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ABSTRACT

This paper addresses a key issue in the problem of re-
constructing a panoramic view out of several pictures taken
with a hand held camera, namely the estimation of some ill-
posed parameters using an external constraint. For many
practical reasons, a panoramic reconstruction has to be per-
formed in several independent steps, resulting in a set of
different measurements of the same reality. For example,
the focal length can be estimated with each pair of over-
lapping images. The idea is to introduce some a priori
knowledge about the world by means of a constraint on
the parameter set. In the former example, the constraing
would impose equality on all the focal lengths estimates,
This paper describes the appropriate correction that needs
0 be applied to the parameters in order to obtain a cohe-
rent result. It also suggests a way to evaluate if a constraing
is plausible given a set of initial estimates. The basic idea
behind the method is to modify the parameters without
significantly changing the overlapping part of the images.

The method is evaluated using two different experimen-
tal setups. The first aims at improving the quality of a full
panoramic image. The second measures independently the
positions in space of two planes using two pictures. The lat-
ter experiment shows that the two computed motions can
be considered as a single one with two different planes in
space,

1. INTRODUCTION

To build a high quality reconstruction from several images,
precise estimates of the extrinsic and intrinsic camera pa-
rameters, like the rotations angles and the focal length, are
necessary. The motion estimation can be ill-posed, enabling
several different sets of parameters to register the image cor-
rectly. To improve the precision, our idea is to impose some
constraints on the motion, like for example the 360 degrees
constraint on a full pancramic image [1]{2]. This paper ad-
dresses the issue of how to apply such a constraint.
Among the existing unconstrained estimation methods,
we can distinguish two families: the feature-based methods
[3] and parametric or optical flow methods [4][5]. The feature-
based methods look for specific patterns in the image, and
try to find these same patterns in the adjacent image. The
parametric methods consider the image as a set of pixels,
and perform an optimisation on the pixel-wise difference of
the overlapping pictures. The latter - which are considered
here - often use a coarse to fine approach to converge to
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a solution, In general, the more parameters involved, the
better the initial estimate should be to get convergence. For
that reason, some 3D algorithms begin by performing some
2D estimations on the data which require less parameters
and are more likely to converge [6]. This procedure ends
up with a set of parameters that are inconsistent with each
other. For example, one can estimate the focal length of
the camera with each overlapping image pair, and will have
as many different measurements as there are images in the
panorama, The question is then: What is the best value for
these parameters? A possible answer is to introduce some
a priori knowledge about the scene by using a constraint on
the parameters.

To apply a contraint, there are basically two alternati-
ves: The firat is to perform an optimisation by adding a cost
which accounts for the the divergence from the constraint
i2](6]. The second alternative is to use the constraint to
reduce the parameter set size. The first alternative docs
not guarantee that the constraint is satisfied and needs to
carefully control the cost funciion in order to end-up “close
enough” to the constraint. The second is better from a
precision point of view, buf increases the complexity and
needs a starting parameter set to find iteratively a better
solution.

This paper presents a technique that implements the
second alternative to the application of the constraint, The
algorithm has two parts: the first part finds a set of parame-
ters that meet the constraint using a linear approximation,
and the second part refines the result iteratively. The key
idea behind these techniques is to use a criterion that me-
asures the change of the pixels position in the overlapping
images. The algorithm finds a set of parameters that mini-
mises this change with respect to the initial unconstrained
estimates. In other words, if one looks at the overlapping
parts of the images before and after imposing the constra-
int, they should look the same. It is worth pointing out
that the criterion can be used to determine if a constraint
can be enforced given an acceptable pixel shift on the image
overlaps.

The first application improves a full panoramic image.
The ill-posed parameter is the focal length that will be
estimated by imposing a 360 degrees constraint on the re-
contruction. The second example measures the position of
two planes in space. The ill-posedness comes from an inhe-
rent ambiguity between translation and rotation (7. The
constraint imposes a single camera motion between the two
images.
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2. PROBLEM FORMULATION

2.1, Notations

Two frameworks are used throughout the paper. The first
uses independent and unconstrained measurements and will
be denoted by the letter £. The parameter set under the
constraint wiil be dencted by the letter 8 or r;. It’s im-
portant to notice that &; and & will represent the same
parameters expressed in two different spaces.

2.2, Linear optimisation on a simple constraint

Let’s consider a motion model described by a two-dimensional
function Uy which defines a mapping between two images:

Ug:p—pg 1

where p and pé denote respectively the pixel position on
the warped' image and on the initial image. £ stands for
the motion parameters. The pixel value at position p in
the warped image is the same as the one at position p}
in the initial image. Let’s suppose there are 2 parameter
sets & and £p on which a constraint has to be imposed.
The simplest constraint is the one that enforces equality
of some parameters of £, implying that they measure the
same physical entity. For example, in a scene composed
by two planes, one can measure the camera displacement
between two images and the plane position in space, using
an algorithm designed to work with a single plane [8][9].
Applying the algorithm twice: once for plane 1, and once for
plane 2, will result in parameters £1 and £a. The parameter
sets can be rewritten in two parts: a common part £° and
an autonomous part £%. In the planar motion case, the £°
will denote the camera motion (rotation, translation and
focal length), £¢ the position of plane 1 and £5 the position
of plane 2. Rewriting the expression in a new framework
gives:

6 = [£5,68,0"
6 = [£§,0,£§‘]T,
8 = 04w

where w; represents the measurement - or estimation - noise
and @ the “true” parameter set. Note that both 81 and 62
are expressed in what we will call the constraint parameter
space, and are considered as being two noisy measurements
of the same physical entity. In theory £ = £5. We arbitra-
rilly put 0 where the parameter is independent from the
measurement. Now, given a set of overlapping positions p}
and p? we propose to take the average position displace-
ment in image space as a measure of the distance hetween
61 and 6. The goal is then to find the parameter set # that
minimises this distance

D(91, )+ D(62,8) (2)

—ZMU (©,6) = Us(ps, I (3)

D =

D(Gia 9)

Ui(-,8;) is the function that performs the warping accor-
ding to parameter set ¢, n; is the number of pixels in the

L A warped image is one that gets transformed by the mapping.
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overlap area’,
be rewritten as

Using a first order approximation, (3) can

aU;
D(0:,6) ~ Zu lios.00) (6 = O (4)

Thus, the distance between the parameter sets is

2

- Lo e\ TETE-(B —
P = §.:1 m(el )" ETE;(6; - 6) (5)
au;
Eo= (6)

where F; has 2n; rows, containing the derivatives along the
z and y image axis for each pixel. To find the value of 8
that minimises the distance in (5) we set the derivative with
respect to § to zero and we get

(ETB1 + BT E2)8 = ET E101 + E3 F; (7)

where ¢ is obtained solving the linear system of equation

(7).

2.8. Linear optimisation on a panoramic constraint

For full panoramic images, the combination of all rotations
along the panorama reduces to identity:

RM@BY-... . R™V(g). R™ () =1 (8)

where RU(-) is the rotation matrix representing the mo-
tion between image ¢ and image ¢ + 1. As previously, the
individual estimations £; can be written in the constraint
parameter space, that is

8 = [¢7,0,..,£8,0,..]7 (9)

where £° represents the focal length of the camera, and
£*the rotation angles of each camera motion. # only conta-
ins the parameters of the m — 1 first rotations, In order to
meet the constraint, the rotation between the last and the
first image (R (6,,) or R(£m)), has to be expressed as a
combination of all the other rotations:

am = [gfn:v?ngw"‘rvgﬁ—l]T (10)

such that

R(m) = BTV (0m) ... BTV (0m).  (11)
In other words, the rotation R™(8y) should be equal to
the one found in the unconstrained estimation. There are
several ways to find 8., that will specifically be discussed
in Section 3. Now the goal is to find & that minimises the

distance sum of equation (4) with

OU Ot
D(0,0) Zuaf 3y 3B = O (12)

2U1 (p;,8) makes the correpondances between the two images
of the pixels of plane 1 in the former example. This function
extracts the parameters of plane 1 from 6.



Then setting

oU Bém
En =g g—g (13)
the solution is found like in (7) solving the system
m m
QB E)e =) B Ey6;. (14)
¥ 7}

2'm which is

The computation of %5 is equivalent to 2z

discussed in the next section.

2.4. Non-linear optimisation

So far we have based our global optimisation task on the
first order approximation expressed in equation {4). The
purpose was to have a good parameter set that satisfies a
constraint. Now the next step is to optimise globally the
picture alignment. At this point, we have a set of points
correspondences (p, pé) resulting from the first individual
and non-coherent motion estimation. From the new co-
herent parameter set 8, one can recompute a new set of
correspondences (p, py).

An unconstrained optimisation produces a good align-
ment of the image overlaps. Therefore, we want to minimise
the distance between the points correspondences of the un-
constrained method and the points correspondences of the
coherent parameter set, by solving

m
min Y _ p(pt; ~ o) (15)
i

where in general p(-) is the squared norm or any other
function used in robust estimation [4][10]. The optimisation
can be performed using a standard descent algorithm, like
the Ganss-Newton algorithm [11]. These algorithms make
use of the derivative of the mapping function with respect
to the motion parameters %%@l. The computation of this
function is the same as for the unconstrained case and can
be found in [4] except for the last rotation in a panoramic
image, The remaining part of the section explains how to
compute the derivative of the function for the last rotation,

We denote by U, the function that describes the mo-
tion between the last and the first image of the panorama,
subject to the 360 degrees constraint. ry, denotes the rota-
tion angles expressed as a function of §. We obtain

aUrm (P) _ aUrm (p) B'rm
26~ orm 00 (16)
where —fn-t= 6U" Wi ) 44 the usual derivative as in the unconstra-

ined case. ’To compute the derivative of the rotation angles
between the last and the first image with respect to all the
other rotation angles (‘9—531) we have to make a change of
variables

or,, OR
aR(M 06

Orm

dim 1
59 a7
where RET") are the components of the 3 x 3 rotation matrix
associated to the rotation angles r,, and can be found by
solving equation (8). Then, we have to make use of the
implicit function theorem:
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Fo= [RE;“) = [M(rm)lox = [Olgy,
ox1
. oF  [0[Mirm)lgy, _or,
a [R(-’»“)] Orm ozs | B | R
A P L% e

where M (r.) is the rotation matrix associated to the three
parameters 7. The [];, . sign denotes a matrix of ! lines
and ¢ columns. Then,

OF

I o]

where []7! denotes the generalised inversion, The inverse
exists if %ﬁ#’l‘-haﬁ rank 3, which is untrue only when
the tilting a.ngl(e )is equal to ® £Z. The remaining term to
ar;™

calculate is —4—. To simplify the notation (e.g. to avoid
the use of tensors), we will consider the derivative of the
matrix with respect to one of the components of §. We
express # as

Orm {B[M(Tm)]gm (20)

ORI Orm
ox1

0= [f, 71,72, Pm-1]" (21)
and consider component #. of 8. Suppose that 8, € ra,
then from (8}, we get

RT(m 1) (0)

o[RS )

RT™ gy (22)

_ij,_]_RT(n—l)(g) e

ETR RTW(g).

3. PANORAMIC IMAGES

For constructing a panoramic view of several images,
the camera motion can be estimated on each pair of overlap-
ping images. We estimated it by using a parametric model,
and performing a gradient descent on the error obtained
by comparing pixel-wise the overlapping parts of the ima-
ges {11] [5] (it doesn’t make use of feature poinis). We can
see in Figure 1 that an accumulation of little estimation er-
rors caused the last picture to be out of alignment with the
first one. The images have been projected onto a cylinder
for printing . The gap represents the misalignment with
respect to the 360 degrees. By solving (14), we obtained
the image in Figure 2. We can see that the error has been
gpread out onto each rotation, and the focal length has been
adjusted to keep the overlaps between the images. The next
optimisation step using criterion (15) did not produce any
significant change to the result. This suggests that the ap-
proximation used in equation (4) is accurate enough for this
particular example.

As mentionned in Section 2, the computation of &, in
equation (10) is not unique. Indeed, we are trying to express

31n that case, the panning and rolling produce the same effect.

(18)

(19)

3x9



Figure 1: Full panoramic image. The estimation has been performed using only pairs of images. The little misregistration
on each image results in a large error when comparing both ends of the view.

Figure 2: Full panoramic image. The result has been found by solving a linear equation to meet the 360 degrees constraint.
The gap in the panorama has disappeared. Note that the panorama goes up and down a little bit. This is not due to any
estimation error, but rather to the way the images are projected onto the cylinder used to print the image.

arotation (£m} as a combination of m—1 rotations (remem-
ber that 8, and &, represent the same rotation expressed in
a different way). The way it has been performed here is by
alternatively computing each vf and setting v} = £5,k # ¢
in {10) in order to meet the constraint of equation (11).
This will produce m — 1 different results for #, so that we
minimised the distance

m—1 1 m—1
== =

instead of distance (2), where 85 are the different alter-
natives for 8,,. This is equivalent to applying the results
of Section 2 by weighting the contribution of each gl by
—L;. The weighting step avoids the last rotation to have
more weight in the optimisation process than any other ro-
tation of the panorama.

It is worth pointing out that the constraint expressed
in equation {(8) is not exactly a 360 degrees constraint but
rather a 0 modulus 360 degrees constraint. The side effect
is that the initial estimate should be close enough to 360
in order to produce a good result. It may happen that the
solution of equation {14) will lead to a 720 degrees pano-
rama or to an identity panorama, which superimposes every
image onto each other. The singularity of the method is
easily detectable, but is not easy to correct in the case of
an identity result.

(23)

4. EXPERIMENTS WITH TWO PLANES

‘We dispose of two photographs of two scribbled blackbo-
ards taken in a classroom. The blackboards are both paral-
lel to the wall of the room, and can slide one over the other.
The top blackboard is the one that is the furthest away from
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the camera. The pictures have been taken with a 52mm op-
tics and scanned at a resolution of 1860 x 1222 dots. There
is a distance of 3 meters from the lower blackboard to the
camera, and the camera moved 2m to the left parallely to
the blackboard. The planar surface motion model is used
to model the warping of the blackboards on the image and
is defined by

Xl
NTX

RX +T
=1

{24)
(25)

where X are the space coordinates, R is the rotation matrix,
T is the translation direction (||T'|| = 1) and N is the per-
pendicular to the plane; ]T:tr_u being the distance from the
camera to the ptane. Here, the image coordinate correspon-
dences p = (u,v) ++ (v/,»") = p’ are known, along with the
focal lengths f1 and fo of the two images. The motion is
computed in the following way:

P = [ua v, fl]T (26)
P = (R+TNT)P (27
! P Pyr

By making the correspondences of some points in the immage,
we calculated the motion parameters using some standard
techniques [8] [9]. The segmentation is supposed to be
known. Here we present the most relevant results from the
computation, namely a measure of the distance between
the 2 blackboards. This measure depends on the camers
translation which is indeed one of the ill-posed parameter
of the problem (7). Another reason for choosing this para-
meter is that it can easily be measured with a precision of 1
mm. Three computations have been done: The first using



(b

Figure 3: Image of the two biackboards (separated by the white line): The warped image has been subtracted from the
original one. Perfect registration is represented by grey colour. (a) The original image that gets warped in image (b). (b)
Warping using the parameters for the upper blackboard. The upper blackboard is almost cancelled (e.g. uniformly grey).

two independent planes {two independent use of equations
(24)...(26)); The second by calculating one single camera
motion using (7); and the last performing a joint optimisa-
tion for one motion and two planes by solving equation (15)
and using the result of the second computation as a star-
ting parameter set for an iterative algorithm. The results
are summarized in the following table:

type of computation | distance | error

Independent planes | 19,7 cm | 8.1 ¢cm

Coherent motion | 8.7 cm | 2.9 cm

Joint optimisation | 11.2 cm | 0.4 cm
Measured | 11.6 cm -

The result shows that there is a stepwise improvement in
precision. The distance computed using the 2 independent
estimation (that gave 2 different camera motion) is mesu-
red along the optical axis from the first camera position.
By imposing a single camera motion, using first the linear
approximation of equation (4), and the non-linear optimi-
sation, lead to an improved result. The distance between
parameter set 1 and 2 (or 6, and 82) gave 4.6 “pixels” using
(4) and 1.3 “pixels” using the more precise (3), e.g. the cor-
respondences pfg have to be moved by 1.3 pixels in average
in order to get a coherent parameter set. This makes the
hypothesis of a single camera motion quite reasonable from
the data point of view.

5. CONCLUSIONS

In this paper, we presented a technique for evaluating and
combining a set of incoherent parameters, These parame-
ters resulted from several measurements of noisy data per-
formed on overlapping images. The basic idea behind the
technique was to consider the influence of the parameter
changes in image space, where the measurements are actu-
ally made. The principle is quite general and can be applied
to any situation where measurements are made on image
overlaps with some ill-posed parameters. The method has
bheen tested to improve the motion estimation on a scene
with two planes. Also we described a way to apply the
technique to the alignment of a full panoramic mosaic. The
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techniques presented in this article can be viewed as an in-
termediate step between a local parameter estimation and
a comprehensive global estimation problem.
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