
result in less than .2% loss of MSE optimality for any value
of 0, and 0. Figure 3 compares the optimal threshold
Asr and the approximation Asrt as a function of o, /o for
N =2,...,6. It shows that the approximation is good for
large o /o but not as well for very small 0. /0, especially
for large N. The loss of MSE optimality is less than 3.5%
for 0;/0 < 1 and less than .1% for o./c > 1. However,
since typically the signal power is much larger than the
noise power, inaccurate approximations for small o, /o are
acceptable. The thresho{ds ;\TS and ;\ST also yield a differ-
ent set of cutoff values C, but the scaled MSE difference
(Rst(Ast) — Rrs(Ars))/o? is similar to the curves shown
in Figure 2 for optimal thresholds and is of the same order
of magnitude. Thus, the use of Ars and As7 do not perturb
the previous results much.
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Figure 2. Comparing~)\}5 (— — ) versus Ars (--),
and A5y (—) versus Asr (—-—), when o0 = 1 and

o = 1.

Up to now we have assumed that we have knowledge of
the noise variance o and the standard deviation o,. In
practice, these two values are not known and have to be
estimated from the noisy observations. For both methods,
these two parameters are estimated the same way for a fair
comparison. First the noise variance o2 is estimated by
the robust median estimator in the highest subband (also
used in [3}]), 6» = Median(|Y;;|)/.6745, with all Y;; in the
HH; subband of the n-th copy, then 62 is taken to be the
average of these IV estimates. Since the noise is independent
from the signal, Var(Z) = Var(X) + ¢*/N = o2 + o?/N.

N

Thus, for each subband of Z = %— ZY(H), the sample

n=1
variance estimate of Var(Z) is calculated, and the estimate
of the standard deviation o, of the Laplacian distribution

is 4/(Var(Z) — 62/N).

Now consider the case when the noise variances o> are
different. This extension is straightforward in the T'(S(:))
case. The multiple copies are averaged with coefficients o,
and the threshold is Ars in (2) but with ¢*/N replaced by

2
Ttotal-
For the S(T(-)) method, one needs to find the
optimal threshold for each copy and the optimal
weights in the summation. By minimizing the risk

ExEByay, yoox (X0, anm, (Y ™) - X) ? with respect
to ai1,...,an subject to Y. an = 1, and also with re-
spect to A1,...,An, one can find the optimal values o
and A;. The optimal o] are found to be very close to
0—172: /3; %, and the optimal thresholds can be approxi-
1 3/4
mated by A{Y = 5§ (1/(2:?;1 ;15)) ! ,n=1,...,N,
which yvields Asz in (3) when 01 = o2 . =opn. For a
given set of o, ’s, this approximation is good for the thresh-
old corresponding to the smallest o,, and it worsens for
thresholds corresponding to larger o,. This inaccuracy is
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Figure 3. Comparing M5 (—) and Asr (---) for o1 =

S, ON £ ¢ as a function of 0,/c and N=2,...,6.
mitigated by the fact that the weights a;,’s for copies with
large o,’s are small, thus the overall MSE is still close to
the optimal MSE.

3. EXPERIMENTAL RESULTS

To validate the theory, we take as the test image a 256 x 256
block from the image barbara, with o1 .= ON =0 =
30, using Daubechies’ least unsymmetric wavelet with 8
vanishing moments and 4 scales of wavelet transform [2].
The parameters o, and o are estimated as in prior discus-
sion. We compare the MSEs of four methods for a range
of N: averaging, S(T'(-)), T(S(:)), and switching between
the two _thresholding methods (only for N < 5) with cutoff
values Cv (thus the switching method becomes S(T(-)) for
N > 5) . The resulting MSEs are shown in Figure 4. The
three thresholding methods show significant improvement
over merely averaging, ranging from 70% to 30% reduction
in MSE for N varying from 2 to 30. The removal of noise
due to thresholding is also significant visually (see Figure
5), especially for small N. Among the thresholding meth-
ods, the T(S(-)) method is the best in terms of MSE, even
better than switching, suggesting that perhaps the S(7'(-))
method is more sensitive to model errors and threshold es-
timation errors. For 1 < N < 5, the switching method
yields MSEs that are between those of S(T'(-)) and T'(S(-)).
Visually, one does not discern any difference between the re-
sults from these three thresholding methods. The T(S(-))
method also requires the least amount of computation since
it can be implemented with only one wavelet transform.
Thus, in practice, this method suffices to combine multiple
noisy copies.

It is curious to investigate if an additional stage of thresh-
olding can have a significant improvement. It cannot do
worse, since we can always choose the second stage thresh-
old to be zero. To test this idea, we take the output of
S(T(-)) and optimally threshold it assuming that we have
the original. The resulting MSE is only slightly better than
the T(S(-)), suggesting that thresholding of the weighted
sum yields a sufficiently denoised image already. Further-
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Figure 4. Comparing for each N the MSE of av-
eraging (- — —), S(T(-)) (--—), T(5()) (---), and

switching (—), for o = 30.

more, finding the optimal thresholds of a two-stage thresh-
olding operation is difficult.

4. CONCLUSION

In this paper we addressed the issue of image recovery from
multiple copies of noisy observations, and explored the idea
of combining the wavelet thresholding technique with the
more traditional averaging operation. The investigation
showed that the optimal ordering of these two operations is
not so straightforward and is in fact a function of the num-
ber of available copies and of the relative energy between
noise and signal. We also proposed near-optimal thresholds
for each ordering. With these thresholds, the performances
are similar, and for computational reasons, averaging fol-
lowed by thresholding is recommended. Furthermore, all of
these thresholding methods show substantial improvement
over mere averaging, both visually and in the MSE sense.
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