EFFICIENT ALGORITHMS FOR EMBEDDED RENDERING OF TERRAIN
MODELS

Laurent Balmelli, Serge Ayer, and Martin Vetterli

Laboratory for Audio-Visual Communications
Swiss Federal Institute of Technology
1015 Lausanne, Switzerland

ABSTRACT

Digital terrains are generally large files and need to
be simplified to be rendered efficiently. We propose to
build an adaptive embedded triangulation based on o
binary tree structure to generate multiple levels of de-
tails. We present a O(nlogn) decimation algorithm
and a O(nlogn) refinement algorithm, where n is the
number of elevation points. We compare them in a
rate-distortion (RD) framework. The algorithms are
based on an improved version of the optimal tree prun-
ing algorithm G-BFOS allowing to deal with constrained
tree structures and non-monotonic tree functionals.

1. INTRODUCTION AND MOTIVATION

Digital Elevation Models (DEM), representing real ter-
rains have become popular in recent years. Such data
is usually given under the form of large uniform sample
sets, or elevations. Its usage has a wide spread, from
urban planning to the generation of dedicated maps
in Geographical Information Systems (GIS). For this
reason, rendering this data is an important problem
in computer graphics. In order to achieve this task, a
solution is to generate a planar approximation of the
surface using triangles. However, due to the amount
of data, rendering the full model is still an issue. Re-
searchers have studied many optimization methods to
improve this task. Most techniques are based on se-
lecting a subset of the elevations, or possibly generate
more relevant ones, in order to lower the amount of
triangles to be rendered. Triangulations are classified
into two categories: regular and irregular. Regular tri-
angulations, or Regular Triangulated Grid (RTG) are
simple to build with a uniform data set. However,
this approach fails when dealing with irregular sam-
ples sets. For this reason, many authors have proposed
algorithms to triangulate such data, leading to irregu-
lar triangulations, often called Triangulated Irregular

0-8186-8821-1/98 $10.00 © 1998 IEEE

914

Network (TIN) [1]. In this paper, we propose an ap-
proach which starts from a RTG and builds an adap-
tive grid handling irregular sample sets. We propose
an efficient mechanism for generating multiple levels
of details. Our method presents several advantages
over TINs. First, we don’t need to recompute the
triangulation between successive levels of details, sec-
ondly the successive triangulations are embedded and
well adapted for multiresolution. These characteristics
are not met by TIN. The embedded data structure
allows progressive rendering and transmission, when
used in a network context. We present two different
approaches: the first one is based on the optimal tree
pruning algorithm G-BFOS (first proposed in [2]) and
provides a decimation scheme, whereas the second one
provides a fast refinement scheme. We compare their
performances in a rate-distortion (RD) framework.

2. REGULAR TRIANGULATED GRID

2.1. Construction of the Triangulation

The triangulation is built in a top-down fashion. Con-
sider a sample set of sizen = N x N, where N = 2P +1,
then starting with an initial triangulation composed of
two triangles, one recursively subdivides each of them.
One will be able to do p+ 1 such subdivisions. Figure
1 shows three triangulation levels (level 0 is not repre-
sented) and the sampled elevation points (black dots).
A binary tree stores the subdivisions, where each node
represents a triangle. For n elevations, the tree depth
is h = 2logy(IV — 1) and the levels range within 0..A.

DK A

Figure 1: Triangulation and binary tree

level 1 level 2 level 3

2.2. Sibling Triangles

In the generated structure, some triangles share the
same hypotenuse, thus a common midpoint. We call
these ones sibling triangles. One has to consider these
triangles in order to avoid shape discontinuities while
computing an arbitrary level of details. Consider the
simple example of Figure 2, the triangles at level 1
in the tree must be merged (or split) jointly in the
structure to avoid a surface crack (also known as 7-

vertez).
M M
—_

Figure 2: Surface Crack (T-Vertex)

Sibling triangles are present at almost every lev-
els in the tree structure and create triangles split-
ting/merging dependencies. Figure 3 and Figure 4 de-

picts respectively the necessary operations to split/merge

triangles in the structure. In both figures, the black
node is split/merged. The gray nodes show the influ-

enced ones.

<—> sibling triangles
O actual tree

> uninserted nodes

<> sibling triangles
@ pruned nodes

Figure 4: Example of Triangle Merging

We analyze now some properties of the triangula-
tion that will be used to calculate algorithms complex-
ities. The tree nodes dependencies are static and can
be expressed in closed-form. For any triangle, one can
then compute its splitting domain and its merging do-
main. A triangle splitting/merging domain is formed
by the set of all triangles that one has to split/merge
jointly with this particular triangle. Figure 5 shows
an example of splitting domain and merging domain.
In the left hand-side of the figure, one can see that
splitting the filled triangle ¢ requires 6 forced splits
(domain size is 6). In the right hand-side, one can
see that merging triangle ¢ requires 29 forced merges
(domain size is 29).

915

ts.'

Figure 5: Splitting and Merging Domain

One can see that triangle t and its sibling ¢, share
the same merging domain. The function M[i] in Fig-
ure 6 shows the average merging domain size per level
for different triangulations sizes. This function will in-
fluence the decimation algorithm performances. One
can see that the triangles at level 3 have maximum do-
main size, but there are only 8 such triangles! More-
over, half of the total number of triangles have min-
imum domain size. Assume now that the cost C(T)
of the tree T is the sum of the costs of its nodes. If
a node (or equivalently a triangle) has a domain of
size m > 0, then its cost is m + 1, otherwise (m = 0)
its cost is 1. For any unconstrained tree of depth D,
c(T) = Zi 0 2% The constraints induce then a sur-
plus cost for the tree. One can see that, given our
constraints (left hand-side of Figure 6), this surplus
cost fades out as the tree size increases. This results is
important and shows that asymptotically, evaluating
a constrained tree do not cost more than evaluating
an unconstrained tree.

Total Tree Cost

J

s o

M][i]: Average Merging Domail

n Size/Level
faan = 3

g

257 x 257
129x 129
o BXE5
33x33

z
Nades vith Domain

Average Domain Size (log)

i
Tree Level Terrain Edge Size

Figure 6: Merging Domain Statistics

Due to overlaps, a particular triangle can belong to
several different merging domains. The function V3]
(see Figure 7) gives the percentage of triangles per in-
tersection count. This function is important since it
will weight the cost of an iteration step of the decima-
tion algorithm (see Section 3.1).

Unlike in the previous case, a triangle ¢ and its sib-

O[i]: Intersection Count

Percentage of Triangles

S
257x257
Intersection Count

s
129x129

Figure 7: Percentage of Triangles/Intersection Count

ling ts do not share the same splitting domain. The
function in Figure 8 shows the maximum and the av-
erage splitting domain size per level. For each triangle
in the structure, the highest possible number of forced
splits was computed.

S[i]: Average Splitting Domain Size/Level

S

Average Domain Size

Tree Level

Figure 8: Splitting Domain Statistic

3. APPROXIMATIONS IN A
RATE-DISTORTION FRAMEWORK

3.1. Decimation Algorithm

The decimation algorithm is based on a modified im-
plementation of G-BFQS, an optimal tree pruning al-
gorithm [3]. A previous work [2] has shown the oppor-
tunity to use G-BFOS for decimation of terrain data,
however, the authors did not consider sibling trian-
gles. This consideration is definitively important to
preserve the continuity of the terrain and to evaluate
correctly the tree functionals (see below). Moreover,
the planar approximation of the terrain is produced

916

by interpolating linearly its elevations to generate tri-
angles. This model leads to a non-monotonic behavior
of the distortion metric (L, norm).

We recall now the G-BFOS algorithm and present
the modifications to support constrained trees. We
first recall the notations used by Gersho [3]: if T" rep-
resents a binary tree, we denote by S < 7T any pruned
subtree rooted at the same node. More generally, S;
represents a subtree rooted at node ¢. A tree func-
tional u(-) is a real-valued function on trees, or u : S —
R. The variation Au(S;) of a tree functional is defined
as Au(Sy) = u(S;) — u(t). Finally, we will consider
linear tree functionals defined as u(S) =), .5 u(t),
where S is the set of leaves of the subtree S. The
algorithm works as follow: given two tree functionals
uy and ug and considering the vector-valued function
u(S) = (u1(S),u2(S)), where u; is monotonically in-
creasing (Au;(S) > 0) and wug is monotonically de-
creasing (Aue(S) < 0), the output of the algorithm
is a set of embedded trees tg < S, < ... < 8§ <
S1 < T corresponding to the vertices u(ty), u(Sp),
...,u(S1),u(T) bounding the convex hull of all pos-
sible tree configurations (optimal solutions), as shown
in Figure 9. If r(S) and d(S) are tree functionals re-
turning respectively the rate and the distance in the
Ly norm (distortion) between two subtrees, then typ-
ically u1(S) = r(S) and u2(S) = d(S). However d(S)
is not a monotonically increasing function in our case
since, given a particular subtree S:, it may exist a
pruned tree S} < S such that Ad(S;)Ad(SF) < 0
(non-monotonicity). The algorithm starts at the point
u(T) which is on the convex hull, computes the mag-

nitude A(t) = :AAT?%-Z of the slope to every other con-

figurations (S; is the subtree to prune to obtain the
new tree configuration) and choose the minimal one.
The corresponding subtree is pruned and the magni-
tudes A are updated to take into account the new tree
configuration. The algorithm is iterated to obtain the
successive approximations. It has been shown that
configurations on the convex hull are embedded [4].
We prove in Appendix that the non-monotonicity of
the functional d(-) do not affect the optimality of the
solutions.

As said in section 2.2, merging two triangles (or
equivalently pruning a subtree) requires merging all
the triangles of its domain. Given a subtree S; where
its root node corresponds to a particular triangle, we
denote its domain by S;. One can see that, for the al-
gorithm to operate correctly, the tree functionals must
be also evaluated on each triangle domain. Then, the
value A is redefined as

A(t) = —Ad(S; + S¢)/Ar(S; + S¢)

u(s)

00045 o~ 06 o unreachable
coo.,0~,° o0 target rates
00%050 0
s 9% 60%06s 0%0
'12: ©o? 90 0°%o ® Optimal
] 00 ~00 %4 configurations
@ \\2 290009
© 200062
a. <

rate ‘RT)

Figure 9: Rate-Distortion Plan and the Convex Hull

The complexity of the initialization step, which con-
sists in computing the initial tree functionals values
for each triangle is proportional to O(n) (see Section
2.2). The algorithm complexity is influenced by the
size of the domains, since for each triangle belonging
to S; one needs also to update all the magnitudes A of
its ancestor nodes (see [3]). The cost of such update
depends on the triangle domain size m, thus in total
(m + 1) logn. Experimentations permit us to evalu-
ate the practical value of the factor ¢ = m + 1. Since
most prunings are done near the leaves, its value re-
mains small (see Figure 10). We conjecture then that
clogn = logn. One needs also to update the triangles
which domain contains one of the merged triangles.
Function I[i] (Figure 7) shows that the expected cost
is mE(I) ~ logn. Assuming that we need to merge
the n nodes, the expected complexity of the algorithm
is O(nlogn).

Update Factor ¢

-

Estimate

Terrain Edge Size

Figure 10: Estimation of the Update Factor ¢

3.2. Refinement Algorithm

The refinement algorithm is simply based on a greedy
tree growing method. It starts with an initial approx-
imation of two triangles (Figure 1) and progressively
refines the approximation choosing the available nodes
having maximum A. In this case, the initialization step
consists simply in computing the lambda value for the
available nodes. Once a node is split, one evaluates

917

Fig | Ratex5 tri. | RTG | Refinement | Decimation
a 512 22.54 23.12 24.82
b 1024 25.97 26.64 28.18
c 2048 29.23 29.32 31.43
d 4096 31.80 32.32 34.48

Table 1: Signal-to-Noise Ratio {(dB) Results

the tree functionals for each of its leaves and update
the A magnitude for the triangles which domain con-
tains one of the split triangles. Since this operation is
directly dependent of the triangle splitting domain, its
cost is approximatively logn (see Figure 8). Assuming
that each triangle is split, the expected complexity of
the algorithm is O(nlogn).

3.3. Performances and Conclusion

We present here the simplifications of a 257x257 DEM
of Zermatt in Switzerland. The original DEM pro-
duces a RTG of 131’072 triangles. Figure 12 and
13 present (top-viewed) approximations at different
rates whose results are reported in Table 1. The SNR
is computed as 1010g;o(€maz/€m), Where enq, is the
maximum squared error {approximation with two tri-
angles) and e, is the measured squared error. We
added, for comparison, the results obtained using a
RTG (uniform grid). Figure 11 compares the RD
curves of the refinement (bottom curve) and decima-
tion (top curve) methods.

The decimation algorithm gives good results in term
of RD. An interesting question is how far from the op-
timal solutions are the approximations? Albeit our
algorithm was based on an optimal tree pruning algo-
rithm for unconstrained trees, it did not permit us to
conclude about optimality. The tree constraints lead
to a complex data structure, and pruning optimally
such structure is still an open problem. Although the
refinement algorithm does not perform much better
than a simple planar approximation (RTG) in term
of RD, visually significant details (like peaks for in-
stance) are very rapidly emphasized, which makes it
very interesting from this point of view (see Figure
12).

Appendix

In this section, we give the proofs for optimality of G-
BFOS when using a non-monotonic distortion metric.

Proposition 3.1 Pruning Candidate Necessary Con-
dition
Consider two nodes to and t1 with level(to) < level(t:),

Signal to Noise Ratio (SNR) [dB]

i

Rate (Number of Triangles)

Figure 11: Rate-Distortion Curves for Zermatt

Figure 12: Approximations using Refinement

then assuming a monotonically increasing rate functional
r (e.g Ar(S) > 0), the subtree Sy, will be pruned before the
subtree Sy, only and only if

Ad(S)

>d6>1
Ad(Sy)

where § = Ar(Si,)/Ar(Sy).
proof For node t1 to be pruned before node to, we need to
have

Ad(Ss)Ar(Siy) > Ad(St, YAr(Se,)

since r is monotonically increasing, we can express Ar(Sy,)
as

Ar(Sty) = 6AT(S:,) (1)
with & > 1. Then, by replacing the above term, we have
that

Ad(St,) > 6Ad(S:,)

which gives a necessary condition on node to so that node
t1 is o pruning candidate.

918

Figure 13: Approximations using Decimation

Proposition 3.2 Given a node t* with A(t*) = minsesA(t)
and the set of ancestor A= {t | t* € St}, for all updated
nodes t € A we have

At) > At

proof We have to show that A(t*) is a lower bound for
all others A(t) € S. We only have to consider the updated
nodes (e.g the nodes t € A), since t* is the node with
minimal slope in the current tree configuration. We know

that node t* satisfy proposition 3.1, then for any node t €
A

Ad(S:) — Ad(Si+) _ §Ad(Se+) — Ad(Ser)
AT(St) - AT(St') 5A7’(St*) - AT‘(St')
(6 —1)Ad(Se+) _ Ad(Si+)
(G —1)Ar(Ser) Ar(Sev)

A(t) =

= A(t")

4. REFERENCES

[1] Michael Garland and Paul Heckbert. Fast polygo-
nal approximation of terrain and height fields. In-
ternal Report CMU-CS-95-181, September 1995.

2

—_

Scott P.Oswald, Kannan Ramchandran, and
Thomas S.Huang. Efficient terrain data represen-
tation for 3d rendering using the generalized bfos
algorithm. ICIP, 1997.

A. Gersho and R. M. Gray. Vector Quantization
and Signal Compression. Kluwer Academic Pub-
lishers, 1992.

P.A. Chou, T.Lookabaugh, and R.M Gray. Opti-
mal prunning with application to tree-structured
source coding and modeling. IEEFE Trans. Infor-
mation Theory, 35:299-315, March 1989.

