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Abstract. Wavelets have been shown to be an effective analysis tool
for image indexing due to the fact that spatial information and visual
features of images could be well captured in just a few dominant wavelet
coefficients. A serious problem with current wavelet-based techniques is
in the handling of affine transformations in the query image. In this work,
to cure the problem of translation variance with wavelet basis transform
while keeping a compact representation, the wavelet transform modulus
maxima is employed. To measure the similarity between wavelet ma-
xima representations, which is required in the context of image retrieval
systems, the difference of moments is used. As a result, each image is in-
dexed by a vector in the wavelet maxima moment space. Those extracted
features are shown to be robust in searching for objects independently
of position, size, orientation and image background.

1 Introduction

Large and distributed collections of scientific, artistic, and commercial data
comprising images, text, audio and video abound in our information-based so-
ciety. To increase human productivity, however, there must be an effective and
precise method for users to search, browse, and interact with these collections
and do so in a timely manner.

As a result, image retrieval (TR) has been a fast growing research area la-
tely. Image feature extraction is a crucial part for any such retrieval systems.
Current methods for feature extraction suffer from two main problems: first,
many methods do not retain any spatial information, and second, the problem
of invariance with respect to standard transformations is still unsolved.

In this paper we propose a new wavelet-based indexing scheme that can
handle variances of translation, scales and rotation of the query image. Results
presented here are with the ” query-by-example” approach but the method is
also ready to be used in systems with hand-drawn sketch query. The paper
is organized as follows. Section 2 discusses the motivation for our work. The
proposed method is detailed in Sections 3 and 4. Simulation results are provided
in Section 5, which is followed by the conclusion.
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2 Motivation

A common ground in most of current TR systems is to exploit low-level features
such as color, texture and shape, which can be extracted by a machine automa-
tically. While semantic-level retrieval would be more desirable for users, given
the current state of technology in image understanding, this is still very difficult
to achieve. This is especially true when one has to deal with a heterogeneous
and unpredictable image collection such as from the World Wide Web.

Early TR systems such as [2, 8] mainly relied on a global feature set extracted
from images. For instance, color features are commonly represented by a global
histogram. This provides a very simple and efficient representation of images for
the retrieval purpose. However, the main drawback with this type of systems is
that they have neglected spatial information. Especially, shape is often the most
difficult feature to be indexed and yet it is likely the key feature in an image
query.

More recent systems have addressed this problem. Spatial information is
either expressed ezplicitly by the segmented image regions [9,1,6] or implicitly
via dominant wavelet coefficients [4,5,12]. Wavelets have been shown to be a
powerful and efficient mathematical tool to process visual information at mul-
tiple scales. The main advantage of wavelets is that they allow simultaneously
good resolution in time and frequency. Therefore spatial information and visual
features can be effectively represented by dominant wavelet coefficients. In addi-
tion, the wavelet decomposition provides a very good approximation of images
and 1ts underlying multiresolution mechanism allows the retrieval process to be
done progressively over scales.

Most of the wavelet-based image retrieval systems so far employed traditional,
i.e. orthogonal and maximally-decimated, wavelet transforms. These transforms
have a serious problem that they can exhibit visual artifacts, mainly due to
the lack of translation invariance. For instance, the wavelet coefficients of a
translated function f;(¢) = f(t — 7) may be very different from the wavelet
coefficients of f(¢). The differences can be drastic both within and between
subbands. As a result, a simple wavelet-based image retrieval system would not
be able to handle affine transformations of the query image. This problem was
stated in previous works (eg. [4]), but to our knowledge, it still has not received
proper treatment. On the other hand, the ability to retrieve images that contain
interesting objects at different locations, scales and orientations, is often very
desirable. Tt is our intent to address the invariance problem of wavelet-based
image retrieval in this work.

3 Wavelet Maxima Transform

As mentioned above, the main drawback of wavelet bases in visual pattern re-
cognition applications is their lack of translation invariance. An obvious remedy
to this problem is to apply a non-subsampled wavelet transform which computes
all the shifts [11]. However this creates a highly redundant representation and
we have to deal with a large amount of redundant feature data.



To reduce the representation size in order to facilitate the retrieval pro-
cess while maintaining translation invariance, an alternative approach is to use
an adaptive sampling scheme. This can be achieved via the wavelet maxima
transformation [7], where the sampling grid is automatically translated when
the signal is translated.

For images, inspired by Canny’s multiscale edge detector algorithm, the wave-
let maxima points are defined as the points where the wavelet transform modulus
is locally maximal along the direction of the gradient vector. Formally, define
two wavelets that are partial derivatives of a two-dimensional smoothing function
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Then the wavelet transform of f(z,y) at a scale 2/ has the following two
components
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It can be shown [7] that the two components of the wavelet transform given in
(3) are proportional to the coordinates of the gradient vector of f(x, y) smoothed
by 05:i(x,y). We therefore denote the wavelet transform modulus and its angle
as:
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Definition 1 (Mallat et al. [7]). Wavelet marima at scale 2 are defined as
points (ug,vo) where M f(27,u,v) is locally mazimum in the one-dimensional
neighborhood of (ug,vo) along the angle direction given by Af(27,uq, vo).

If the smoothing function 6(z,y) is a separable product of cubic spline fun-
ctions then the transform can be efficiently computed using a filter bank al-
gorithm [7]. Figure 1 displays the wavelet maxima transform of an image at 3
scales.

The wavelet maxima transform has some useful properties for image retrieval
applications. Apart from being compact and translation invariant, it has been
shown to be very effective in characterization of images from multiscale edges
(see Fig. 1). Therefore feature extraction based on the wavelet maxima transform
captures well the edge-based and spatial layout information. Using wavelet ma-
xima only, [7] can reconstruct an image which is visually identical to the original



one. This reconstruction power of wavelet maxima indicates the significance of
its representation. In addition, the ”denoising” facility in the wavelet maxima
domain can be exploited to achieve robustness in retrieving images which contain
interesting objects against various image backgrounds.

Fig. 1. Wavelet maxima decomposition. The right hand part shows the wavelet maxima
points at scales 2/ where j = 6,3,1 from top to bottom, respectively (showing from
coarse to detail resolutions)

4 Wavelet Maxima Moment

Given a compact and significant representation of images via wavelet maxima
transform, the next step is to define a good similarity measurement using that
representation. The result of wavelet maxima transform is multiple scale sets of
points (visually located at the contours of the image) and their wavelet transform
coefficients at those locations. Measuring the similarity directly in this domain is
difficult and inefficient. Therefore we need to map this ”scattered” representation
into points in a multidimensional space so that the distances could be easily
computed. Furthermore, we require this mapping to be invariant with respect
to affine transforms.

For those reasons, we select the moments representation. Traditionally, mo-
ments have been widely used in pattern recognition applications to describe the
geometrical shapes of different objects [3]. Difference of moments has also been
successfully applied in measuring similarity between image color histograms [10].
For our case, care is needed since we use moments to represent wavelet maxima
points which are dense along curves rather than regions (see the normalized
moment equation (8)).

Definition 2. Let us denote M7 is the set of all wavelet mazima points of a

given image at the scale 22. We define the (p+ q)th-order moment of the wavelet



mazima transform, or wavelet maxima moment for short, of the image as:

mi;q = Z uPquf(Qj’u,v), p,q=0,1,2,... (6)
(u,v)EMI

where M f(27u,v) is defined in (4).

The reason for not including the angles Af(2/,u,v) in the moment compu-
tation is because they contain information about direction of gradient vectors
in the image which is already captured in the locations of the wavelet maxima
points. In the sequel the superscript j is used to denote scale index rather than

power.
First, to obtain translation invariance, we centralize the wavelet maxima
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We furthermore normalize the moments by the number wavelet maxima po-
ints, |M/|, and their "spread”, (uh, + ph,)'/?, to make them invariant to the
change of scale. The normalized center moments are defined as:
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Note that unlike computing moments for regions, in our case we can not use
the first order moment pj), for scale normalization. This is due to the fact that
when the scale of an object reduces, for example, the number of wavelet maxima
points may decreases because of both the reduction in size and also the lost of
details in high frequencies.

Finally, to add in rotation invariance, we compute seven invariant moments
up to the third order as derived in [3] for each scale, except invariants %, + 1),
(which are always equal to 1 due to our scale normalization) are replaced by
mo- The current implementation of our system computes 4 levels of wavelet
decomposition at scales 2/, 1 < j < 4, and 7 invariant moments f:, 1<2<T,
for each scale, thus giving a total of 28 real numbers as the signature for each
indexed image.

For testing, we simply adapt the most commonly used similarity metric,
namely the variance weighted Euclidean distance [2]. The weighting factors are
the inverse variances for each vector component, computed over all the images
in the database. The normalization brings all components in comparable range,
so that they have approximately the same influence to the overall distance.

5 Simulation Results

In this section, we evaluate the performance of the proposed method in the
query-by-example approach. Since we are particularly interested in the invariant



aspect of extracted features, a test image database was synthetically generated.
Figure 2 shows the object library which consists of twenty different foods in small
size images 89 by 64 pixels. For each object, a class of 10 images was constructed
by randomly rotating, scaling and pasting that object onto a randomly selected
background. Scaling factor is a uniform random variable between 0.5 and 1. The
position of pasted objects was randomly selected but such that the object would
entirely fit inside the image. The backgrounds come from a set of 10 wooden
texture images of size 128 by 128 pixels. The test database thus contains 200,
128x128 grey level images. Each image in the database was used as a query in
order to retrieve the other 9 relevant ones.

Figure 3 shows an example of retrieval results. The query image is on the
top left corner; all other images are ranked in the order of similarity with the
query image from left to right, top to bottom. In this case, all relevant images
are correctly ranked as the top matches following by images of very similar shape
but are different in visual details.

The retrieval effectiveness evaluation is shown in Figure 4 in comparison with
the ideal case. By considering different number of the top retrieval (horizontal
axis), the average number of the images from the same similarity class is used to
measure the performance (vertical axis). This result is superior in compared with
[4] where the retrieval performance was reported to drop significantly, about five
times, if the query was translated, scaled and/or rotated.

Fig. 2. The object library of 20 food images of size 89 x 64.

6 Conclusion

This paper has presented a wavelet-based image retrieval system that is robust
in searching for objects independently of position, size, orientation and image
background. The proposed feature extraction method is based on the marriage
of the wavelet maxima transform and invariant moments. The important point
is that neither a moment or a wavelet maxima method alone would lead to the
good performance we have shown, as thus, the combination of the two is the key.
This results in an extracted feature set that is compact, invariant to translation,
scaling, rotation, and significant - especially for shape and spatial information.



Fig. 3. Example of retrieval results from the synthetic image database.
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However, the presented retrieval system here is mainly based on configura-
tion/shape related information. This is because of the moment computation puts
emphasis on the positions of the wavelet maxima or edge points of the image.
Extensions on extracting other types of image information from the wavelet ma-
xima transform are being explored. In particular, color-based information can
be efficiently extracted from the scaling coefficients which correspond to a low
resolution version of the original image. Texture can be characterized by a set
of energies computed from wavelet coefficients from each scale and orientation.
To conclude, the main advantage of using wavelet transform in image retrieval
application is that it provides a fast computation process to decompose image
into meaningful descriptions.
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