
Solving the Coplanarity Problem of Regular

Embedded Triangulations

Laurent Balmelliyz, Jelena Kova�cevi�cy and Martin Vetterliz

yMathematical Sciences Research Center zLaboratoire des Communications Audio-Visuelles
Bell Laboratories, Lucent Technologies Ecole Polytechnique F�ed�erale de Lausanne (EPFL)

Murray Hill, NJ, USA Lausanne, Switzerland
fbalmelli,jelenag@research.bell-labs.com fLaurent.Balmelli,Martin.Vetterlig@epfl.ch

Abstract

A regular embedded triangulation is con-
structed by recursive subdivision starting
from a square formed by two triangles and
maps a uniform gridded set of vertices. To
decimate such a mesh, vertices are removed
from the initial set and a new triangulation
is constructed on the remaining ones. The
coplanarity of the resulting triangle edges is
needed, otherwise cracks (also known as T-
vertex) appear when the mesh is rendered. In
this paper, we �rst compute and prove the
size of the coplanarity problem in the worst
case, as well as in expectation. Then, we
give a computationally optimal algorithm to
solve the problem for a triangulation stored in
a linear (or pointerless) quadtree data struc-
ture, using the results in [5]. This problem
has been studied previously [2, 3, 6, 7, 9, 10],
but either partial solutions based on heuris-
tics, or suboptimal algorithms for the general
case have been proposed. Moreover, all of
these methods are restricted to surface sim-
pli�cation. Our algorithm is valid for regular
triangulations modeling surfaces, for surfaces
modeled with multiple triangulated patches
and �nally for regularly tessellated spheres.

1 Introduction

Regular triangulations are standard tessella-
tions of the plane, and are used in many dis-
ciplines such as �nite element calculation [8]
and computer graphics [2, 4, 6]. A regular

triangulation is formed by a set of similar tri-
angles, residing on a uniform grid of vertices,
as shown in Figure 1(a). A regular triangula-
tion can map a nonuniform grid however, by
removing vertices for the initial set and recom-
puting the set of triangles. Figure 1(b) depicts
such construction, where deleted vertices are
shown in dotted points. In visualization, regu-

a. b.

Figure 1: Regular triangulation: (a) mapping
of a uniform grid, (b) mapping a irregular set
of vertices.

lar triangulations provide e�cient storage and
rendering for surfaces or closed objects. We
are particularly interested in regular triangu-
lations having an embedding property. Two
triangulations are embedded if all edges of the
triangulation with fewer triangles exist in the
denser triangulation. In Figure 1 for exam-
ple, (b) is embedded in (a). These triangu-
lations provide a framework for multiresolu-
tion rendering, often used when dealing with
large computer graphics models. Embedded
triangulations are particularly suited to the
construction of adaptive meshes. Adaptiv-
ity is obtained when large triangles approx-
imate low curvature regions while small trian-
gles are concentrated around the model de-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147900853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tails. The construction of adaptive regular
triangulations is obtained by removing ver-
tices from the initial set used to generate the
full resolution model. This operation is cor-
rectly carried out only if all the edges in the
resulting triangulation are coplanar. Copla-
narity is required to ensure that no disconti-
nuities (or cracks) will appear when the model
is rendered. Solving the coplanarity problem
[2, 3, 6, 7, 9, 10] involves computing the set
of vertices to be removed along with a desired
one in order to avoid discontinuities in the tri-
angulation. It is also important to be able to
compute the \true" cost of removing a ver-
tex, or equivalently of merging two triangles.
For example, in the simpli�cation algorithm
presented in [1], for each vertex we compute
those vertices to be removed as well, which is
equivalent to solving the coplanarity problem.
The paper is organized as follows: we in-

troduce the class of regular embedded trian-
gulations and their construction. Then, we
explain the coplanarity problem and compute
its size in the worst case, as well as in expecta-
tion. We store the triangulation using a linear
(or pointerless) quadtree, and use the results
in [5] to construct an algorithm solving the
problem in minimal computational time.

2 Regular Triangulations

Consider a set of vertices V de�ned as

V = fz = z[x; y] j [x; y] 2 
 � N
2g:

This set can be obtained by sampling a bivari-
ate function f(x; y), and then parameteriz-
ing the resulting sequence on the integer grid.
It can also be obtained by discrete measure-
ments. A regular embedded triangulation for
the set V is constructed as follows: we start
with the initial four corners and an edge con-
necting two opposite corners (see Figure 2a).
At each subdivision step, denoted l, new ver-
tices are inserted at each triangle hypothenuse
midpoint. Note that, in Figure 2, only the tri-
angulations (a),(c) and (e) reside on a uniform
grid of vertices. Assuming that each necessary

vertex at a particular step is labeled with the
step number l, then the subdivision process in-
duces a natural hierarchy in the gridded set.
In order to conserve the embedding property,

a.

l=1 l=4l=3l=2l=0

b. c. d. e.

Figure 2: Subdivision process yielding an em-
bedded set of triangulations.

it is important that the vertex used to split
a particular triangle is used to recover the
same triangle when removed. We illustrate
the hierarchy induced by the subdivision pro-
cess on the gridded set of vertices by splitting
the regular grid into the so-called quincunx
and cartesian grids (Figure 3a and 3b). The
numbers next to a vertex in the grid indicate
at which step of the subdivision process this
vertex is inserted. Note that the four vertices
at the corners of the grid, forming the two ini-
tial triangles, cannot be removed. The grids
are actually similar; the quincunx one is just
a rotation of the cartesian one by �

4
. Their su-

perposition results in a uniform grid (Figure
3c).

4

2

4

6

6

6

6

2

2

2

4 4

4

4

4

4

4

4

4

4

6

6

6

6

6

6 6 6

6

6

6

6

6666

6

6

6

6
6

6

6

6

6

6

6

6

66

66

6

6

6

6

a. b.

c.

1

3 3

33

5 5

55

5 5

5 5 5

5 5

5

5

55

5

0 0

0 0

Figure 3: a. Quincunx grid. b. cartesian grid.
c. Superposition of both grids. In a. and b.
the label next to each vertex corresponds to
the step number at which the vertex is in-
serted during the subdivision process.



3 The Coplanarity Prob-

lem

Assume a uniform gridded data set of size
N � N with N = 2d + 1. In the full triangu-
lation obtained at the end of the subdivision
process (see for example Figure 2e), pairs of
triangles share the same hypotenuse, thus a
common midpoint. Removing the midpoint
vertex implies merging all triangles attached
to it, since otherwise, the removal would in-
duce a shape discontinuity in the rendered
structure. Consider the simple example of
Figure 4, where the vertex labeled A is con-
sidered for removal. The triangles �i with
i = 1 : : : 4 must be merged jointly in the tri-
angulation in order to avoid a surface crack
(Figure 4b). The removal of an arbitrary ver-

τ1

τ2��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��τ3

τ2
τ4τ1

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ��

��
��
��

��
��
��
��

��
��
��
�� ��

��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
�� ��

��
��
��

��
��
��
��

��
��
��
��
c.b.a.

Α

Figure 4: Surface Crack (T-Vertex).

tex in an embedded triangulation may induce
an additional series of simpli�cations (see Fig-
ure 5). This problem, known as the copla-
narity problem [9], implies solving a set of con-
straints for a particular vertex removal. The
coplanarity problem for regular triangulations
is well-known and has been explored in the
literature [2, 3, 6, 7, ?, ?]. In [10], the au-
thors use a data structure called active border
(see Section 5.1.3 in [9]) and an algorithm to
traverse the entire triangulation in order to
solve the coplanarity problem. In [3, 6], the
authors give algorithms based on a quadtree
structure and solve some particular cases of
the problem. In [2], the authors use a heuris-
tic approach to avoid cracks when splitting or
merging pairs of triangles. More recently, a
quadtree structure using pointers as well as
an algorithm to solve the coplanarity problem
with a computational complexity linear in the

size of the tree was proposed in [7]. Unfortu-
nately, the authors neither give an analysis
of the algorithm nor prove their result. More-
over, the algorithm is suboptimal since we will
show that, in expectation, the complexity of
the problem does not depend on the tree size.
Finally, our data structure does not require
any pointer or any explicit index for the tree
nodes and is then more e�cient in memory.
We now describe the coplanarity problem

and compute its size. The example in Figure
5 illustrates the constraints induced by the re-
moval of an arbitrary vertex (labeled A). Once
removed, additional vertices must be removed
at the same time. Thereafter, the edges in
the resulting triangulation are coplanar (Fig-
ure 5b).

a. b.

Α

Figure 5: (a) Removal of the vertex A (the
resulting triangulation is not coplanar). (b)
Coplanar triangulation.

The above example illustrates the resolu-
tion of constraints on a bounded surface. For
a su�ciently large triangulation, if the re-
moved vertex is located near the boundaries,
the set of vertices to remove is expected to be
smaller than for a vertex (having the same
label l) located in the middle of the trian-
gulation. If no more vertices need to be re-
moved because of the boundary, we say that
the spread (of constraints) is not complete (see
for example Figure 5b). Figure 6 depicts an
example of a complete spread. The number
of triangles contained in the spread is propor-
tional to the size of the initial triangle merged.
The set of all the triangles that need to be
merged at the same time as the desired trian-
gle is called the merging domain of this trian-
gle. Thus, the merging domain is related to
the vertex used to split a particular triangle
during the subdivision process. Consider the



2024 4

Spreading steps

88 66

Figure 6: Complete spread of triangulation
constraints.

case depicted in Figure 7, where a triangula-
tion is modeled with multiple patches1. In the
�gure, 9 patches of size 17 � 17 (thick lines)
are used to generate the model. In this exam-
ple, the central patch is completely merged
after the removal of the unique vertex labeled
l = 1 (on the cartesian grid). As a result,
the merging domain spreads to the 8 neigh-
bors patches. To determine the size of the

17

central 

patch
17

Figure 7: Spreading of the merging domain
through triangulated patches.

problem, we need to count the number of tri-
angles in the merging domain. We �rst com-
pute the size for i spreading steps (in Figure
6, i = 8). Note that the merging domain cor-
responding to a vertex of the quincunx grid
is similar to the one in Figure 6 with a ro-
tation of �

4
or ��

4
. To compute the size of

1For example, when only part of the data is avail-
able, or the data is simply too large to be modeled
with a unique triangulation.

the complete merging domain, we construct
a tree sca�olding for the triangulation such
that each triangle corresponds to a tree node,
as depicted in Figure 8. Computing the size
of the merging domain is then equivalent to
evaluating the number of tree nodes. Starting

7

6

10

11

3

4

5

8

14

19

18 17

16

15

12 13

9

2

Figure 8: Sca�olding of a triangle merging do-
main.

at the tree node 4 in Figure 8, we can see that
the subtree rooted at this node is balanced2

until nodes 16,17,18 and 19. Afterwards, the
branches become unbalanced. We give below
the merging domain size for i spreading steps
and prove the equations in the Appendix.

Proposition 3.1. Merging Domain Size

We denote by m(i) the size of the complete
merging domain for i spreading steps. It is
given by

m(i) =

8>><
>>:

2i+1 � 2 1 � i � 4;

32(2i�b
i�4
2
c�4+

3 � 2b i�4
2
c�1)�

8i� 18 i > 4:

(1)

In the merging domain of Figure 6, the
merging domain spreads completely in eight
steps; it thus contains

32(28�b
8�4

2
c�4 + 3 � 2b 8�42 c�1)� 8 � 8� 18 =

238 triangles:

We now express i as a function of the total
number of triangles, denoted n, and the index

2A tree is balanced when each nonleaf node has
exactly two children.



l labeling the steps of the subdivision process.
As seen previously, an embedded triangula-
tion can only be constructed on an N � N
grid with N = 2d + 1, and that the grid con-
tains n = 2 � 4d triangles. Moreover, l satis�es
0 < l < 2d + 1. We can therefore compute
m(l; n) with i = 2 log4 n� l.

m(l; n) =

8><
>:

21�ln� 2 1 � i � 4;

32(2�(l+4)n � c(l; n)�1+
3 � c(l; n)�
16(log4 n� l

2)� 18 i > 4;

(2)

where l > 0, n = 2 � 4d, d > 0 and c(l; n) =

2blog4 n�
l+4
2
c. We �rst compute the problem in

the worst case (depicted in Figure 7), namely
when removing the unique vertex labeled l =
1. We assume therefore that for each vertex
l, the merging domain is complete, and there-
fore that l < k ) m(l; n) > m(k; n). For a
bounded surface, this equation is likely to be
true for any l; k such that 0 << l < k. This
case is simply obtained by replacing l = 1 in
(2)

m(1; n) =

8<
:

n� 2 1 � i � 4;

n � c(n)�1 + 48 � c(n)�
16 log4 n� 26 i > 4;

(3)

where n = 2 � 4d, d > 0 and c(n) = 2blog4 n�
5

2
c.

We need now to bound the term c(n) to derive
the problem complexity, thus

1

8

r
n

2
� c(n) � 1

4

r
n

2
: (4)

We can now lower bound (3) to obtain:

m(1; n) � 4
p
n+ 3

p
2
p
n� 16 log4 n� 26;

� 8:24
p
n� 16 log4 n� 26;

2 
(
p
n):

(5)

Similarly, we upper bound (3):

m(1; n) � 2
7

2

p
n+ 6

p
2
p
n� 16 log4 n� 26;

� 19:79
p
n� 16 log4 n� 26;

2 O(
p
n):

(6)

With (5) and (6), we have shown that, in the
worst case, the coplanarity problem has com-
plexity �(

p
n).

To compute the complexity in expectation,
we use the following observations: the embed-
ding property implies that for i � 0

m(2i+1 � 1; n) = m(1;
n

4i
); (7)

m(2i+1; n) = m(2;
n

4i
); (8)

where (7) refers to the merging domain of a
vertex of the cartesian grid while (8) refers
to the one of the quincunx grid. Moreover,
the total number of triangles n is asymptoti-
cally twice that the number of elevation N2,
as shown below

lim
d!1

n

N2
= lim

d!1

2 � 4d
(2d + 1)2

;

lim
d!1

2 � 4d
4d + 2d+1 + 1

= 2:

(9)

Therefore n=2 is a good limit value for the
number of vertices. We use the approximation
4i+1 for the number of vertices of the quincunx
grid at step l = 2i of the subdivision process,
which is true for i >> 0. The number of ver-
tices of the cartesian grid is 4i. Finally, recall
that d = log4(n)�1=2. The complexity of the
problem in expectation is then

Em(n) =
2

n
(
d�1X
i=0

4im(1;
n

4i
) +

d�1X
i=0

4i+1m(2;
n

4i
));

=
2

n
(
d�1X
i=0

4i�(

r
n

4i
) +

d�1X
i=0

4i+1�(

r
n

4i
));

=
2

n
(
d�1X
i=0

4ic1 �
r

n

4i
+

d�1X
i=0

4i+1c2 �
r

n

4i
);

=
2d+

3

2

n
(c1 + 4c2)

d�1X
i=0

4
i
2 ;

=
(c1 + 4c2)

n
2d+

3

2 (2d � 1)| {z }
(?)

:

(10)

Finally, we need to compute the order of the
term (?)

2d+
3

2 (2d � 1) =
p
2n� 2

p
n 2 �(n); (11)



yielding

Em(n) =
�(n)

n
;

2 �(c):
(12)

which proves that the coplanarity problem has
constant size in expectation. We conclude
with the following proposition:

Proposition 3.2. Size of the Coplanarity

Problem

The coplanarity problem for a regular embed-
ded triangulation of size n has size �(

p
n) in

the worst case and constant size �(c) in ex-
pectation.

4 Optimal Algorithm

Assume that the triangulation is stored us-
ing a quadtree, as depicted in Figure 9. Each
quadtree node contains a subset of the trian-
gulation. To each nonleaf node corresponds
all the triangles contained in its subtree. In

b.a.

Figure 9: a. Embedded regular triangulation.
b. Corresponding quadtree.

[5], we gave a method to traverse such a
quadtree in constant time. We use this result
to build a computationally optimal algorithm
to solve the coplanarity problem. Such algo-
rithm has a computational complexity of the
order of magnitude equal to the size of the
problem. In the previous section, We com-
puted the size of the coplanarity problem. We
explain now how to build an algorithm visit-
ing only and exactly once the nodes of the
quadtree containing triangles of the merging
domain.
The basic idea of the algorithm relies

on \sweeping" the surface of the merging

domain, starting from the central block,
corresponding to node p in Figure 10(a).
Since the sweeping of the merging domain
surface can be done in an arbitrary order,
we do not state a speci�c algorithm here.
In Figure 10(b), we show a possible way to
traverse a region of the merging domain.
The indices in the �gure correspond to
the nodes in Figure 8. In Figure 11, we
present an example of decimated regular
embedded triangulation. The algorithm
insures that, after decimation, all triangle
edges are coplanar. Our algorithm applies
to all constructions described in [5], namely
to triangulations constructed with multiple
patches (like in Figure 7) and to tessellated
spheres obtained by projecting the vertices of
an octahedron (like in Figure 12). We provide

p
7

3

b.

8

a.

27282324

Figure 10: Illustration of the algorithm. a.
Starting at node p, the algorithm traverses the
surface. b. An example of node traversal.

a Java applet illustrating the algorithm at
http://lcavwww.epfl.ch/Triangulation/

as well as code in C and Java.

Appendix

Proof of Proposition 3.1 To prove (1), we
need to �nd equations describing the unbal-
ancing of the tree in Figure 8. The tree in
Figure 8 is balanced up to the fourth subdi-
vision step (that is, from node 2 to node 18).
A portion of the same tree is shown in Figure
13, where the gray region denotes the unbal-
anced part. The indices in the �gure match
the ones in Figure 8. Level 5 in the tree is the
�rst level where the tree is unbalanced. De-
�ne j = i� 4 for i > 4. Observe that at level



Figure 11: Wireframe representation of a dec-
imated embedded regular triangulation. The
data set used is a digital elevation model of
the mount Matterhorn in Switzerland.

��
��
��
��

��
��
��
��

��
��
��
����
��
��
����

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��
��
��
��
����

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��
��
��
��
����

��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��
��
��
��
����

��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
����

��
��
��

��
��
��
��
��
��
��
��

��
��
��
����
��
��
��

��
��
��

��
��
��

(a) (b) (c) (d)

Figure 12: (a)-(d): Regularly tessellated oc-
tahedron.

2j�1 with j > 0, we have 2j nodes with both
children and 2j+1 � 2 nodes with one single
child. Moreover, for every level 2j with j > 0,
there are 2j+1 nodes with both children and
also 2j+1 � 2 nodes with one single child. We
compute two separate sums, one for the odd
indices, denoted by o(p), and one for the even
j indices, denoted by e(q), to count the total
number of nodes. Note that p and q denote
the number of odd and even indices, respec-
tively.

o(p) =

pX
j=1

(2j+1 + 2j+1 � 2);

=

pX
j=1

(2j+2 � 2);

= 4(2p+1 � 2)� 2p;

= 2p+3 � 2p� 8:

(13)

7

8

6

5

i�
�
�
�
�
�
�
�

����
��
��
��

��
��
��
��
���� ���

�
�
�

�����
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��
������

��
��
��
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��
�
�
�
�

��
��
��
��
�
�
�
�

�
�
�
�
�
�
�
�

������
��
��
��
��
��
��
��
��
��
��
��

��������

����
����
����
����

������������ ����������������
��
��
��
��
����
�
�
�
�
��
��
��
��
��
��
��
��

����
�
�
�
�

��
�
�
�
�
��
��
��
��
��
�
�
�
�

���� �� �����
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

4
8 9

16 17 18 19

Figure 13: Portion of the tree sca�olding the
merging domain in Figure 8.

e(q) =

qX
j=1

(2j+2 + 2j+1 � 2);

= 4

qX
j=1

2j + 2(

qX
j=1

2j � 1);

= 4(2q+1 � 2) + 2(2q+1 � 2� q);

= 2q+3 + 2q+2 � 2q � 12:

(14)

To select between (13) and (14) for an arbi-
trary index j, we de�ne

p = j � bj
2
c and q = bj

2
c: (15)

We can now generate a single sum to count
c(j), the nodes in the unbalanced part of the
tree, with

c(j) = 2p+3 � 2p+ 2q+3 + 2q+2 � 2q � 20;

= 2j�b
j
2
c+3 � 2(j � bj

2
c) +

2b
j
2
c+3 + 2b

j
2
c+2 � 2bj

2
c � 20;

= 8(2j�b
j
2
c + 2b

j
2
c)� 2j + 4 � 2b j

2
c � 20;

= 8(2j�b
j
2
c + 3 � 2b j

2
c�1)� 2j � 20:

(16)

Finally, the sum of nodes for the �rst bal-
anced levels in the complete tree sca�olding
is 25 � 2 = 30. Moreover, it has four unbal-
anced structures of size c(j). Let i denote the
tree levels along which the nodes are summed.
Since j = i�4, for i > 4, we have that the to-
tal number of nodes, or equivalently the total
number of triangles in the merging domain, is
equal to

m(n) = 32(2i�b
i�4
2
c�4 + 3 � 2b i�4

2
c�1)� 8i� 18;

(17)

which concludes the proof. �



References

[1] L. Balmelli, S. Ayer, and M. Vetterli. Ef-
�cient algorithms for embedded render-
ing of terrain models. Proc. Int. Conf.
Image Processing (ICIP), October 1998.

[2] M. Duchaineau, M. Wolinsky, D. E.
Sigeti, M. C. Miller, C. Aldrich, and
M. B. Mineev-Weinstein. Roaming
terrain: Real-time optimally adapting
meshes. IEEE Visualization, 1997.

[3] B. Von Herzen and A.H. Barr. Accu-
rate triangulation of deformed, intersect-
ing surfaces. Computer Graphics 21,
also Proceeding of ACM SIGGRAPH 87,
21(4):103{110, July 1987.

[4] D. Koller, P. Lindstrom, W. Ribarsky,
L. Hodges, N. Faust, and G. Turner. Vir-
tual gis: A real time 3d geographic infor-
mation system. Proceedings Visualization
95, pages 94{100, 1995.

[5] L.Balmelli, J.Kova�cevi�c, and M. Vetterli.
Quadtree for embedded surface visualiza-
tion: Constraints and e�cient data struc-
tures. Proc. Int. Conf. Image Processing
(ICIP), October 1999.

[6] P. Lindstrom, D. Koller, W. Ribarsky,
L.F. Hodges, N. Faust, and G.A. Turner.
Real-time continous level of detail ren-
dering of height �elds. ACM SIG-
GRAPH, pages 109{118, 1996.

[7] R. Pajarola. Large scale terrain visual-
ization using the restricted quadtree tri-
angulation. Proceedings of IEEE Visual-
ization, 1998.

[8] M.C. Rivara. Mesh re�nement processes
based on the generalized bisection of
simplices. SIAM Journal on Numerical
Analysis, 21:604{613, 1984.

[9] H. Samet. Application of Spatial Data
Structures. Addison-Wesley Publishing
Company, 1989.

[10] M. Tamminen and F.W. Jansen. An
integrity �lter for recursive subdivision
meshes. Computer Graphics 9, 4(1):351{
363, 1985.


