Proceedings of the IASTED International Conference
Signal and Image Processing (SIP’99)
October 18-21, 1999, Nassau, Bahamas

On Asymptotic Properties of Frequency Warped Wavelets

GIANPAOLO EVANGELISTA, Ecole Polytechnique Fédérale de Lausanne, Switzerland, gianpaolo.evangelista@epfl.ch
SERGIO CAVALIERE, Department of Physical Sciences, Univ. of Naples "Federico 11", Italy, cavaliere@na.infn.it

Abstract

In this paper we study asymptotic properties of fre-
quency warped wavelets defined by means of iterated
warping. These wavelets are based on the iteration of a
structure consisting of a two-channel perfect reconstruc-
tion, orthogonal filter bank and a Laguerre transform
block. In particular, we show that 1) the sequence of
Laguerre parameters determined by the exponential cutoff
choice ®,=a"n converges for 0<a<l; 2) the normalized
map converges to a differentiable function uniformly on
compact sets and 3) the asymptotic warping map satisfies
Schréder's equation. We provide an extension of Konigs's
model to parametric maps on the unit circle. In our con-
struction, we exploit the resulting conjugacy properties to
define continuous-time warped wavelets and to show that
these wavelets correspond to scale-a wavelets. We also
show that the characteristic warping function is related to
a self-similar map.

Keywords: Wavelets, Frequency Warping, Laguerre
Transform, Schroder's Equation, Konigs's Model.

1. Introduction

In recent papers [6, 7] the authors defined a family
of dyadic wavelets having arbitrary bandwidth. These
wavelets can be obtained from ordinary wavelets by
means of iterated frequency warping. The allocation of
the analysis bands is controlled by means of a discrete set
of Laguerre parameters. Flexibility in the bandwidth de-
sign makes these wavelets particularly suitable for appli-
cations in signal processing [10]. In fact, it is well know
that the octave-band frequency resolution of dyadic wave-
lets is very poor. Attempt to increase the resolution re-
sulted in wavelets based on rational sampling rate filter
banks whose design is difficult when constrained by as-
ymptotic properties of the wavelets such as regularity [4].

Frequency warped wavelets can be adapted to sig-
nals or to perceptual characteristics. For digital audio
applications we showed that it is possible to construct
perfect reconstruction orthogonal filter banks based on
perceptual bands [8], e.g., as in Bark scale. Other applica-
tions include adaptation of the Pitch-Synchronous wavelet
transform to unevenly spaced harmonics typical of sta-
tionary waves in dispersive media. This allows us to re-
solve transient and noise from pseudo-harmonic compo-
nents in inherently inharmonic sounds [5, 9].

Continuous-time frequency warped wavelets were
first introduced by Baraniuk and Jones who exploited
unitary equivalence to show that the warped wavelets are
orthogonal and complete [3]. Their set is based on a sin-
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gle warping map acting on the wavelets. In their paper,
little detail is given to the realization in digital structures.
Our construction is based on iteration of a frequency
warped filter bank, shown in Fig. 1. In the analysis sec-
tion the signal is discrete Laguerre transformed (LT) and
the Laguerre coefficients are passed through a 2-band
orthogonal filter bank (QMF). The synthesis structure
consists of the inverse filter bank cascaded by inverse
Laguerre transform (ILT). We showed in [7] that warping
the signal is equivalent to warping both the transfer func-
tions and the upsampling / downsampling operators.

x(k) LT H(1/z%) Hz) ILT Xk

GU/z% @)

Fig. 1. Frequency warped filter bank structure

It is worthwhile noting that the Laguerre transform
can be factored in rational transfer functions as a cascade
of first order all-pass filters [1, 2]. Therefore our construc-
tion generates wavelets that can be directly implemented
in digital systems. We showed in [7] that our choice is the
unique one-to-one warping map having this property.

The Laguerre transform is characterized by a single-
parameter family of warping maps. By choosing the
Laguerre parameter one can arbitrarily displace the cutoff
frequency of the warped filter bank, the identical map
being given by setting the Laguerre parameter to 0, with a
cutoff of n/2 (half-band filters) of the QMF. For higher
frequency resolutions, i.e., for obtaining a smaller band-
width of the high-pass filter, one must choose negative
values of the parameter. The frequency warped filter bank
is iterated by cascading identical sections -- possibly with
distinct parameters -- to the low-pass branch of the previ-
ous section. In this way we obtain a structure to compute
the Frequency Warped Wavelet Transform. One can show
[6] that the DFT of the corresponding warped scaling
sequence is

N
@y o(@) = [ T{A10Q% (@DH(Q (@)}, (1)
k=1

where

Q,,(CO) :%Sn 0‘917—1"'0‘91(60) (2)
is the iterated warping map, composition of the elemen-
tary maps

9 (@) = 20 +4tan” 252 21, 3)

1-b,cosm
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b, are the Laguerre parameters and
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A o)y =—"—.
k0(®) 1= b

The function —%9,,((0) is the phase of a stable first-order

all-pass filter with pole in z=1b,,.

Unlike discrete dyadic wavelets, warped wavelets at
fixed scale level are not obtained by shifting the same
sequence. Rather, level N scaling sequences (and wave-
lets) are related to each other by all-pass filtering, accord-
ing to the following relationship:

Oy (@) =e OB () 4
Given a choice for the cutoff frequencies
0, >0, >...>o,, the corresponding Laguerre parame-

ters b, are obtained by means of the following recurrence:
n—20;

4 9

b, =tan(Z-Q, (0,)),  n=23,..
The complexity of the map makes its analysis a difficult
problem. A case of interest is given by selecting exponen-

b, =tan

tial cutoff frequencies ®, =7ma”, where 0<a<l. This

choice is derived from the structure of dyadic wavelets
and admits these as a particular case for a=1/2. We will
show that the asymptotic properties of the warping map
for large n are remarkable for this case and that warped
wavelets correspond to scale-a continuous-time wavelets.

2. Schroder's Equation and Konigs’s Model
for Parametric Maps on the Unit Circle

In this section we present results concerning the
convergence of the normalized map. The complexity of
the warping map requires specific tools for its analysis.
Our theory is based on Konigs’s model [11]. This model
has been extensively studied for the composition operator
acting on identical maps defined in the unit disk. In order
to apply this construction to iterated warping maps, we
extended the theory to allow for composition of paramet-
ric maps on the unit circle. We will present the main theo-
rems omitting their proofs.

Our principal result is summarized in the following

Theorem 1. Let f(w;n) be a l-parameter family of

maps of the real line into itself, fixing the point @ =0 for
any value of the parameter n. Let f,(w)= f(w.n,),

where 1, ,n € X, is a sequence of values of the parameter

n such that:
e VneX, f, has bounded second derivatives and
/(0> 0

o | /. (co)| < an|a)| < |co| , for all but finitely many inte-

gers n
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then the sequence with F, = f1°f,°..°f, and

FVI
F(0)
E,(0) :H 1£(0), converges uniformly on any compact

k=1
subsets of R. Furthermore, if f (w)=1im f,(®) exists

finite and differentiable at @ =0 then Schréder's equation

Fof, = [2(0)F
K,

£,(0)

is satisfied by lim

The previous theorem can be applied to the inverse iter-
ated warping map

O (w)=97"°97"°..°9. 2w) ,
where 9, ' belongs to the 1-parameter family

1 w
) | bsm7

97 (w;b) =?—2tan_

1+bcos% ’
which is indefinitely differentiable with respect to @ with
bounded second derivative. For our purposes it is conven-

: _1=b
ient to replace the parameter b by the parameter v =-77.

It is easy to show that for v <1 we have ‘S_I(a);b)‘ < |co|
while for v > 1, ‘S_I(a);b)‘ < §|a)| By a convexity argu-

ment, it is possible to show that a <1< v, <1,VneN
1

and a>3<v,>1,VneN. The case a=+ is trivial

[0)

2
wavelets revert to dyadic wavelets. Based on the previous
remarks and on a fixed- point argument we were able to
prove the following

since it leads to the linear maps Sfl(a);O) =% and warped

Proposition 2. For any value of a € |0,1] there exists a
unique sequence of parameters v, such that the cutoff

QN (3)=a"n

v,>0,VneN and v, >2 for at most finitely many

condition is satisfied with

neN.

In numerical computations we observed that
v, <2 for n>1. However, the results stated in Proposi-

tion 1 are enough to guarantee the applicability of Theo-

. d . _ "oV
rem 1 to our maps. Since —in(%) = H—k =1, then
do el 2
the sequence %”Q;l(%) converges to a map Q (o)
uniformly on compact subsets of R. By virtue of uniform
convergence, the map Q! (w) is increasing and differen-
tiable. In particular, the cutoff condition implies that for
~ . n 00 2
o=mn we have Q '(7)= l1mﬂ=7rH—a. Therefore
"My k=1Vk



the product H2_a converges to %(N)_l(ﬂ) , wWhich im-
k=1 Vk

plies that

)

This is a remarkable result since the dependency of
the parameter v, on a is highly complex. In order to ap-

limv, =2a.
k

preciate this problem it suffices to write the 4-th iterate:

a'n
tan 2 tan”™! 7;”
a tan N
tan 2 tan >
am
- tan e
tan 2 tan ﬁ
v, = tan2tan”" 2 (6)
4 il
- tan e
tan 2 tan p—
an
tan 2 tan”™'
am
tan 2 tan ! 2
tan %
where we exploited the relationship

2 tan% )
Y (w)=4tan™ ——= for —n <w <m . For higher values
Vi
of the index, the size of the "tangent tree" in (6) grows
without bound. The analysis is not simplified by the fact
that, by exploiting the identity
tan2tan ' x = 12—"2 ,
=X
v, may be put in rational form.

The simplicity of the limit in (5) is astonishing. Conver-
gence of the parameter sequence to its limit is exponen-
tial. By Taylor expansion with respect to a it is possible to
show that

vi(a)=2a+0(a*™).
A further consequence of Theorem 1 is that the map
ﬁ_l(a)) satisfies Schroder's equation Q! 09 = aQ™',
where 9;1 has parameter v_ =2a. Any solution of this

equation plays the fundamental role of eigenfunction of
the composition operator with eigenvalue a. However, the
solution of Schrdder's equation is defined up to a constant

. " 2a
factor. Since the product H— converges, the map

k=1Vk
o'e o
O () = lim 212 _ (@)
n o a” Q™ (7)
also satisfies Schroder's equation
QO 'e97 = a0 (7)

As we will show in the next section, Schréder's equation
represents our starting point for defining continuous-time
warped wavelets sharing the computational structure of
our discrete-time warped wavelets, i.e., iterated warped
filter banks based on the Laguerre transform.

The direct map Q(w) satisfies the equation

90 Q@) =Q(F) - ®)
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In other words, we have:

8. (@)= Qa2 () (€)

and

93, (0)=Q(a"'Q (w)) . (10)
These last two equations are conjugacy relationships; the
composition of several 9, or 9;1 maps is conjugated,

respectively, to negative or positive powers of the eigen-
value a via the eigenfunction and its inverse.

3. Scale-a Continuous-Time Wavelets

We showed in [6] that the construction of continu-
ous-time warped wavelets is simplified if the sequence of
warping parameters is constant. However, in this case, the
required cutoff frequencies are attained only asymptoti-
cally. In this paper we provide an orthogonal and com-
plete set of continuous-time warped wavelets exactly
attaining exponential cutoff that are based on warping
parameters constant over scale. Our construction is based
on the results illustrated in the previous section.

We start by considering a scaling
@y (k) whose DFT is

sequence

] N
Dy (@) = OO A, 020, (@) H(O ()|
k=1

where
0,(w)= %]900 08 0...09 ()
k—times
is the composition of asymptotic elementary maps. As is
the case for any warped scaling functions in the form (1)
with shift property (4), the set ¢ , (k) is orthogonal for

any positive integer N and for any choice of the warping
parameters. Therefore,

S0 =By obya) =2 [[@ro@f e o,

-

By performing the change of variable o = 6;\,1 (%) in the

last integral and  exploiting the fact that
—-Oy(—n)=0y(7)= 2V""7 , we obtain
+2N77.' 2 . d@-l (l)
Sno =2 | [Pro@F @) " —"da. (1)
2Nz do
Since
d .. 1
E‘gool(a) = NPT
A8 @)
then
oy ($) _ & 1 12
do

k=1 “1eay|*
A0 (02 ($)
On the other hand, since ©,(0y (0))=10;_ () for
N >k, with ©5'(0) =2w , then

N
IRCRCEE {Aw,o(@);‘(%))H(%@;ll(%))} (13)
r=1



Substituting (12) and (13) in (11) we obtain:

2V g jmaH ‘H(7

5m,0 __ '[
_2N

By repeated application of Schroder's equation one can

show that

®, 44 »\ (14

0,1(2)=0>"'0 (w)).

Substituting this result in (14) we conclude that the con-
tinuous-time set @, (1) = ¢, o(t —m) , where @ () has

FT:
By o)~ ]2 @) (15)
' r=1 \/5
is orthogonal:
+00 . - 2
S == [ [Pop(@)| do . (16)

We remark that convergence of (14) as N — o can be
established with a simple adaptation of the methods found
in [12]. Notice that the arguments of H in the product (15)
are in the form of conjugation to powers of the parameter

a. Furthermore, (T)O,O(co) satisfies the following warped
two-scale equation:
V200(9,(@) = HE,(@)Pge(@) . (17)

By repeated use of this equation, one could define
continuous-time warped wavelets based on the scaling
function @ ((¢) , by letting

®,,(0)=2""®,,(20,(®)).
However, the half-bandwidth of the scaling function,
essentially given by o, =®;l(%), according to the

smallest bandwidth term in the defining product, does not
meet the required power of a behavior as a function of
scale.

In order to define continuous-time wavelets with
exponential cutoff we consider scaling functions
@y, (1) having the following FT:

by, (@) = B, ()5
Since Q is increasing the derivative is positive and its
square root real. Orthogonality of the set ¢, (¢) may be
checked by performing the variable change ® =Q(a) in
(16). Furthermore, (ﬁo,m(t) satisfies the following two-

scale equation:

L (2) = Ao (QODHE Q) D 4(@) . (18)

By deriving both sides of identity (10) with respect to @
and changing o into Q(w) we obtain the following

scaling rule for the derivative:
1 ' ' 2 '
Q(2) = a 9.,(Q0)) A(0) = 24|A,, o(Aw))| V(w).

The remaining part of (18) easily follows from (17).
Equation (18) is a remarkable result since it shows
that the warped wavelets v/, (¢) associated to the scaling
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function @ o(7) are true scale-a wavelets. However, their

"translates" are obtained by all-pass filtering rather than-
shifting. It is easy to check that the half-bandwidth of the

scaling functions ¢, o(¢) attains exponential cutoff a"7 .

In fact, the smallest bandwidth term is H (%Q(‘—‘f,)) and
=%
Another important aspect of the set v, (¢) is that

since Q)= then - for o, =a"m.

the structure needed to compute the expansion coeffi-
cients from the coefficients at scale 0 is identical to that
needed for discrete warped wavelets, i.e., it is based on
iterated warped filter banks, with constant parameters
equal to v, =2a. This is so by virtue of the term

o /mU®) necessary for obtaining the "translates" of
@g,() in the frequency domain. Projection on the higher

scale set requires only incremental Laguerre warping with

phase characteristics —@ .

4. Self-Similarity

As shown in the previous section, in scale-a warped
wavelets the map , shown in Fig. 2, plays a fundamen-
tal role: it maps the points a "z to the points 2"z . The
map Q has a complex functional form and this results in
a fractal-like behavior. Quasi-self-similarity of the map
Q can be deduced from equation (8). If 9, (w) is ap-
proximated to the first order by the linear map 2w, we
obtain:

2Q0(0) # Q).

This approximation is more accurate for values of a close
to 1/2.
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3000

25001

20001

1500

1000

500

40 60

(0]

80 100

Fig. 2 Asymptotic warping map showing quasi-self-similarity.

It is interesting to note that with the iterated warping
map one can build an exact self-similar function. Using
Schroder's equation, it is possible to show that the se-

quence of functions 2_("_')9,7 (@) converges, as n —> © ,

to a map Q°(w) uniformly on any compact subset of R.



The map Q°(w) is a-homogeneous in the sense given in
[13], Q' (d"0)=ad" Q" (0)=2"Q"(w), where
A =-log, 2. Note that

Q' (0)= 11312*”—”9”(@ ,

Le.,

while
Q(w) =1im2Q, (a"w) .

Homogeneity of the map is a prerequisite for a real
axis warping map directly converting dyadic wavelets to
scale-a wavelets with a single map. In our construction
the conversion map is updated at each scale and scale
conversion is distributed. We must point out that the

warping curve is determined only at the points a7,
n € Z in order to match the cutoff conditions. For exam-
ple one could select the map

_l o
o — 208G

However, iterated Laguerre warping is the unique one-to-
one warping that can be exactly implemented in rational
filters.

5. Conclusions

In this paper we revisited the concept of frequency
warped wavelets based on warped filter banks introduced
in [6]. We sketched the theory of the construction based
on Schroder's equation and Ko6nigs's model, which we
generalized to parametric maps on the unit circle. We
showed that the sequence of parameters for attaining
exponential cutoff is rapidly converging to a simple limit.
Furthermore, we showed that scale-a wavelets may be
defined by means of warped wavelets. The structure re-
quired for computing the expansion coefficients is still
given by iterated discrete warped filter banks and
Laguerre warping is obtained by means of rational all-
pass filters. Our scale-a warped wavelets are useful for
arbitrarily improving the frequency resolution of the dy-
adic wavelets, crucial in many applications, such as
speech and music processing. However, improved resolu-
tion is obtained at the cost of increased computational

complexity, which is O(N 2). Furthermore, the delay of

the warped wavelet set is frequency dependent, obtaining
curved diagrams in the time-frequency localization plane.
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