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ABSTRACT. Musical signals require sophisticated time-frequency techniques
for their representation. In the ideal case, each element of the representation
is able to capture a distinct feature of the signal and can be attached either a
perceptual or an objective meaning. Wavelet transforms constitute a remark-
able advance in this field and have several advantages over Gabor expansions
or short-time Fourier methods. However, application of conventional wavelet
bases on musical signals produces disappointing results for at least two rea-
sons: 1) the frequency resolution of dyadic wavelets is one-octave, too poor
for any meaningful acoustic decomposition and 2) pseudoperiodicity or pitch
information of voiced sounds is not exploited. Fortunately, the definition of
wavelet transform can be extended in several directions, allowing for the design
of bases with arbitrary frequency resolution and for adaptation to time-varying
pitch characteristic in signals with harmonic or even inharmonic structure of
the frequency spectrum. This paper provides an update on refined wavelet
methods that are applicable to musical signal analysis and synthesis. Flexible
wavelet transforms are obtained by means of frequency warping techniques.

1. INTRODUCTION

In audio signal processing the choice of the representation is crucial for deriving
elegant and efficient algorithms for coding, detection and synthesis useful for new
and improved applications. Undeniably, the analysis of most features of sound
requires mixed time and frequency characterization. The human hearing sense
is particularly gifted at classifying acoustic patterns according to both their time
of occurrence and brightness of their transitory frequency spectrum. However, our
mathematical models, having to cope with the uncertainty principle, cannot achieve
indefinitely accurate resolution in both time and frequency domains.

Gabor expansions and the Short-Time Fourier transform (STFT) were among the
first techniques to be applied to audio signals in order to analyze their time-varying
frequency spectrum characteristic called spectrogram. However, our perception of
sound is based on a non-linear frequency scale, as reflected by both cochlear func-
tional models and psychoacoustic theories. Musical sounds were indeed classified on
a tempered scale, i.e., tones spaced by one octave, corresponding to power of 2 fre-
quency ratios, are given the same name and tones within the same octave progress
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as powers of /2. This behavior is contrasting with the frequency resolution of the
STFT, which is uniform on any portion of the frequency axis.

The introduction of wavelets and multiresolution analysis partly corrected this
problem with the construction of integral transforms and expansion bases adjusted
on a non-uniform time-frequency scale [1]. Within constant uncertainty product,
higher frequencies are represented with higher time resolution and lower frequency
with lower time resolution. Indeed, if we are required to detect the pitch of a tone
we need to observe at least one period, which has a duration inversely proportional
to the frequency. If the integral wavelet transform, in its redundancy, does not
introduce limitations on either resolution other than those dictated by the uncer-
tainty principle, the dyadic wavelet bases constrain the frequency resolution to one
octave [2][3], with a resolution factor 3.

The reason why dyadic bases are popular lies in the fact that they are easy to
generate and fast algorithms for computing the expansion coeflicients are available.
Wavelet bases based on rational frequency resolution lead to difficult design pro-
cedures in order to satisfy regularity constraints [4]. Furthermore, the frequency
resolution factor is in practice limited to ratios of small integers. In contrast, fre-
quency warping techniques allow for arbitrary choice of analysis bands. This is an
important point if we want to adapt the signal representation either to perceptual,
e.g., Bark, scales or to objective bands associated to a single feature. However,
computation of the transform based on general warping maps is not efficient unless
one is able to derive a structure based on rational transfer functions [5].

In this paper, methods for frequency warping based on the Laguerre transform
whose computation is achieved by means of a chain of digital all-pass filters are
applied to wavelets. Iterated frequency warping by means of Laguerre maps leads
to wavelets with arbitrary frequency resolution, whose bandwidths can be assigned
by selecting a set of parameters [6]. Interestingly enough, these wavelets are still
based on a dyadic scheme, which is a natural setting for iterated band splitting. The
case where the choice of the design parameters leads to orthogonal and complete
wavelets with arbitrary resolution factor 0 < a < 1 is examined in detail. In this
context, while single-step frequency warping requires an a-homogeneous selfsimilar
map, we show that iterated warping is most conveniently associated with conjugacy
and Schroder’s equation. This property is also useful for showing convergence of
the parameter sequence via an extension of Kénigs’ theorem [7] to parametric maps
on the real axis.

Another issue in musical signal analysis is that the frequency spectrum of voiced
signals peaks at uniformly or non-uniformly spaced frequencies. While exact peri-
odicity is rarely encountered in real-life signals, exploitation of the pitch information
or of pseudoperiodicity is an asset for their representation. The dynamics of most
sounds may be captured in at least three phases:

e the attack, where abrupt transients are among the most important factors in
our ability to recognize a given instrument,

e the sustain, where the signal is quasi-stationary and quasi-periodic, although
small fluctuations in this phase add richness to the dynamics and are impor-
tant natural factors,

e the release, where the signal fades away, most often with distinct decay rates
in different areas of the frequency spectrum.
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The Fourier transform is particularly gifted at revealing periodicity, however
the STFT represents pseudoperiodic signals as a superposition of partials whose
dynamics is captured with uniform time resolution. It follows that transients are
blurred if the selected time-resolution is too poor or frequency resolution is at risk
when the analysis window is too short.

In previous papers [8][9] the author suggested methods for exploiting the pitch in-
formation in wavelet representations by introducing the Pitch-Synchronous Wavelet
Transform (PSWT). The signal is first converted into a sequence of variable-length
vectors each containing the samples of one period of the signal, then the sequences
of components are analyzed by means of an array of wavelet transforms. This rep-
resentation is able to capture period-to-period Huctuations of the signal by means
of basis elements that are comb-like in the frequency domain. Periodic behavior is
trapped in narrow combs adjusted on the harmonic grid and transients at several
scales are represented by multiresolution basis elements whose Fourier transforms
are organized in ensembles of sidebands of the harmonics. Faster transitions are
represented at fine time resolution by larger bands lying far from the harmon-
ics. Vice-versa, slow transitions and quasi-stationary dynamics are represented at
coarser time resolution by narrower sidebands lying closer to the harmonics. In
particular, this technique allows for separation of perceptually and physically dis-
tinct phenomena such as the bow noise and the harmonic resonant component in a
violin tone. Importantly enough, this separation is achieved by means of a complete
and orthogonal set and the sum of the components exactly reconstructs the original
signal.

The PSWT technique is amenable to further generalization, essentially by intro-
ducing alternate methods for forming the vector signal, e.g., based on intermediate
Gabor-like or STFT representations, which can be formalized in the multiwavelets
framework. However these have several drawbacks: they do not generate complete
and orthogonal sets when the pitch is variable, they blur the time resolution and
the construction of pitch-synchronous bases requires the design of filter banks with
a large number of bands.

While the PSWT works efficiently when the frequencies of the partials are ar-
ranged on a harmonic grid, the frequency spectrum of many sounds, such as piano
tones in the low register, has an inherently inharmonic structure. From a physical
model point of view, this phenomenon may be explained by the fact that stiffness
of the material is not negligible and dispersive wave propagation occurs within the
medium. Furthermore, coupled 2D modes in drums have a peculiar distribution
of eigenfrequencies. A partial solution of this problem is provided by frequency
warping techniques that allow for redistribution of eigenfrequencies into harmon-
ics. Inharmonic signals are first regularized by means of a frequency map and then
analyzed by means of PSWT, leading to the Frequency Warped PSWT [6].

The paper is organized as follows. In section 2 the properties of one-step fre-
quency warping maps of continuous-time signals and wavelets are examined. Meth-
ods for frequency warping discrete-time signals and the Laguerre transform are il-
lustrated in section 3. These methods are applied to define discrete-time warped
wavelets in section 4. In section 5 an extension of Konigs’ theorem on iterated
maps is presented and applied to the construction of scale a continuous-time warped
wavelets.
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2. FREQUENCY WARPING AND WAVELETS

2.1. Frequency Warping. Frequency warping is obtained by mapping the fre-
quency axis w by means of a suitable real function Q(w). Given a continuous-time
signal x(t) with Fourier Transform (FT)

+OO -
X(w) = / (t) eIotd

—0oC

we form the warped signal

1 Foo .
Z(t) = o | X(Q(w)) e*tdw,
i.e., we let
(2.1) (W) = X(Qw)) = /_ () =IO g

Thus, at any frequency w the FT of the warped signal has the same magnitude as
the FT of the signal at frequency Q(@), i.e., the frequency spectrum of the warped
signal is a deformed version of that of the original signal. Clearly, for the warping
operation to be well defined, the map ©(w) must satisfy a number of requirements.
In this paper we are interested in reversible warping operations defined by a strictly
increasing, invertible, map 2 of the real axis onto itself. The map is also assumed
to have odd parity: Q(—w) = —Q(w). In this way frequency ordering is preserved
and warping a real signal yields a real signal. Notice that, as defined in (2.1),
frequency warping is not energy preserving since narrow frequency bands may be
mapped into broader bands with equal peak amplitude. In order to preserve energy
in any frequency interval one needs to multiply the right hand side of (2.1) by a
suitable amplitude scaling function or, more generally, define a suitable measure of
the frequency axis. In the sequel we will assume that the map is almost everywhere
differentiable, e.g., that Q(w) is absolutely continuous, and define a scaled warped
operation on the signal x(t) as the one producing the FT

X(w) = VU (W)X(2(w),
where the derivative '(w) is positive almost everywhere since the map is assumed
to be strictly increasing. In that case one obtains energy preservation in any band.
In fact, a frequency band with support [wg,w1] is mapped into a frequency band
with support [Qfl(wg),Qfl(wl)] and

1 e 1

~ 2 w1 )
)| do=5= [ [X@) dw.
@] =5 [ 1Xw)
From a perceptual point of view this property is important since the scaled warped
signal is properly equalized while in the unscaled version some parts of the fre-
quency spectrum are boosted. From a mathematical point of view scaled warping
is associated with an orthogonal operator W:

+o0
(t) = [Wx] (1) = W(t,r)x(r)dr

—00

2 Q=1 (wo) wo

with real kernel

2

+oo B
Wit = [ @)= g
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and inverse operator W~ defined by the kernel
(2.2) WLt 1) = W(T,1).

Finally, we remark that, by exploiting duality of the FT one can define time warping
operations in a similar fashion.

2.2. Simple Warped Wavelets. In [10][11] Baraniuk and Jones exploited uni-
tary warping operators in order to define warped wavelets. Their construction may
be summarized as follows: the signal is unwarped by means of the inverse warp-
ing operator W', then the expansion coefficients on a dyadic wavelet basis are
computed. Reconstruction is achieved by applying the warping operator W to the
wavelet expansion of the unwarped signal. In other words, given an orthogonal and
complete dyadic wavelet set

{’(/)n,m (t) }n,mGZ ’

where

(23) wn,m(t) = 2_"/21/)0,0(2_Ht o lrn) ’

one computes the expansion coefficients

-?L/:n,m = <W71'T1 ¢7L,m>
and reconstructs the signal as follows
(2.4) 2(t) = Y Bum (Wb, ] (0)-
n,mez

Since the frequency warping operator is orthogonal we have

-?L/:n,m = <W71.’1)‘, 1/)n,m> = <$a an,m>

and (2.4) may be considered as the expansion on the warped wavelet basis

{Werm] B}, ez -

Indeed this basis is orthogonal since

<an’,m’ ’ W¢7l,m> = <,¢n’,m’ ’ W_lwwn,m> = 671’,n6m’,m
and complete in view of unitary equivalence.
The FT of the warped wavelets

Unn () = [Wih ] (F)
is related to the FT of the dyadic wavelets as follows

(2.5) \/I\/n,m(w) =/ W)Y, ,(Qw)) = \/Z"Q’(w)\110,0(2"Q(w))e_52”m9(“’)
from which we see that warped wavelets are not simply generated by dilating and
translating a mother wavelet as in dyadic wavelets (2.3). Rather, the “translated
wavelets” are generated by generally non-rational all-pass filtering e=72""2(«) and
scaling depends on the warping map Q(w) as well. However, frequency warped
wavelets have the remarkable property that their frequency resolution, i.e., their
essential frequency support, may be arbitrarily assigned by proper choice of the
map (w). Indeed, if the cut-off frequencies of dyadic wavelets are fixed at 27",
the cut-off frequencies of the warped wavelets are

Wy, = Q727 ).
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FIGURE 1. Example of warping map for power of a wavelet cut-off choice.

For our purposes we just need to add the remark that genuine scale a wavelets,
0 < a < 1, may be generated by selecting as warping map an a-homogeneous
function

(2.6) Qaw) =
such as

Qw) = %2— log, 131
w

reported in fig.1. Repeated application of (2.6) shows that
(2.7) Q(a "w) =2"Qw) .
By deriving both sides of (2.7) one obtains
(2.8) Y (a™"w) = (2a)" V' (w) .
By substituting (2.7) and (2.8) in (2.5) we obtain
By n) = a2 (0 "0)

which shows that warped wavelets generated by an a-homogeneous warping map
are obtained by dilating the family of mother wavelets ¥ ,,(w), m € Z, while
wavelets at fixed scale level n are all-pass related:

(I}n,m(w) = {I\’n,O(w)ei]‘mQ(ainw)
Without loss of generality we can assume that
Ur)=m
so that the cut-off frequencies of the scale a warped wavelets are fixed at

Wp =0a"T.
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Ifa > % then the warped wavelets achieve a finer frequency resolution than the

dyadic wavelets.

3. DISCRETE-TIME FREQUENCY WARPING AND LAGUERRE TRANSFORM

The continuous-time warped wavelet expansion illustrated in the previous section
is applicable to continuous-time signals and requires warping of the signal, a task
that is computationally difficult to perform. An important property of dyadic
wavelet expansions is that they have a fast algorithm to iteratively compute the
expansion coefficients even in the continuous-time case. In this section we consider
frequency warping of discrete-time signals and relate this to an orthogonal transform
that can be computed by means of a chain of rational all-pass filters.

Since the discrete-time Fourier transform (DTFT) of a sequence x(n) is periodic,
reversible frequency warping of discrete-time signals requires an invertible frequency
map of the interval [—m, 7] onto itself. As we did in the continuous-time case, we
will assume that 6(w) is a.e. differentiable, has odd parity and maps the point 7
into itself. As discussed in the previous section, we are interested in procedures for
unwarping the signal, producing the signal Z(n) whose DTFT is

R() =/ Cx(07 @)

It follows that the discrete-time unwarping operator W—! is orthogonal and has

kernel
+m -1
1 A0 k0 (@) g,
2 |_ . dw

1 +7 p o ]
_ j(kw—nb(w))
(3.1) ol /0 (w)e dw.

The unwarped signal is

(3.2) B(n) = [Wla] (n) =Y W' (n, k) w(k) =D Aa(k) w(k),

k

W L(n, k)

where we defined
(3.3) A (k) =W (n, k) .

Notice that (3.2) is in the form of a scalar product of the signal with the sequence
An (k). By the orthogonality of the operator

W (n, k) = W(k,n)
and the set {\,,(k)},,c

D AR (k) =Y "W, R)W (k') = 6 e

7 is orthogonal and complete. In fact:

and

S AB)An(K) =Y W, kYW (K, n) = 8k -
mn k

Thus, the discrete-time unwarped signal is given by the sequence of expansion
coeflicients

(3.4) Z(n) = (x, An)
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x(—n)—>| A(2) }—K{ A®R) }—K{ A(2) }—@ A®2) )_K ...................
n=0 n=0 n=0 n=0

” y y
k) <+ | | |

shift register

FIGURE 2. Structure for computing discrete-time signal unwarping
by means of the Laguerre transform.

of the signal over the orthogonal basis {\,,(k)}, .7 and the signal z(n) is recovered
from Z(n) by the expansion series

2(n) = #(k)Ak(n) .

In turn, if the signal is causal, i.e., if (k) = 0 for k£ < 0, then the scalar product
(3.4) may be computed by convolving the time-reversed signal y(—k) = x(k) by
An (k) and sampling the result at n =0

(@, An) =D w(k) (k) =D y(0— k)M (k) .
k=0 k=0

Furthermore, from (3.3) and (2.2) it is easy to recognize that the DTFT of A, (k)
satisfies the following recurrence:

Kn(w) = Ky (w)e 9@,
with
Ao(w) =4/0'(w).

Unwarping may be then computed by means of a cascade of all-pass filters forming
a dispersive, i.e., frequency dependent, delay line sampled at n = 0. However, for
digital implementations one needs to constrain —f(w) to be the phase of a causal
and stable, rational all-pass filter. In this case it is easy to show that 6(w) is one-
to-one with odd parity mapping and fixing the point 7 if and only if —f(w) is the
phase of a first-order real all-pass filter with transfer function

271 —b
1 bzt
The corresponding basis set A, (k) is recognized to be the discrete Laguerre basis
[12][5][13], with

A(z) , —1l<b<1.

bsinw
(3.5) f(w) = w + 2 arctan T beos s’ -1<b<1
and
VI
Ao(w)

T 1 e

Laguerre warping is the unique one-to-one warping that can be computed by means
of rational filters using the structure of fig. 2. The corresponding family of warping
curves (3.5) is shown in fig. 3.
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FI1GURE 3. Family of warping curves associated to the Laguerre transform.

4. WARPED FILTER BANKS AND DISCRETE-TIME WARPED WAVELETS

4.1. Two-channel warped filter bank. In the classical construction of dyadic
wavelets [1] a two-channel critically sampled filter bank serves as building block.
This is based on two quadrature mirror filters (QMF) H(z), low-pass, and G(z),
high-pass. These filters are half-band with cut-off frequency w. = %. In [5] the
author, together with S. Cavaliere, considered as building block the structure of fig.
4, where the signal is frequency unwarped by means of Laguerre transform (LT)
prior to filtering. Unwarping the signal is equivalent to warping both the filters
and the downsampling / upsampling operators [5], as depicted in fig. 5. Thus, on
one hand the pass-band of the filters is altered and the cut-off frequency is moved
to w, = 071(%), on the other hand the equivalent warped downsampling operator,
which embeds unwarping and conventional downsampling, resets the band of the
filtered signal to half-band prior to downsampling. By combining the Laguerre
transform with an orthogonal filter bank one obtains an orthogonal perfect recon-
struction structure whose bands can be arbitrarily allocated by fixing the parameter
b.

The structure of fig. 4 can be generalized to include an ordinary discrete wavelet
transform structure in place of the two-channel filter bank. This provides a first
form of discrete-time warped wavelets. However, the analysis bands cannot be
arbitrarily selected since they are determined by transforming the cut-off frequencies
27" according to a single curve in the Laguerre family. As shown in the next
section, fully arbitrary bandwidth allocation is achieved by iterating the full warped
filter bank structure.

Frequency warping may be successfully employed for transforming inharmonic
sounds into harmonic ones or vice-versa. When used in conjunction with PSWT one
obtains a PSFWWT version useful for decomposing inharmonic instrument sounds
into regular pseudo-periodic components plus fluctuations. The magnitude FT of
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Vi

x(k) — LT »H'(1/7)

‘T— H(z) o> ILT —> x(k)

’ T— G(2)

F1GURE 4. Two-channel warped filter bank structure

—» LT —» H®)

—»| H(6(®))

G (/7))

|
|

W

warped downsampler

F1GURE 5. Equivalent downsampled warped filtering structures.

the basis elements is reported in fig. 6. The PSFWWT decomposition allows, e.g.,
to resolve the hammer noise in a piano tone. An account of this method is given
in [6][14], where the Laguerre warping family is seen to close match the dispersion
curves provided by both experimental data and physical model based on a 4** order
PDE.

4.2. Discrete-time warped wavelets with arbitrary band allocation. Dis-
crete time warped wavelet decomposition may be obtained by iterating the two-
channel warped filter bank. Similarly to the ordinary wavelet transform, identical
warped filter bank structures are nested in the low-pass branch. Each warping stage
is characterized by a different value by of the Laguerre parameter. One can show
[6] that the DTFT of the level n warped wavelet has the form

U, m(w) = A 0(290%-1(w))G(Q%(w))Pr—1,0 (w)e*ﬂmﬂn (w)

where
(4.1) @ 0(w) = [T {4%,0(22%—1 () H(Qs(w))}

is the DTFT of the warped scaling sequence,

A o(w) =/ ‘%(‘U)l—_b?C

1-— bke—jw
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PSFW-Wavelets : Frequency Domain

Wavelet n=1:

Wavelet n=25

Wavelet n=3;

Scaling n:35

FIGURE 6. Frequency domain characteristics of pitch-synchronous
frequency warped wavelets.

and

1
Qk(w):§19koz9k,1o---oz91

with
ﬁk(w) = 29k(w) .
The cut-off frequency of the level n warped scaling sequence is given by
n — Q_l z
w n (2) )

which is the cut-off frequency of the narrowest band filter H(,,(w)) in the product
(4.1).

Given a choice of the cut-off frequencies w,, < w,_1 < --- < wi, there exists
a unique solution for the Laguerre parameters bz, & = 1,...,n, obtained by the
following recurrence

b - (22
(4.2) by = tan (% - Qk_l(wk)>

Consequently, to any choice of the cut-off frequencies is uniquely associated a
corresponding set of parameters. The iterated warped filter bank is a perfect re-
construction orthogonal structure equivalently described by a discrete-time warped
wavelet basis. Cut-off frequencies may be arranged on a perceptual scale, such as
Bark scale, leading to perceptually organized orthogonal transforms [15][16].
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5. CONTINUOUS-TIME WARPED WAVELETS

Expansion coefficients over ordinary continuous-time wavelet bases may be it-
eratively computed by means of an infinite filter bank structure. In this section
we start from the definition of discrete-time warped wavelets given in the previous
section to construct continuous-time warped wavelets such that the expansion co-
efficients can be computed by means of an iterated warped filter bank structure.
Two problems arise concerning the convergence of the warping map and the con-
struction of suitable scaling functions. As we will show next, conjugacy rather than
homogeneity is a key requirement for obtaining scale a wavelets.

5.1. Schroéder’s equation and extension of Ko6nigs’ theorem. Our theory on
iterated warping maps is based on Konigs’ models for solving Schroder’s equation.
The latter is an eigenfunction equation for the composition operator. The classical
theory provides results for identical maps of the inner unit disk into itself [7]. In
order to apply the results to iterated warping maps we need to extend the theory
to allow for parametric maps of the real axis. We were able to prove the following

Theorem 1. Let f(w;n) be a 1-parameter family of maps of the real line into itself,
fixing the point w = 0 for any value of the parameter .
Let fo(w) = f(w;n,,), wheren,,, n € N, is a sequence of values of the parameter
n such that
e Vn €N, f,, has bounded second derivative and |f],(0)| > 0
o [ (w)| < |wl|, for all but finitely many integers n
Enlw) ith By = fuo faoeero fu and FL(0) = 1] £1(0),
£1(0) K1
converges uniformly on any compact subset of R.
Furthermore, if foo(w) =lim f, (w) exists finite and differentiable at w = 0 then

Schraoder’s equation
(5.1) Fo foo = fL(0)F,

is satisfied by F = li7ILn F ELO) .
This theorem can be applied to the iterated inverse map
Q w) =07 005 000, (2w)

i

then the sequence

where
b,, sin £
9 Yw) =0 Y wb )= 2 2arctan — "2
(W) (w;by) 5 arctan ¢ b cos
In the exponential cut-off assumption
(5.2) 0,1 <E) =a"r
2
the family 9! (w; b) satisfies the hypotheses of Theorem 1. Since
d w vy
Lo, 1%
dw 7 9 w0 J 9 )
k=1
where
1— b
V= ——

- 14b;’
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the sequence

1 L/ w
% (3)
/Y7L
converges, uniformly on any compact subset of R to an increasing and differentiable

map Q! (w). Convergence together with the cut-off condition (5.2) imply that for
w = 7 we have

- n o 9
Q_l(ﬂ):lima LI N =
mn ')/7L o} l/k
Hence
(5.3) limv,, = 2a

with exponential convergence rate:
vy = 2a+ O(a®"1).

The limit (5.3) is an important result since it guarantees that the sequence of
parameters v,,, whose dependency on a is extremely complex in view of the iterated
map in (4.2), rapidly converges to a linear function of a.

By Theorem 1, the map Q1 (w) is an eigenfunction of the composition-by-9¥}'
operator with eigenvalue a:

(5.4) Qo =a07?,

where 9! has parameter v, = 2a. Since any solution of Schroder’s equation (5.4)
is unique up to a multiplicative constant, one can normalize Q~! by defining
Ot Q!
Qfl(w) _ 7T~ (OJ) — lim = (w)’
Q- 1(m) noooa”
which is a solution of Schroder’s equation (5.4) satisfying Q~1(7) = 7.
The direct map Q(w) satisfies the equation

Do 0 QW) = 0 (%) .
Since
V(w) = Q(a™'Q7 ' (w))
(5.5) V) = QW) .

the composition of several ¥, or 190_01 maps is conjugated, respectively, to negative
or positive powers of the eigenvalue a via the eigenfunction and its inverse. This
conjugacy relationship can be exploited to define continuous-time scale a wavelets
from the discrete-time warped wavelets. This leads to the following form for the
FT of the “mother” scaling function:

(5.6) Boo(w) = VW) ] §T

with “translation” given by

B (w) = Bg,o(w)e M),
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F1Gure 7. Tiling the time-frequency plane by means of frequency
warped wavelets.

This construction is compatible with powers of a scaling
</I\>",m(w) = a7"/2</I\>0,m (a*"w)

in that at each fixed level n scaling functions are orthogonal and their span forms
an orthogonal subspace V,, complementary in V,,_; to the space spanned by the
level n wavelets. With the usual requirements on the QMF filter H [1] one can
show that the set of wavelets is orthogonal and complete in L?(R). By applying
conjugacy relationships (5.5) one obtains the following warped two-scale equation

=800 (2) = Ao () H (30 (£)) Bo(e)

\/E(I)O’O (a
This result allows us to iteratively compute the expansion coefficients over the
warped wavelet basis by means of the iterated warped filter bank structure with
identical parameters b, = }_T_gz
Warped wavelet decomposition leads to an unconventional tiling of the time-
frequency plane shown in fig. 7. Due to frequency dependent delay of each basis

element, the uncertainty zones are characterized by curved boundaries.

6. CONCLUSIONS

In this paper we explored the panorama of wavelet transforms obtained by means
of frequency warping techniques, with particular attention to their realizability in
computationally efficient structures based on rational discrete-time all-pass filters
and two-channel filter banks. The construction of scale a warped wavelets is based
on an original extension of Konigs’ theorem on iterated maps.
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The fexibility of the transform is exploited for the representation of music signals
in perceptually or objectively meaningful components, allowing for adaptation to
perceptual scales or for orthogonal separation of transients and noise in harmonic
or inharmonic sounds via pitch-synchronous methods.

Frequency warping emerges as an appealing technique in musical signal process-
ing for the creation of new effects and for the analysis and synthesis of features of
sounds by means of adapted representations.
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